1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 ///////////////////////////////////////////////////////////////////////////////
20 // TRD geometry class //
22 ///////////////////////////////////////////////////////////////////////////////
25 #include <TGeoManager.h>
26 #include <TGeoPhysicalNode.h>
27 #include <TGeoMatrix.h>
30 #include "AliRunLoader.h"
31 #include "AliAlignObj.h"
32 #include "AliAlignObjAngles.h"
36 #include "AliTRDcalibDB.h"
37 #include "AliTRDCommonParam.h"
38 #include "AliTRDgeometry.h"
39 #include "AliTRDpadPlane.h"
41 ClassImp(AliTRDgeometry)
43 //_____________________________________________________________________________
46 // The geometry constants
48 const Int_t AliTRDgeometry::fgkNsect = kNsect;
49 const Int_t AliTRDgeometry::fgkNplan = kNplan;
50 const Int_t AliTRDgeometry::fgkNcham = kNcham;
51 const Int_t AliTRDgeometry::fgkNdet = kNdet;
54 // Dimensions of the detector
57 // Parameter of the BTRD mother volumes
58 const Float_t AliTRDgeometry::fgkSheight = 77.9;
59 const Float_t AliTRDgeometry::fgkSwidth1 = 94.881;
60 const Float_t AliTRDgeometry::fgkSwidth2 = 122.353;
61 const Float_t AliTRDgeometry::fgkSlength = 751.0;
63 // The super module side plates
64 const Float_t AliTRDgeometry::fgkSMpltT = 0.2;
66 // Height of different chamber parts
68 const Float_t AliTRDgeometry::fgkCraH = 4.8;
70 const Float_t AliTRDgeometry::fgkCdrH = 3.0;
71 // Amplification region
72 const Float_t AliTRDgeometry::fgkCamH = 0.7;
74 const Float_t AliTRDgeometry::fgkCroH = 2.316;
76 const Float_t AliTRDgeometry::fgkCH = AliTRDgeometry::fgkCraH
77 + AliTRDgeometry::fgkCdrH
78 + AliTRDgeometry::fgkCamH
79 + AliTRDgeometry::fgkCroH;
81 // Vertical spacing of the chambers
82 const Float_t AliTRDgeometry::fgkVspace = 1.784;
83 // Horizontal spacing of the chambers
84 const Float_t AliTRDgeometry::fgkHspace = 2.0;
85 // Radial distance of the first ROC to the outer plates of the SM
86 const Float_t AliTRDgeometry::fgkVrocsm = 1.2;
88 // Thicknesses of different parts of the chamber frame
89 // Lower aluminum frame
90 const Float_t AliTRDgeometry::fgkCalT = 0.4;
91 // Lower Wacosit frame sides
92 const Float_t AliTRDgeometry::fgkCclsT = 0.21;
93 // Lower Wacosit frame front
94 const Float_t AliTRDgeometry::fgkCclfT = 1.0;
95 // Thickness of glue around radiator
96 const Float_t AliTRDgeometry::fgkCglT = 0.25;
97 // Upper Wacosit frame
98 const Float_t AliTRDgeometry::fgkCcuT = 0.9;
99 // Al frame of back panel
100 const Float_t AliTRDgeometry::fgkCauT = 1.5;
101 // Additional Al of the lower chamber frame
102 const Float_t AliTRDgeometry::fgkCalW = 1.11;
104 // Additional width of the readout chamber frames
105 const Float_t AliTRDgeometry::fgkCroW = 0.9;
107 // Difference of outer chamber width and pad plane width
108 const Float_t AliTRDgeometry::fgkCpadW = 0.0;
109 const Float_t AliTRDgeometry::fgkRpadW = 1.0;
112 // Thickness of the the material layers
114 const Float_t AliTRDgeometry::fgkMyThick = 0.005;
115 const Float_t AliTRDgeometry::fgkRaThick = 0.3233;
116 const Float_t AliTRDgeometry::fgkDrThick = AliTRDgeometry::fgkCdrH;
117 const Float_t AliTRDgeometry::fgkAmThick = AliTRDgeometry::fgkCamH;
118 const Float_t AliTRDgeometry::fgkXeThick = AliTRDgeometry::fgkDrThick
119 + AliTRDgeometry::fgkAmThick;
120 const Float_t AliTRDgeometry::fgkWrThick = 0.0002;
121 const Float_t AliTRDgeometry::fgkCuThick = 0.0072;
122 const Float_t AliTRDgeometry::fgkGlThick = 0.05;
123 const Float_t AliTRDgeometry::fgkSuThick = 0.0919;
124 const Float_t AliTRDgeometry::fgkRcThick = 0.0058;
125 const Float_t AliTRDgeometry::fgkRpThick = 0.0632;
126 const Float_t AliTRDgeometry::fgkRoThick = 0.0028;
129 // Position of the material layers
131 const Float_t AliTRDgeometry::fgkRaZpos = 0.0;
132 const Float_t AliTRDgeometry::fgkDrZpos = 2.4;
133 const Float_t AliTRDgeometry::fgkAmZpos = 0.0;
134 const Float_t AliTRDgeometry::fgkWrZpos = 0.0;
135 const Float_t AliTRDgeometry::fgkCuZpos = -0.9995;
136 const Float_t AliTRDgeometry::fgkGlZpos = -0.5;
137 const Float_t AliTRDgeometry::fgkSuZpos = 0.0;
138 const Float_t AliTRDgeometry::fgkRcZpos = 1.04;
139 const Float_t AliTRDgeometry::fgkRpZpos = 1.0;
140 const Float_t AliTRDgeometry::fgkRoZpos = 1.05;
142 const Int_t AliTRDgeometry::fgkMCMmax = 16;
143 const Int_t AliTRDgeometry::fgkMCMrow = 4;
144 const Int_t AliTRDgeometry::fgkROBmaxC0 = 6;
145 const Int_t AliTRDgeometry::fgkROBmaxC1 = 8;
146 const Int_t AliTRDgeometry::fgkADCmax = 21;
147 const Int_t AliTRDgeometry::fgkTBmax = 60;
148 const Int_t AliTRDgeometry::fgkPadmax = 18;
149 const Int_t AliTRDgeometry::fgkColmax = 144;
150 const Int_t AliTRDgeometry::fgkRowmaxC0 = 12;
151 const Int_t AliTRDgeometry::fgkRowmaxC1 = 16;
153 const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
154 const Float_t AliTRDgeometry::fgkTime0[6] = { fgkTime0Base + 0 * (Cheight() + Cspace())
155 , fgkTime0Base + 1 * (Cheight() + Cspace())
156 , fgkTime0Base + 2 * (Cheight() + Cspace())
157 , fgkTime0Base + 3 * (Cheight() + Cspace())
158 , fgkTime0Base + 4 * (Cheight() + Cspace())
159 , fgkTime0Base + 5 * (Cheight() + Cspace())};
161 //_____________________________________________________________________________
162 AliTRDgeometry::AliTRDgeometry()
165 ,fMatrixCorrectionArray(0)
170 // AliTRDgeometry default constructor
177 //_____________________________________________________________________________
178 AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
180 ,fMatrixArray(g.fMatrixArray)
181 ,fMatrixCorrectionArray(g.fMatrixCorrectionArray)
182 ,fMatrixGeo(g.fMatrixGeo)
185 // AliTRDgeometry copy constructor
192 //_____________________________________________________________________________
193 AliTRDgeometry::~AliTRDgeometry()
196 // AliTRDgeometry destructor
200 fMatrixArray->Delete();
205 if (fMatrixCorrectionArray) {
206 fMatrixCorrectionArray->Delete();
207 delete fMatrixCorrectionArray;
208 fMatrixCorrectionArray = 0;
212 fMatrixGeo->Delete();
219 //_____________________________________________________________________________
220 AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
223 // Assignment operator
234 //_____________________________________________________________________________
235 void AliTRDgeometry::Init()
238 // Initializes the geometry parameter
245 // The outer width of the chambers
253 // The outer lengths of the chambers
254 // Includes the spacings between the chambers!
255 Float_t length[kNplan][kNcham] = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
256 , { 124.0, 124.0, 110.0, 124.0, 124.0 }
257 , { 131.0, 131.0, 110.0, 131.0, 131.0 }
258 , { 138.0, 138.0, 110.0, 138.0, 138.0 }
259 , { 145.0, 145.0, 110.0, 145.0, 145.0 }
260 , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
262 for (icham = 0; icham < kNcham; icham++) {
263 for (iplan = 0; iplan < kNplan; iplan++) {
264 fClength[iplan][icham] = length[iplan][icham];
268 // The rotation matrix elements
270 for (isect = 0; isect < fgkNsect; isect++) {
271 phi = 2.0 * TMath::Pi() / (Float_t) fgkNsect * ((Float_t) isect + 0.5);
272 fRotB11[isect] = TMath::Cos(phi);
273 fRotB12[isect] = TMath::Sin(phi);
274 fRotB21[isect] = TMath::Sin(phi);
275 fRotB22[isect] = TMath::Cos(phi);
278 for (isect = 0; isect < fgkNsect; isect++) {
279 SetSMstatus(isect,1);
284 //_____________________________________________________________________________
285 void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
288 // Create the TRD geometry without hole
291 // Names of the TRD volumina (xx = detector number):
293 // Volume (Air) wrapping the readout chamber components
294 // UTxx includes: UAxx, UDxx, UFxx, UUxx
296 // Volume (Air) wrapping the services (fee + cooling)
297 // UUxx the services volume has been reduced by 7.42 mm
298 // in order to allow shifts in radial direction
300 // Lower part of the readout chambers (drift volume + radiator)
302 // UAxx Aluminum frames (Al)
303 // UBxx Wacosit frames (C)
304 // UXxx Glue around radiator (Epoxy)
305 // UCxx Inner volumes (Air)
306 // UZxx Additional aluminum ledges (Al)
308 // Upper part of the readout chambers (readout plane + fee)
310 // UDxx Wacosit frames of amp. region (C)
311 // UExx Inner volumes of the frame (Air)
312 // UFxx Aluminum frame of back panel (Al)
313 // UGxx Inner volumes of the back panel (Air)
315 // Inner material layers
317 // UHxx Radiator (Rohacell)
318 // UJxx Drift volume (Xe/CO2)
319 // UKxx Amplification volume (Xe/CO2)
320 // UWxx Wire plane (Cu)
321 // ULxx Pad plane (Cu)
322 // UYxx Glue layer (Epoxy)
323 // UMxx Support structure (Rohacell)
324 // UNxx ROB base material (C)
325 // UOxx ROB copper (Cu)
326 // UVxx ROB other materials (Cu)
329 const Int_t kNparTrd = 4;
330 const Int_t kNparCha = 3;
336 Float_t parTrd[kNparTrd];
337 Float_t parCha[kNparCha];
342 // The TRD mother volume for one sector (Air), full length in z-direction
343 // Provides material for side plates of super module
344 parTrd[0] = fgkSwidth1/2.0;
345 parTrd[1] = fgkSwidth2/2.0;
346 parTrd[2] = fgkSlength/2.0;
347 parTrd[3] = fgkSheight/2.0;
348 gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
350 // The outer aluminum plates of the super module (Al)
351 parTrd[0] = fgkSwidth1/2.0;
352 parTrd[1] = fgkSwidth2/2.0;
353 parTrd[2] = fgkSlength/2.0;
354 parTrd[3] = fgkSheight/2.0;
355 gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
357 // The inner part of the TRD mother volume for one sector (Air),
358 // full length in z-direction
359 parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
360 parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
361 parTrd[2] = fgkSlength/2.0;
362 parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
363 gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
365 for (Int_t icham = 0; icham < kNcham; icham++) {
366 for (Int_t iplan = 0; iplan < kNplan; iplan++) {
368 Int_t iDet = GetDetectorSec(iplan,icham);
370 // The lower part of the readout chambers (drift volume + radiator)
371 // The aluminum frames
372 sprintf(cTagV,"UA%02d",iDet);
373 parCha[0] = fCwidth[iplan]/2.0;
374 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
375 parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
376 fChamberUAboxd[iDet][0] = parCha[0];
377 fChamberUAboxd[iDet][1] = parCha[1];
378 fChamberUAboxd[iDet][2] = parCha[2];
379 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
380 // The additional aluminum on the frames
381 // This part has not the correct postion but is just supposed to
382 // represent the missing material. The correct from of the L-shaped
383 // profile would not fit into the alignable volume.
384 sprintf(cTagV,"UZ%02d",iDet);
385 parCha[0] = fgkCroW/2.0;
386 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
387 parCha[2] = fgkCalW/2.0;
388 fChamberUAboxd[iDet][0] = fChamberUAboxd[iDet][0] + fgkCroW;
389 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
390 // The Wacosit frames
391 sprintf(cTagV,"UB%02d",iDet);
392 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT;
395 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
396 // The glue around the radiator
397 sprintf(cTagV,"UX%02d",iDet);
398 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT;
399 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
400 parCha[2] = fgkCraH/2.0;
401 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
402 // The inner part of radiator (air)
403 sprintf(cTagV,"UC%02d",iDet);
404 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT - fgkCglT;
405 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
407 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
409 // The upper part of the readout chambers (amplification volume)
410 // The Wacosit frames
411 sprintf(cTagV,"UD%02d",iDet);
412 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
413 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
414 parCha[2] = fgkCamH/2.0;
415 fChamberUDboxd[iDet][0] = parCha[0];
416 fChamberUDboxd[iDet][1] = parCha[1];
417 fChamberUDboxd[iDet][2] = parCha[2];
418 gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
419 // The inner part of the Wacosit frame (air)
420 sprintf(cTagV,"UE%02d",iDet);
421 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCcuT;
422 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCcuT;
424 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
426 // The support structure (pad plane, back panel, readout boards)
427 // The aluminum frames
428 sprintf(cTagV,"UF%02d",iDet);
429 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW;
430 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
431 parCha[2] = fgkCroH/2.0;
432 fChamberUFboxd[iDet][0] = parCha[0];
433 fChamberUFboxd[iDet][1] = parCha[1];
434 fChamberUFboxd[iDet][2] = parCha[2];
435 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
436 // The inner part of the aluminum frames
437 sprintf(cTagV,"UG%02d",iDet);
438 parCha[0] = fCwidth[iplan]/2.0 + fgkCroW - fgkCauT;
439 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCauT;
441 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
443 // The material layers inside the chambers
444 // Rohacell layer (radiator)
447 parCha[2] = fgkRaThick/2.0;
448 sprintf(cTagV,"UH%02d",iDet);
449 gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
450 // Xe/Isobutane layer (drift volume)
451 parCha[0] = fCwidth[iplan]/2.0 - fgkCalT - fgkCclsT;
452 parCha[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0 - fgkCclfT;
453 parCha[2] = fgkDrThick/2.0;
454 sprintf(cTagV,"UJ%02d",iDet);
455 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
456 // Xe/Isobutane layer (amplification volume)
459 parCha[2] = fgkAmThick/2.0;
460 sprintf(cTagV,"UK%02d",iDet);
461 gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
462 // Cu layer (wire plane)
465 parCha[2] = fgkWrThick/2.0;
466 sprintf(cTagV,"UW%02d",iDet);
467 gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
468 // Cu layer (pad plane)
471 parCha[2] = fgkCuThick/2.0;
472 sprintf(cTagV,"UL%02d",iDet);
473 gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
474 // Epoxy layer (glue)
477 parCha[2] = fgkGlThick/2.0;
478 sprintf(cTagV,"UY%02d",iDet);
479 gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
480 // G10 layer (support structure / honeycomb)
483 parCha[2] = fgkSuThick/2.0;
484 sprintf(cTagV,"UM%02d",iDet);
485 gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
486 // G10 layer (PCB readout board)
489 parCha[2] = fgkRpThick/2;
490 sprintf(cTagV,"UN%02d",iDet);
491 gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
492 // Cu layer (traces in readout board)
495 parCha[2] = fgkRcThick/2.0;
496 sprintf(cTagV,"UO%02d",iDet);
497 gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
498 // Cu layer (other material on in readout board)
501 parCha[2] = fgkRoThick/2.0;
502 sprintf(cTagV,"UV%02d",iDet);
503 gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
505 // Position the layers in the chambers
509 // Rohacell layer (radiator)
511 sprintf(cTagV,"UH%02d",iDet);
512 sprintf(cTagM,"UC%02d",iDet);
513 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
514 // Xe/Isobutane layer (drift volume)
516 sprintf(cTagV,"UJ%02d",iDet);
517 sprintf(cTagM,"UB%02d",iDet);
518 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
520 // Xe/Isobutane layer (amplification volume)
522 sprintf(cTagV,"UK%02d",iDet);
523 sprintf(cTagM,"UE%02d",iDet);
524 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
525 // Cu layer (wire plane inside amplification volume)
527 sprintf(cTagV,"UW%02d",iDet);
528 sprintf(cTagM,"UK%02d",iDet);
529 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
530 // Readout part + support plane
531 // Cu layer (pad plane)
533 sprintf(cTagV,"UL%02d",iDet);
534 sprintf(cTagM,"UG%02d",iDet);
535 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
536 // Epoxy layer (glue)
538 sprintf(cTagV,"UY%02d",iDet);
539 sprintf(cTagM,"UG%02d",iDet);
540 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
541 // G10 layer (support structure)
543 sprintf(cTagV,"UM%02d",iDet);
544 sprintf(cTagM,"UG%02d",iDet);
545 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
546 // G10 layer (PCB readout board)
548 sprintf(cTagV,"UN%02d",iDet);
549 sprintf(cTagM,"UG%02d",iDet);
550 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
551 // Cu layer (traces in readout board)
553 sprintf(cTagV,"UO%02d",iDet);
554 sprintf(cTagM,"UG%02d",iDet);
555 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
556 // Cu layer (other materials on readout board)
558 sprintf(cTagV,"UV%02d",iDet);
559 sprintf(cTagM,"UG%02d",iDet);
560 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
562 // Position the inner volumes of the chambers in the frames
565 // The inner part of the radiator
567 sprintf(cTagV,"UC%02d",iDet);
568 sprintf(cTagM,"UX%02d",iDet);
569 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
570 // The glue around the radiator
571 zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
572 sprintf(cTagV,"UX%02d",iDet);
573 sprintf(cTagM,"UB%02d",iDet);
574 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
575 // The lower Wacosit frame inside the aluminum frame
577 sprintf(cTagV,"UB%02d",iDet);
578 sprintf(cTagM,"UA%02d",iDet);
579 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
580 // The inside of the upper Wacosit frame
582 sprintf(cTagV,"UE%02d",iDet);
583 sprintf(cTagM,"UD%02d",iDet);
584 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
585 // The inside of the upper aluminum frame
587 sprintf(cTagV,"UG%02d",iDet);
588 sprintf(cTagM,"UF%02d",iDet);
589 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
591 // Position the frames of the chambers in the TRD mother volume
593 ypos = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
594 for (Int_t ic = 0; ic < icham; ic++) {
595 ypos -= fClength[iplan][ic];
597 ypos -= fClength[iplan][icham]/2.0;
598 zpos = fgkVrocsm + fgkSMpltT + fgkCraH/2.0 + fgkCdrH/2.0 - fgkSheight/2.0
599 + iplan * (fgkCH + fgkVspace);
600 // The lower aluminum frame, radiator + drift region
601 sprintf(cTagV,"UA%02d",iDet);
602 fChamberUAorig[iDet][0] = xpos;
603 fChamberUAorig[iDet][1] = ypos;
604 fChamberUAorig[iDet][2] = zpos;
605 // The upper G10 frame, amplification region
606 sprintf(cTagV,"UD%02d",iDet);
607 zpos += fgkCamH/2.0 + fgkCraH/2.0 + fgkCdrH/2.0;
608 fChamberUDorig[iDet][0] = xpos;
609 fChamberUDorig[iDet][1] = ypos;
610 fChamberUDorig[iDet][2] = zpos;
611 // The upper aluminum frame
612 sprintf(cTagV,"UF%02d",iDet);
613 zpos += fgkCroH/2.0 + fgkCamH/2.0;
614 fChamberUForig[iDet][0] = xpos;
615 fChamberUForig[iDet][1] = ypos;
616 fChamberUForig[iDet][2] = zpos;
621 // Create the volumes of the super module frame
624 // Create the volumes of the services
625 CreateServices(idtmed);
627 for (Int_t icham = 0; icham < kNcham; icham++) {
628 for (Int_t iplan = 0; iplan < kNplan; iplan++) {
629 GroupChamber(iplan,icham,idtmed);
636 gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
641 gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
643 // Put the TRD volumes into the space frame mother volumes
644 // if enabled via status flag
648 for (Int_t isect = 0; isect < kNsect; isect++) {
649 if (fSMstatus[isect]) {
650 sprintf(cTagV,"BTRD%d",isect);
651 gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
657 //_____________________________________________________________________________
658 void AliTRDgeometry::CreateFrame(Int_t *idtmed)
661 // Create the geometry of the frame of the supermodule
663 // Names of the TRD services volumina
665 // USRL Support rails for the chambers (Al)
666 // USxx Support cross bars between the chambers (Al)
667 // USHx Horizontal connection between the cross bars (Al)
668 // USLx Long corner ledges (Al)
680 // The rotation matrices
681 const Int_t kNmatrix = 4;
682 Int_t matrix[kNmatrix];
683 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0);
684 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0);
685 gMC->Matrix(matrix[2], 90.0, 0.0, 0.0, 0.0, 90.0, 90.0);
686 gMC->Matrix(matrix[3], 90.0, 180.0, 0.0, 180.0, 90.0, 90.0);
689 // The chamber support rails
692 const Float_t kSRLwid = 2.00;
693 const Float_t kSRLhgt = 2.3;
694 const Float_t kSRLdst = 1.0;
695 const Int_t kNparSRL = 3;
696 Float_t parSRL[kNparSRL];
697 parSRL[0] = kSRLwid /2.0;
698 parSRL[1] = fgkSlength/2.0;
699 parSRL[2] = kSRLhgt /2.0;
700 gMC->Gsvolu("USRL","BOX ",idtmed[1301-1],parSRL,kNparSRL);
705 for (iplan = 0; iplan < kNplan; iplan++) {
706 xpos = fCwidth[iplan]/2.0 + kSRLwid/2.0 + kSRLdst;
708 zpos = fgkVrocsm + fgkSMpltT + fgkCraH + fgkCdrH + fgkCamH
710 + iplan * (fgkCH + fgkVspace);
711 gMC->Gspos("USRL",iplan+1 ,"UTI1", xpos,ypos,zpos,0,"ONLY");
712 gMC->Gspos("USRL",iplan+1+ kNplan,"UTI1",-xpos,ypos,zpos,0,"ONLY");
716 // The cross bars between the chambers
719 const Float_t kSCBwid = 1.0;
720 const Float_t kSCBthk = 2.0;
721 const Float_t kSCHhgt = 0.3;
723 const Int_t kNparSCB = 3;
724 Float_t parSCB[kNparSCB];
725 parSCB[1] = kSCBwid/2.0;
726 parSCB[2] = fgkCH /2.0 + fgkVspace/2.0 - kSCHhgt;
728 const Int_t kNparSCI = 3;
729 Float_t parSCI[kNparSCI];
735 for (iplan = 0; iplan < kNplan; iplan++) {
737 // The aluminum of the cross bars
738 parSCB[0] = fCwidth[iplan]/2.0 + kSRLdst/2.0;
739 sprintf(cTagV,"USF%01d",iplan);
740 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
742 // The empty regions in the cross bars
743 Float_t thkSCB = kSCBthk;
747 parSCI[2] = parSCB[2] - thkSCB;
748 parSCI[0] = parSCB[0]/4.0 - kSCBthk;
749 sprintf(cTagV,"USI%01d",iplan);
750 gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
752 sprintf(cTagV,"USI%01d",iplan);
753 sprintf(cTagM,"USF%01d",iplan);
756 xpos = parSCI[0] + thkSCB/2.0;
757 gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
758 xpos = - parSCI[0] - thkSCB/2.0;
759 gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
760 xpos = 3.0 * parSCI[0] + 1.5 * thkSCB;
761 gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
762 xpos = - 3.0 * parSCI[0] - 1.5 * thkSCB;
763 gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
765 sprintf(cTagV,"USF%01d",iplan);
767 zpos = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0
768 + iplan * (fgkCH + fgkVspace);
770 ypos = fgkSlength/2.0 - kSCBwid/2.0;
771 gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
773 ypos = fClength[iplan][2]/2.0 + fClength[iplan][1];
774 gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
776 ypos = fClength[iplan][2]/2.0;
777 gMC->Gspos(cTagV,3,"UTI1", xpos,ypos,zpos,0,"ONLY");
779 ypos = - fClength[iplan][2]/2.0;
780 gMC->Gspos(cTagV,4,"UTI1", xpos,ypos,zpos,0,"ONLY");
782 ypos = - fClength[iplan][2]/2.0 - fClength[iplan][1];
783 gMC->Gspos(cTagV,5,"UTI1", xpos,ypos,zpos,0,"ONLY");
785 ypos = - fgkSlength/2.0 + kSCBwid/2.0;
786 gMC->Gspos(cTagV,6,"UTI1", xpos,ypos,zpos,0,"ONLY");
791 // The horizontal connections between the cross bars
794 const Int_t kNparSCH = 3;
795 Float_t parSCH[kNparSCH];
797 for (iplan = 1; iplan < kNplan-1; iplan++) {
799 parSCH[0] = fCwidth[iplan]/2.0;
800 parSCH[1] = (fClength[iplan+1][2]/2.0 + fClength[iplan+1][1]
801 - fClength[iplan ][2]/2.0 - fClength[iplan ][1])/2.0;
802 parSCH[2] = kSCHhgt/2.0;
804 sprintf(cTagV,"USH%01d",iplan);
805 gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
807 ypos = fClength[iplan][2]/2.0 + fClength[iplan][1] + parSCH[1];
808 zpos = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0
809 + (iplan+1) * (fgkCH + fgkVspace);
810 gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
812 gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
817 // The long corner ledges
820 const Int_t kNparSCL = 3;
821 Float_t parSCL[kNparSCL];
822 const Int_t kNparSCLb = 11;
823 Float_t parSCLb[kNparSCLb];
826 // Thickness of the corner ledges
827 const Float_t kSCLthkUa = 0.6;
828 const Float_t kSCLthkUb = 0.6;
829 // Width of the corner ledges
830 const Float_t kSCLwidUa = 3.2;
831 const Float_t kSCLwidUb = 4.8;
832 // Position of the corner ledges
833 const Float_t kSCLposxUa = 0.7;
834 const Float_t kSCLposxUb = 3.3;
835 const Float_t kSCLposzUa = 1.6;
836 const Float_t kSCLposzUb = 0.3;
838 parSCL[0] = kSCLthkUa /2.0;
839 parSCL[1] = fgkSlength/2.0;
840 parSCL[2] = kSCLwidUa /2.0;
841 gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
842 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
844 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
845 gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
847 gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
849 parSCL[0] = kSCLwidUb /2.0;
850 parSCL[1] = fgkSlength/2.0;
851 parSCL[2] = kSCLthkUb /2.0;
852 gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
853 xpos = fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
855 zpos = fgkSheight/2.0 - fgkSMpltT - kSCLposzUb;
856 gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
858 gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
861 // Thickness of the corner ledges
862 const Float_t kSCLthkLa = 2.464;
863 const Float_t kSCLthkLb = 1.0;
864 // Width of the corner ledges
865 const Float_t kSCLwidLa = 8.5;
866 const Float_t kSCLwidLb = 3.3;
867 // Position of the corner ledges
868 const Float_t kSCLposxLa = 0.0;
869 const Float_t kSCLposxLb = 2.6;
870 const Float_t kSCLposzLa = -4.25;
871 const Float_t kSCLposzLb = -0.5;
874 parSCLb[ 0] = fgkSlength/2.0;
877 parSCLb[ 3] = kSCLwidLa /2.0;
878 parSCLb[ 4] = kSCLthkLb /2.0;
879 parSCLb[ 5] = kSCLthkLa /2.0;
881 parSCLb[ 7] = kSCLwidLa /2.0;
882 parSCLb[ 8] = kSCLthkLb /2.0;
883 parSCLb[ 9] = kSCLthkLa /2.0;
885 gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
886 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
888 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLa;
889 gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
891 gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
893 parSCL[0] = kSCLwidLb /2.0;
894 parSCL[1] = fgkSlength/2.0;
895 parSCL[2] = kSCLthkLb /2.0;
896 gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
897 xpos = fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
899 zpos = - fgkSheight/2.0 + fgkSMpltT - kSCLposzLb;
900 gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos, 0,"ONLY");
902 gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos, 0,"ONLY");
906 //_____________________________________________________________________________
907 void AliTRDgeometry::CreateServices(Int_t *idtmed)
910 // Create the geometry of the services
912 // Names of the TRD services volumina
914 // UTCL Cooling arterias (Al)
915 // UTCW Cooling arterias (Water)
916 // UUxx Volumes for the services at the chambers (Air)
917 // UTPW Power bars (Cu)
918 // UTCP Cooling pipes (Fe)
919 // UTCH Cooling pipes (Water)
920 // UTPL Power lines (Cu)
921 // UMCM Readout MCMs (G10/Cu/Si)
933 // The rotation matrices
934 const Int_t kNmatrix = 4;
935 Int_t matrix[kNmatrix];
936 gMC->Matrix(matrix[0], 100.0, 0.0, 90.0, 90.0, 10.0, 0.0);
937 gMC->Matrix(matrix[1], 80.0, 0.0, 90.0, 90.0, 10.0, 180.0);
938 gMC->Matrix(matrix[2], 0.0, 0.0, 90.0, 90.0, 90.0, 0.0);
939 gMC->Matrix(matrix[3], 180.0, 0.0, 90.0, 90.0, 90.0, 180.0);
941 AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
943 AliError("Could not get common parameters\n");
948 // The cooling arterias
951 // Width of the cooling arterias
952 const Float_t kCOLwid = 0.8;
953 // Height of the cooling arterias
954 const Float_t kCOLhgt = 6.5;
955 // Positioning of the cooling
956 const Float_t kCOLposx = 1.8;
957 const Float_t kCOLposz = -0.1;
958 // Thickness of the walls of the cooling arterias
959 const Float_t kCOLthk = 0.1;
960 const Int_t kNparCOL = 3;
961 Float_t parCOL[kNparCOL];
962 parCOL[0] = kCOLwid /2.0;
963 parCOL[1] = fgkSlength/2.0;
964 parCOL[2] = kCOLhgt /2.0;
965 gMC->Gsvolu("UTCL","BOX ",idtmed[1308-1],parCOL,kNparCOL);
966 parCOL[0] -= kCOLthk;
967 parCOL[1] = fgkSlength/2.0;
968 parCOL[2] -= kCOLthk;
969 gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parCOL,kNparCOL);
974 gMC->Gspos("UTCW",1,"UTCL", xpos,ypos,zpos,0,"ONLY");
976 for (iplan = 1; iplan < kNplan; iplan++) {
978 xpos = fCwidth[iplan]/2.0 + kCOLwid/2.0 + kCOLposx;
980 zpos = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz
981 + iplan * (fgkCH + fgkVspace);
982 gMC->Gspos("UTCL",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
983 gMC->Gspos("UTCL",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
987 // The upper most layer (reaching into TOF acceptance)
988 xpos = fCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
990 zpos = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0;
991 gMC->Gspos("UTCL",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
992 gMC->Gspos("UTCL",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
998 const Float_t kPWRwid = 0.6;
999 const Float_t kPWRhgt = 5.0;
1000 const Float_t kPWRposx = 1.4;
1001 const Float_t kPWRposz = 1.9;
1002 const Int_t kNparPWR = 3;
1003 Float_t parPWR[kNparPWR];
1004 parPWR[0] = kPWRwid /2.0;
1005 parPWR[1] = fgkSlength/2.0;
1006 parPWR[2] = kPWRhgt /2.0;
1007 gMC->Gsvolu("UTPW","BOX ",idtmed[1325-1],parPWR,kNparPWR);
1009 for (iplan = 1; iplan < kNplan; iplan++) {
1011 xpos = fCwidth[iplan]/2.0 + kPWRwid/2.0 + kPWRposx;
1013 zpos = fgkVrocsm + fgkSMpltT + kPWRhgt/2.0 - fgkSheight/2.0 + kPWRposz
1014 + iplan * (fgkCH + fgkVspace);
1015 gMC->Gspos("UTPW",iplan ,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1016 gMC->Gspos("UTPW",iplan+kNplan,"UTI1",-xpos,ypos,zpos,matrix[1],"ONLY");
1020 // The upper most layer (reaching into TOF acceptance)
1021 xpos = fCwidth[5]/2.0 + kPWRhgt/2.0 - 1.3;
1023 zpos = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0;
1024 gMC->Gspos("UTPW",6 ,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1025 gMC->Gspos("UTPW",6+kNplan,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
1028 // The volumes for the services at the chambers
1031 const Int_t kNparServ = 3;
1032 Float_t parServ[kNparServ];
1034 for (icham = 0; icham < kNcham; icham++) {
1035 for (iplan = 0; iplan < kNplan; iplan++) {
1037 Int_t iDet = GetDetectorSec(iplan,icham);
1039 sprintf(cTagV,"UU%02d",iDet);
1040 parServ[0] = fCwidth[iplan] /2.0;
1041 parServ[1] = fClength[iplan][icham]/2.0 - fgkHspace/2.0;
1042 parServ[2] = fgkVspace /2.0 - 0.742/2.0;
1043 fChamberUUboxd[iDet][0] = parServ[0];
1044 fChamberUUboxd[iDet][1] = parServ[1];
1045 fChamberUUboxd[iDet][2] = parServ[2];
1046 gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
1049 ypos = fClength[iplan][0] + fClength[iplan][1] + fClength[iplan][2]/2.0;
1050 for (Int_t ic = 0; ic < icham; ic++) {
1051 ypos -= fClength[iplan][ic];
1053 ypos -= fClength[iplan][icham]/2.0;
1054 zpos = fgkVrocsm + fgkSMpltT + fgkCH + fgkVspace/2.0 - fgkSheight/2.0
1055 + iplan * (fgkCH + fgkVspace);
1057 fChamberUUorig[iDet][0] = xpos;
1058 fChamberUUorig[iDet][1] = ypos;
1059 fChamberUUorig[iDet][2] = zpos;
1065 // The cooling pipes inside the service volumes
1068 const Int_t kNparTube = 3;
1069 Float_t parTube[kNparTube];
1070 // The cooling pipes
1074 gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
1075 // The cooling water
1077 parTube[1] = 0.2/2.0;
1079 gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
1080 // Water inside the cooling pipe
1084 gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
1086 // Position the cooling pipes in the mother volume
1087 const Int_t kNpar = 3;
1089 for (icham = 0; icham < kNcham; icham++) {
1090 for (iplan = 0; iplan < kNplan; iplan++) {
1091 Int_t iDet = GetDetectorSec(iplan,icham);
1092 Int_t iCopy = GetDetector(iplan,icham,0) * 100;
1093 Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0);
1094 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
1095 / ((Float_t) nMCMrow);
1096 sprintf(cTagV,"UU%02d",iDet);
1097 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1099 ypos = (0.5 + iMCMrow) * ySize - 1.9
1100 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1101 zpos = 0.0 + 0.742/2.0;
1103 par[1] = 0.3/2.0; // Thickness of the cooling pipes
1104 par[2] = fCwidth[iplan]/2.0;
1105 gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
1106 ,matrix[2],"ONLY",par,kNpar);
1115 // The copper power lines
1119 gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
1121 // Position the power lines in the mother volume
1122 for (icham = 0; icham < kNcham; icham++) {
1123 for (iplan = 0; iplan < kNplan; iplan++) {
1124 Int_t iDet = GetDetectorSec(iplan,icham);
1125 Int_t iCopy = GetDetector(iplan,icham,0) * 100;
1126 Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0);
1127 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
1128 / ((Float_t) nMCMrow);
1129 sprintf(cTagV,"UU%02d",iDet);
1130 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1132 ypos = (0.5 + iMCMrow) * ySize - 1.0
1133 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1134 zpos = -0.4 + 0.742/2.0;
1136 par[1] = 0.2/2.0; // Thickness of the power lines
1137 par[2] = fCwidth[iplan]/2.0;
1138 gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
1139 ,matrix[2],"ONLY",par,kNpar);
1148 const Float_t kMCMx = 3.0;
1149 const Float_t kMCMy = 3.0;
1150 const Float_t kMCMz = 0.3;
1152 const Float_t kMCMpcTh = 0.1;
1153 const Float_t kMCMcuTh = 0.0025;
1154 const Float_t kMCMsiTh = 0.03;
1155 const Float_t kMCMcoTh = 0.04;
1157 // The mother volume for the MCMs (air)
1158 const Int_t kNparMCM = 3;
1159 Float_t parMCM[kNparMCM];
1160 parMCM[0] = kMCMx /2.0;
1161 parMCM[1] = kMCMy /2.0;
1162 parMCM[2] = kMCMz /2.0;
1163 gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
1165 // The MCM carrier G10 layer
1166 parMCM[0] = kMCMx /2.0;
1167 parMCM[1] = kMCMy /2.0;
1168 parMCM[2] = kMCMpcTh/2.0;
1169 gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
1170 // The MCM carrier Cu layer
1171 parMCM[0] = kMCMx /2.0;
1172 parMCM[1] = kMCMy /2.0;
1173 parMCM[2] = kMCMcuTh/2.0;
1174 gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
1175 // The silicon of the chips
1176 parMCM[0] = kMCMx /2.0;
1177 parMCM[1] = kMCMy /2.0;
1178 parMCM[2] = kMCMsiTh/2.0;
1179 gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
1180 // The aluminum of the cooling plates
1181 parMCM[0] = kMCMx /2.0;
1182 parMCM[1] = kMCMy /2.0;
1183 parMCM[2] = kMCMcoTh/2.0;
1184 gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
1186 // Put the MCM material inside the MCM mother volume
1189 zpos = -kMCMz /2.0 + kMCMpcTh/2.0;
1190 gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
1191 zpos += kMCMpcTh/2.0 + kMCMcuTh/2.0;
1192 gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
1193 zpos += kMCMcuTh/2.0 + kMCMsiTh/2.0;
1194 gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
1195 zpos += kMCMsiTh/2.0 + kMCMcoTh/2.0;
1196 gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
1198 // Position the MCMs in the mother volume
1199 for (icham = 0; icham < kNcham; icham++) {
1200 for (iplan = 0; iplan < kNplan; iplan++) {
1201 Int_t iDet = GetDetectorSec(iplan,icham);
1202 Int_t iCopy = GetDetector(iplan,icham,0) * 1000;
1203 Int_t nMCMrow = commonParam->GetRowMax(iplan,icham,0);
1204 Float_t ySize = (GetChamberLength(iplan,icham) - 2.0*fgkRpadW)
1205 / ((Float_t) nMCMrow);
1207 Float_t xSize = (GetChamberWidth(iplan) - 2.0*fgkCpadW)
1208 / ((Float_t) nMCMcol);
1209 sprintf(cTagV,"UU%02d",iDet);
1210 for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
1211 for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
1212 xpos = (0.5 + iMCMcol) * xSize + 1.0
1213 - fCwidth[iplan]/2.0;
1214 ypos = (0.5 + iMCMrow) * ySize + 1.0
1215 - fClength[iplan][icham]/2.0 + fgkHspace/2.0;
1216 zpos = -0.4 + 0.742/2.0;
1218 par[1] = 0.2/2.0; // Thickness of the power lines
1219 par[2] = fCwidth[iplan]/2.0;
1220 gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
1221 ,xpos,ypos,zpos,0,"ONLY");
1230 //_____________________________________________________________________________
1231 void AliTRDgeometry::GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed)
1234 // Group volumes UA, UD, UF, UU in a single chamber (Air)
1235 // UA, UD, UF, UU are boxes
1239 const Int_t kNparCha = 3;
1241 Int_t iDet = GetDetectorSec(iplan,icham);
1251 for (Int_t i = 0; i < 3; i++) {
1252 xyzMin[i] = +9999.0;
1253 xyzMax[i] = -9999.0;
1256 for (Int_t i = 0; i < 3; i++) {
1258 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUAorig[iDet][i]-fChamberUAboxd[iDet][i]);
1259 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUAorig[iDet][i]+fChamberUAboxd[iDet][i]);
1261 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUDorig[iDet][i]-fChamberUDboxd[iDet][i]);
1262 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUDorig[iDet][i]+fChamberUDboxd[iDet][i]);
1264 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUForig[iDet][i]-fChamberUFboxd[iDet][i]);
1265 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUForig[iDet][i]+fChamberUFboxd[iDet][i]);
1267 xyzMin[i] = TMath::Min(xyzMin[i],fChamberUUorig[iDet][i]-fChamberUUboxd[iDet][i]);
1268 xyzMax[i] = TMath::Max(xyzMax[i],fChamberUUorig[iDet][i]+fChamberUUboxd[iDet][i]);
1270 xyzOrig[i] = 0.5*(xyzMax[i]+xyzMin[i]);
1271 xyzBoxd[i] = 0.5*(xyzMax[i]-xyzMin[i]);
1275 sprintf(cTagM,"UT%02d",iDet);
1276 gMC->Gsvolu(cTagM,"BOX ",idtmed[1302-1],xyzBoxd,kNparCha);
1278 sprintf(cTagV,"UA%02d",iDet);
1279 gMC->Gspos(cTagV,1,cTagM
1280 ,fChamberUAorig[iDet][0]-xyzOrig[0]
1281 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1282 ,fChamberUAorig[iDet][2]-xyzOrig[2]
1285 sprintf(cTagV,"UZ%02d",iDet);
1286 gMC->Gspos(cTagV,1,cTagM
1287 ,fChamberUAorig[iDet][0]-xyzOrig[0] + fChamberUAboxd[iDet][0] - fgkCroW/2.0
1288 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1289 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
1291 gMC->Gspos(cTagV,2,cTagM
1292 ,fChamberUAorig[iDet][0]-xyzOrig[0] - fChamberUAboxd[iDet][0] + fgkCroW/2.0
1293 ,fChamberUAorig[iDet][1]-xyzOrig[1]
1294 ,fChamberUAorig[iDet][2]-xyzOrig[2] + fgkCraH/2.0 + fgkCdrH/2.0 - fgkCalW/2.0
1297 sprintf(cTagV,"UD%02d",iDet);
1298 gMC->Gspos(cTagV,1,cTagM
1299 ,fChamberUDorig[iDet][0]-xyzOrig[0]
1300 ,fChamberUDorig[iDet][1]-xyzOrig[1]
1301 ,fChamberUDorig[iDet][2]-xyzOrig[2]
1304 sprintf(cTagV,"UF%02d",iDet);
1305 gMC->Gspos(cTagV,1,cTagM
1306 ,fChamberUForig[iDet][0]-xyzOrig[0]
1307 ,fChamberUForig[iDet][1]-xyzOrig[1]
1308 ,fChamberUForig[iDet][2]-xyzOrig[2]
1311 sprintf(cTagV,"UU%02d",iDet);
1312 gMC->Gspos(cTagV,1,cTagM
1313 ,fChamberUUorig[iDet][0]-xyzOrig[0]
1314 ,fChamberUUorig[iDet][1]-xyzOrig[1]
1315 ,fChamberUUorig[iDet][2]-xyzOrig[2]
1318 sprintf(cTagV,"UT%02d",iDet);
1319 gMC->Gspos(cTagV,1,"UTI1"
1327 //_____________________________________________________________________________
1328 Bool_t AliTRDgeometry::RotateBack(Int_t det, Double_t *loc, Double_t *glb) const
1331 // Rotates a chambers to transform the corresponding local frame
1332 // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
1335 Int_t sector = GetSector(det);
1337 glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
1338 glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
1345 //_____________________________________________________________________________
1346 Int_t AliTRDgeometry::GetDetectorSec(Int_t p, Int_t c)
1349 // Convert plane / chamber into detector number for one single sector
1352 return (p + c * fgkNplan);
1356 //_____________________________________________________________________________
1357 Int_t AliTRDgeometry::GetDetector(Int_t p, Int_t c, Int_t s)
1360 // Convert plane / chamber / sector into detector number
1363 return (p + c * fgkNplan + s * fgkNplan * fgkNcham);
1367 //_____________________________________________________________________________
1368 Int_t AliTRDgeometry::GetPlane(Int_t d) const
1371 // Reconstruct the plane number from the detector number
1374 return ((Int_t) (d % fgkNplan));
1378 //_____________________________________________________________________________
1379 Int_t AliTRDgeometry::GetChamber(Int_t d) const
1382 // Reconstruct the chamber number from the detector number
1385 return ((Int_t) (d % (fgkNplan * fgkNcham)) / fgkNplan);
1389 //_____________________________________________________________________________
1390 Int_t AliTRDgeometry::GetSector(Int_t d) const
1393 // Reconstruct the sector number from the detector number
1396 return ((Int_t) (d / (fgkNplan * fgkNcham)));
1401 //_____________________________________________________________________________
1402 Int_t AliTRDgeometry::GetPadRowFromMCM(Int_t irob, Int_t imcm) const
1405 // return on which row this mcm sits
1407 return fgkMCMrow*(irob/2) + imcm/fgkMCMrow;
1412 //_____________________________________________________________________________
1413 Int_t AliTRDgeometry::GetPadColFromADC(Int_t irob, Int_t imcm, Int_t iadc) const
1416 // return which pad is connected to this adc channel. return -1 if it
1417 // is one of the not directly connected adc channels (0, 1 20)
1420 if (iadc < 2 || iadc > 19 ) return -1;
1422 return (iadc-2) + (imcm%fgkMCMrow)*fgkPadmax + GetRobSide(irob)*fgkColmax/2;
1426 //_____________________________________________________________________________
1427 Int_t AliTRDgeometry::GetMCMfromPad(Int_t irow, Int_t icol) const
1430 // return on which mcm this pad is
1432 if ( irow < 0 || icol < 0 || irow > fgkRowmaxC1 || icol > fgkColmax ) return -1;
1434 return (icol%(fgkColmax/2))/fgkPadmax + fgkMCMrow*(irow%fgkMCMrow);
1438 //_____________________________________________________________________________
1439 Int_t AliTRDgeometry::GetROBfromPad(Int_t irow, Int_t icol) const
1442 // return on which rob this pad is
1444 return (irow/fgkMCMrow)*2 + GetColSide(icol);
1448 //_____________________________________________________________________________
1449 Int_t AliTRDgeometry::GetRobSide(Int_t irob) const
1452 // return on which side this rob sits (A side = 0, B side = 1)
1454 if ( irob < 0 || irob >= fgkROBmaxC1 ) return -1;
1460 //_____________________________________________________________________________
1461 Int_t AliTRDgeometry::GetColSide(Int_t icol) const
1464 // return on which side this column sits (A side = 0, B side = 1)
1466 if ( icol < 0 || icol >= fgkColmax ) return -1;
1468 return icol/(fgkColmax/2);
1472 //_____________________________________________________________________________
1473 AliTRDgeometry *AliTRDgeometry::GetGeometry(AliRunLoader *runLoader)
1476 // Load the geometry from the galice file
1480 runLoader = AliRunLoader::GetRunLoader();
1483 AliErrorGeneral("AliTRDgeometry::GetGeometry","No run loader");
1487 TDirectory *saveDir = gDirectory;
1488 runLoader->CdGAFile();
1490 // Try from the galice.root file
1491 static AliTRDgeometry *geom = (AliTRDgeometry *) gDirectory->Get("TRDgeometry");
1494 // If it is not in the file, try to get it from the run loader
1495 if (runLoader->GetAliRun()) {
1496 AliTRD *trd = (AliTRD *) runLoader->GetAliRun()->GetDetector("TRD");
1497 geom = trd->GetGeometry();
1501 AliErrorGeneral("AliTRDgeometry::GetGeometry","Geometry not found");
1510 //_____________________________________________________________________________
1511 Bool_t AliTRDgeometry::ReadGeoMatrices()
1514 // Read geo matrices from current gGeoManager for each TRD sector
1521 fMatrixArray = new TObjArray(kNdet);
1522 fMatrixCorrectionArray = new TObjArray(kNdet);
1523 fMatrixGeo = new TObjArray(kNdet);
1524 AliAlignObjAngles o;
1526 for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
1527 for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
1529 UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,iModule);
1530 const char *symname = AliGeomManager::SymName(volid);
1531 TGeoPNEntry *pne = gGeoManager->GetAlignableEntry(symname);
1532 const char *path = symname;
1534 path = pne->GetTitle();
1536 if (!gGeoManager->cd(path)) {
1539 TGeoHMatrix *m = gGeoManager->GetCurrentMatrix();
1540 Int_t iLayerTRD = iLayer - AliGeomManager::kTRD1;
1541 Int_t isector = iModule/Ncham();
1542 Int_t ichamber = iModule%Ncham();
1543 Int_t lid = GetDetector(iLayerTRD,ichamber,isector);
1546 // Local geo system z-x-y to x-y--z
1548 fMatrixGeo->AddAt(new TGeoHMatrix(*m),lid);
1550 TGeoRotation mchange;
1551 mchange.RotateY(90);
1552 mchange.RotateX(90);
1554 TGeoHMatrix gMatrix(mchange.Inverse());
1555 gMatrix.MultiplyLeft(m);
1556 fMatrixArray->AddAt(new TGeoHMatrix(gMatrix),lid);
1559 // Cluster transformation matrix
1561 TGeoHMatrix rotMatrix(mchange.Inverse());
1562 rotMatrix.MultiplyLeft(m);
1563 Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
1564 TGeoHMatrix rotSector;
1565 rotSector.RotateZ(sectorAngle);
1566 rotMatrix.MultiplyLeft(&rotSector.Inverse());
1568 fMatrixCorrectionArray->AddAt(new TGeoHMatrix(rotMatrix),lid);