]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDgeometry.cxx
Speedup up clusterizer (Theo)
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 //  TRD geometry class                                                       //
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TGeoManager.h>
25 #include <TGeoPhysicalNode.h>
26 #include <TVirtualMC.h>
27 #include <TMath.h>
28
29 #include "AliLog.h"
30 #include "AliAlignObjParams.h"
31
32 #include "AliTRDgeometry.h"
33 #include "AliTRDpadPlane.h"
34
35 ClassImp(AliTRDgeometry)
36
37 //_____________________________________________________________________________
38
39   //
40   // The geometry constants
41   //
42   const Int_t    AliTRDgeometry::fgkNsector   = kNsector;
43   const Int_t    AliTRDgeometry::fgkNlayer    = kNlayer;
44   const Int_t    AliTRDgeometry::fgkNstack    = kNstack;
45   const Int_t    AliTRDgeometry::fgkNdet      = kNdet;
46
47   //
48   // Dimensions of the detector
49   //
50
51   // Total length of the TRD mother volume
52   const Float_t  AliTRDgeometry::fgkTlength   = 751.0;
53
54   // Parameter of the super module mother volumes 
55   const Float_t  AliTRDgeometry::fgkSheight   =  77.9; 
56   const Float_t  AliTRDgeometry::fgkSwidth1   =  94.881; 
57   const Float_t  AliTRDgeometry::fgkSwidth2   = 122.353;
58   const Float_t  AliTRDgeometry::fgkSlength   = 702.0;
59
60   // Length of the additional space in front of the supermodule
61   // used for services
62   const Float_t  AliTRDgeometry::fgkFlength   = (AliTRDgeometry::fgkTlength
63                                                - AliTRDgeometry::fgkSlength) / 2.0;
64
65   // The super module side plates
66   const Float_t  AliTRDgeometry::fgkSMpltT    =   0.2;
67
68   // Vertical spacing of the chambers
69   const Float_t  AliTRDgeometry::fgkVspace    =   1.784;
70   // Horizontal spacing of the chambers
71   const Float_t  AliTRDgeometry::fgkHspace    =   2.0;
72   // Radial distance of the first ROC to the outer plates of the SM
73   const Float_t  AliTRDgeometry::fgkVrocsm    =   1.2;
74
75   // Height of different chamber parts
76   // Radiator
77   const Float_t  AliTRDgeometry::fgkCraH      =   4.8; 
78   // Drift region
79   const Float_t  AliTRDgeometry::fgkCdrH      =   3.0;
80   // Amplification region
81   const Float_t  AliTRDgeometry::fgkCamH      =   0.7;
82   // Readout
83   const Float_t  AliTRDgeometry::fgkCroH      =   2.316;
84   // Additional width of the readout chamber frames
85   const Float_t  AliTRDgeometry::fgkCroW      =   0.9;
86   // Services on top of ROC
87   const Float_t  AliTRDgeometry::fgkCsvH      = AliTRDgeometry::fgkVspace 
88                                               -   0.742;
89   // Total height (w/o services)
90   const Float_t  AliTRDgeometry::fgkCH        = AliTRDgeometry::fgkCraH
91                                               + AliTRDgeometry::fgkCdrH
92                                               + AliTRDgeometry::fgkCamH
93                                               + AliTRDgeometry::fgkCroH;  
94   // Total height (with services)
95
96   const Float_t  AliTRDgeometry::fgkCHsv      = AliTRDgeometry::fgkCH 
97                                               + AliTRDgeometry::fgkCsvH;
98
99   // Distance of anode wire plane relative to middle of alignable volume
100   const Float_t  AliTRDgeometry::fgkAnodePos  = AliTRDgeometry::fgkCraH 
101                                               + AliTRDgeometry::fgkCdrH 
102                                               + AliTRDgeometry::fgkCamH/2.0
103                                               - AliTRDgeometry::fgkCHsv/2.0;
104
105   // Thicknesses of different parts of the chamber frame
106   // Lower aluminum frame
107   const Float_t  AliTRDgeometry::fgkCalT      =   0.4;
108   // Lower Wacosit frame sides
109   const Float_t  AliTRDgeometry::fgkCclsT     =   0.21;
110   // Lower Wacosit frame front
111   const Float_t  AliTRDgeometry::fgkCclfT     =   1.0;
112   // Thickness of glue around radiator
113   const Float_t  AliTRDgeometry::fgkCglT      =   0.25;
114   // Upper Wacosit frame around amplification region
115   const Float_t  AliTRDgeometry::fgkCcuTa     =   1.0;
116   const Float_t  AliTRDgeometry::fgkCcuTb     =   0.8;
117   // Al frame of back panel
118   const Float_t  AliTRDgeometry::fgkCauT      =   1.5;
119   // Additional Al ledge at the lower chamber frame
120   // Actually the dimensions are not realistic, but 
121   // modified in order to allow to mis-alignment. 
122   // The amount of material is, however, correct 
123   const Float_t  AliTRDgeometry::fgkCalW      =   2.5;
124   const Float_t  AliTRDgeometry::fgkCalH      =   0.4;
125   const Float_t  AliTRDgeometry::fgkCalWmod   =   0.4;
126   const Float_t  AliTRDgeometry::fgkCalHmod   =   2.5;
127   // Additional Wacosit ledge at the lower chamber frame
128   const Float_t  AliTRDgeometry::fgkCwsW      =   1.2;
129   const Float_t  AliTRDgeometry::fgkCwsH      =   0.3;
130
131   // Difference of outer chamber width and pad plane width
132   const Float_t  AliTRDgeometry::fgkCpadW     =   0.0;
133   const Float_t  AliTRDgeometry::fgkRpadW     =   1.0;
134
135   //
136   // Thickness of the the material layers
137   //
138   const Float_t  AliTRDgeometry::fgkDrThick   = AliTRDgeometry::fgkCdrH;    
139   const Float_t  AliTRDgeometry::fgkAmThick   = AliTRDgeometry::fgkCamH;
140   const Float_t  AliTRDgeometry::fgkXeThick   = AliTRDgeometry::fgkDrThick
141                                               + AliTRDgeometry::fgkAmThick;
142   const Float_t  AliTRDgeometry::fgkWrThick   = 0.00011;
143
144   const Float_t  AliTRDgeometry::fgkRMyThick  = 0.0015;
145   const Float_t  AliTRDgeometry::fgkRCbThick  = 0.0055;
146   const Float_t  AliTRDgeometry::fgkRGlThick  = 0.0065;
147   const Float_t  AliTRDgeometry::fgkRRhThick  = 0.8;
148   const Float_t  AliTRDgeometry::fgkRFbThick  = fgkCraH - 2.0 * (fgkRMyThick 
149                                                                + fgkRCbThick 
150                                                                + fgkRRhThick);
151
152   const Float_t  AliTRDgeometry::fgkPPdThick  = 0.0025; 
153   const Float_t  AliTRDgeometry::fgkPPpThick  = 0.0356; 
154   const Float_t  AliTRDgeometry::fgkPGlThick  = 0.1428;
155   const Float_t  AliTRDgeometry::fgkPCbThick  = 0.019;
156   const Float_t  AliTRDgeometry::fgkPPcThick  = 0.0486;
157   const Float_t  AliTRDgeometry::fgkPRbThick  = 0.0057;
158   const Float_t  AliTRDgeometry::fgkPElThick  = 0.0029;
159   const Float_t  AliTRDgeometry::fgkPHcThick  = fgkCroH - fgkPPdThick 
160                                                         - fgkPPpThick
161                                                         - fgkPGlThick 
162                                                         - fgkPCbThick * 2.0
163                                                         - fgkPPcThick
164                                                         - fgkPRbThick
165                                                         - fgkPElThick;
166
167   //
168   // Position of the material layers
169   //
170   const Float_t  AliTRDgeometry::fgkDrZpos    =  2.4;
171   const Float_t  AliTRDgeometry::fgkAmZpos    =  0.0;
172   const Float_t  AliTRDgeometry::fgkWrZposA   =  0.0;
173   const Float_t  AliTRDgeometry::fgkWrZposB   = -fgkAmThick/2.0 + 0.001;
174   const Float_t  AliTRDgeometry::fgkCalZpos   =  0.3;
175
176   const Int_t    AliTRDgeometry::fgkMCMmax    = 16;   
177   const Int_t    AliTRDgeometry::fgkMCMrow    = 4;   
178   const Int_t    AliTRDgeometry::fgkROBmaxC0  = 6; 
179   const Int_t    AliTRDgeometry::fgkROBmaxC1  = 8; 
180   const Int_t    AliTRDgeometry::fgkADCmax    = 21;   
181   const Int_t    AliTRDgeometry::fgkTBmax     = 60;   
182   const Int_t    AliTRDgeometry::fgkPadmax    = 18;   
183   const Int_t    AliTRDgeometry::fgkColmax    = 144;
184   const Int_t    AliTRDgeometry::fgkRowmaxC0  = 12;
185   const Int_t    AliTRDgeometry::fgkRowmaxC1  = 16;
186
187   const Double_t AliTRDgeometry::fgkTime0Base = 300.65;
188   const Float_t  AliTRDgeometry::fgkTime0[6]  = { fgkTime0Base + 0 * (Cheight() + Cspace()) 
189                                                 , fgkTime0Base + 1 * (Cheight() + Cspace()) 
190                                                 , fgkTime0Base + 2 * (Cheight() + Cspace()) 
191                                                 , fgkTime0Base + 3 * (Cheight() + Cspace()) 
192                                                 , fgkTime0Base + 4 * (Cheight() + Cspace()) 
193                                                 , fgkTime0Base + 5 * (Cheight() + Cspace())};
194
195   const Double_t AliTRDgeometry::fgkXtrdBeg   = 288.43; // Values depend on position of TRD
196   const Double_t AliTRDgeometry::fgkXtrdEnd   = 366.33; // mother volume inside space frame !!!
197
198   // The outer width of the chambers
199   const Float_t AliTRDgeometry::fgkCwidth[kNlayer] = {90.4, 94.8, 99.3, 103.7, 108.1, 112.6};
200   
201   // The outer lengths of the chambers
202   // Includes the spacings between the chambers!
203   const Float_t AliTRDgeometry::fgkClength[kNlayer][kNstack] = { { 124.0, 124.0, 110.0, 124.0, 124.0 }
204                                                               , { 124.0, 124.0, 110.0, 124.0, 124.0 }
205                                                               , { 131.0, 131.0, 110.0, 131.0, 131.0 }
206                                                               , { 138.0, 138.0, 110.0, 138.0, 138.0 }
207                                                               , { 145.0, 145.0, 110.0, 145.0, 145.0 }
208                                                               , { 147.0, 147.0, 110.0, 147.0, 147.0 } };
209
210   TObjArray* AliTRDgeometry::fgClusterMatrixArray = NULL;
211
212   TObjArray* AliTRDgeometry::fgPadPlaneArray = NULL;
213
214 //_____________________________________________________________________________
215 AliTRDgeometry::AliTRDgeometry()
216   :AliGeometry()
217 {
218   //
219   // AliTRDgeometry default constructor
220   //
221
222   Init();
223
224 }
225
226 //_____________________________________________________________________________
227 AliTRDgeometry::AliTRDgeometry(const AliTRDgeometry &g)
228   :AliGeometry(g)
229 {
230   //
231   // AliTRDgeometry copy constructor
232   //
233
234   Init();
235
236 }
237
238 //_____________________________________________________________________________
239 AliTRDgeometry::~AliTRDgeometry()
240 {
241   //
242   // AliTRDgeometry destructor
243   //
244
245 }
246
247 //_____________________________________________________________________________
248 AliTRDgeometry &AliTRDgeometry::operator=(const AliTRDgeometry &g)
249 {
250   //
251   // Assignment operator
252   //
253
254   if (this != &g) {
255     Init();
256   }
257
258   return *this;
259
260 }
261
262 //_____________________________________________________________________________
263 void AliTRDgeometry::Init()
264 {
265   //
266   // Initializes the geometry parameter
267   //
268
269   // The rotation matrix elements
270   Float_t phi = 0.0;
271   for (Int_t isector = 0; isector < fgkNsector; isector++) {
272     phi = 2.0 * TMath::Pi() /  (Float_t) fgkNsector * ((Float_t) isector + 0.5);
273     fRotB11[isector] = TMath::Cos(phi);
274     fRotB12[isector] = TMath::Sin(phi);
275     fRotB21[isector] = TMath::Sin(phi);
276     fRotB22[isector] = TMath::Cos(phi);
277   }
278  
279   // SM status
280   for (Int_t i = 0; i < kNsector; i++) {
281     fSMstatus[i] = 1;
282   }
283
284 }
285
286 //_____________________________________________________________________________
287 void AliTRDgeometry::CreatePadPlaneArray()
288 {
289   //
290   // Creates the array of AliTRDpadPlane objects
291   //
292
293   if (fgPadPlaneArray)
294     return;
295
296   fgPadPlaneArray = new TObjArray(fgkNlayer * fgkNstack);  
297   for (Int_t ilayer = 0; ilayer < fgkNlayer; ilayer++) {
298     for (Int_t istack = 0; istack < fgkNstack; istack++) {
299       Int_t ipp = GetDetectorSec(ilayer,istack);
300       fgPadPlaneArray->AddAt(CreatePadPlane(ilayer,istack),ipp);
301     }
302   }
303
304 }
305
306 //_____________________________________________________________________________
307 AliTRDpadPlane *AliTRDgeometry::CreatePadPlane(Int_t ilayer, Int_t istack)
308 {
309   //
310   // Creates an AliTRDpadPlane object
311   //
312
313   AliTRDpadPlane *padPlane = new AliTRDpadPlane();
314
315   padPlane->SetLayer(ilayer);
316   padPlane->SetStack(istack);
317
318   padPlane->SetRowSpacing(0.0);
319   padPlane->SetColSpacing(0.0);
320
321   padPlane->SetLengthRim(1.0);
322   padPlane->SetWidthRim(0.5);
323
324   padPlane->SetNcols(144);
325
326   padPlane->SetAnodeWireOffset(0.25);
327
328   //
329   // The pad plane parameter
330   //
331   switch (ilayer) {
332   case 0:
333     if (istack == 2) {
334       // L0C0 type
335       padPlane->SetNrows(12);
336       padPlane->SetLength(108.0);
337       padPlane->SetWidth(92.2);
338       padPlane->SetLengthOPad(8.0);
339       padPlane->SetWidthOPad(0.515);
340       padPlane->SetLengthIPad(9.0);
341       padPlane->SetWidthIPad(0.635);
342       padPlane->SetTiltingAngle(2.0);
343     }
344     else {
345       // L0C1 type
346       padPlane->SetNrows(16);
347       padPlane->SetLength(122.0);
348       padPlane->SetWidth(92.2);
349       padPlane->SetLengthOPad(7.5);
350       padPlane->SetWidthOPad(0.515);
351       padPlane->SetLengthIPad(7.5);
352       padPlane->SetWidthIPad(0.635);
353       padPlane->SetTiltingAngle(2.0);
354     }
355     break;
356   case 1:
357     if (istack == 2) {
358       // L1C0 type
359       padPlane->SetNrows(12);
360       padPlane->SetLength(108.0);
361       padPlane->SetWidth(96.6);
362       padPlane->SetLengthOPad(8.0);
363       padPlane->SetWidthOPad(0.585);
364       padPlane->SetLengthIPad(9.0);
365       padPlane->SetWidthIPad(0.665);
366       padPlane->SetTiltingAngle(-2.0);
367     }
368     else {
369       // L1C1 type
370       padPlane->SetNrows(16);
371       padPlane->SetLength(122.0);
372       padPlane->SetWidth(96.6);
373       padPlane->SetLengthOPad(7.5);
374       padPlane->SetWidthOPad(0.585);
375       padPlane->SetLengthIPad(7.5);
376       padPlane->SetWidthIPad(0.665);
377       padPlane->SetTiltingAngle(-2.0);
378     }
379     break;
380   case 2:
381     if (istack == 2) {
382       // L2C0 type
383       padPlane->SetNrows(12);
384       padPlane->SetLength(108.0);
385       padPlane->SetWidth(101.1);
386       padPlane->SetLengthOPad(8.0);
387       padPlane->SetWidthOPad(0.705);
388       padPlane->SetLengthIPad(9.0);
389       padPlane->SetWidthIPad(0.695);
390       padPlane->SetTiltingAngle(2.0);
391     }
392     else {
393       // L2C1 type
394       padPlane->SetNrows(16);
395       padPlane->SetLength(129.0);
396       padPlane->SetWidth(101.1);
397       padPlane->SetLengthOPad(7.5);
398       padPlane->SetWidthOPad(0.705);
399       padPlane->SetLengthIPad(8.0);
400       padPlane->SetWidthIPad(0.695);
401       padPlane->SetTiltingAngle(2.0);
402     }
403     break;
404   case 3:
405     if (istack == 2) {
406       // L3C0 type
407       padPlane->SetNrows(12);
408       padPlane->SetLength(108.0);
409       padPlane->SetWidth(105.5);
410       padPlane->SetLengthOPad(8.0);
411       padPlane->SetWidthOPad(0.775);
412       padPlane->SetLengthIPad(9.0);
413       padPlane->SetWidthIPad(0.725);
414       padPlane->SetTiltingAngle(-2.0);
415     }
416     else {
417       // L3C1 type
418       padPlane->SetNrows(16);
419       padPlane->SetLength(136.0);
420       padPlane->SetWidth(105.5);
421       padPlane->SetLengthOPad(7.5);
422       padPlane->SetWidthOPad(0.775);
423       padPlane->SetLengthIPad(8.5);
424       padPlane->SetWidthIPad(0.725);
425       padPlane->SetTiltingAngle(-2.0);
426     }
427     break;
428   case 4:
429     if (istack == 2) {
430       // L4C0 type
431       padPlane->SetNrows(12);
432       padPlane->SetLength(108.0);
433       padPlane->SetWidth(109.9);
434       padPlane->SetLengthOPad(8.0);
435       padPlane->SetWidthOPad(0.845);
436       padPlane->SetLengthIPad(9.0);
437       padPlane->SetWidthIPad(0.755);
438       padPlane->SetTiltingAngle(2.0);
439     }
440     else {
441       // L4C1 type
442       padPlane->SetNrows(16);
443       padPlane->SetLength(143.0);
444       padPlane->SetWidth(109.9);
445       padPlane->SetLengthOPad(7.5);
446       padPlane->SetWidthOPad(0.845);
447       padPlane->SetLengthIPad(9.0);
448       padPlane->SetWidthIPad(0.755);
449       padPlane->SetTiltingAngle(2.0);
450     }
451     break;
452   case 5:
453     if (istack == 2) {
454       // L5C0 type
455       padPlane->SetNrows(12);
456       padPlane->SetLength(108.0);
457       padPlane->SetWidth(114.4);
458       padPlane->SetLengthOPad(8.0);
459       padPlane->SetWidthOPad(0.965);
460       padPlane->SetLengthIPad(9.0);
461       padPlane->SetWidthIPad(0.785);
462       padPlane->SetTiltingAngle(-2.0);
463     }
464     else {
465       // L5C1 type
466       padPlane->SetNrows(16);
467       padPlane->SetLength(145.0);
468       padPlane->SetWidth(114.4);
469       padPlane->SetLengthOPad(8.5);
470       padPlane->SetWidthOPad(0.965);
471       padPlane->SetLengthIPad(9.0);
472       padPlane->SetWidthIPad(0.785);
473       padPlane->SetTiltingAngle(-2.0);
474     }
475     break;
476   };
477
478   //
479   // The positions of the borders of the pads
480   //
481   // Row direction
482   //
483   Double_t row = fgkClength[ilayer][istack] / 2.0
484                - fgkRpadW
485                - padPlane->GetLengthRim();
486   for (Int_t ir = 0; ir < padPlane->GetNrows(); ir++) {
487     padPlane->SetPadRow(ir,row);
488     row -= padPlane->GetRowSpacing();
489     if (ir == 0) {
490       row -= padPlane->GetLengthOPad();
491     }
492     else {
493       row -= padPlane->GetLengthIPad();
494     }
495   }
496   //
497   // Column direction
498   //
499   Double_t col = - fgkCwidth[ilayer] / 2.0
500                  - fgkCroW
501                  + padPlane->GetWidthRim();
502   for (Int_t ic = 0; ic < padPlane->GetNcols(); ic++) {
503     padPlane->SetPadCol(ic,col);
504     col += padPlane->GetColSpacing();
505     if (ic == 0) {
506       col += padPlane->GetWidthOPad();
507     }
508     else {
509       col += padPlane->GetWidthIPad();
510     }
511   }
512   // Calculate the offset to translate from the local ROC system into
513   // the local supermodule system, which is used for clusters
514   Double_t rowTmp = fgkClength[ilayer][0]
515                   + fgkClength[ilayer][1]
516                   + fgkClength[ilayer][2] / 2.0;
517   for (Int_t jstack = 0; jstack < istack; jstack++) {
518     rowTmp -= fgkClength[ilayer][jstack];
519   }
520   padPlane->SetPadRowSMOffset(rowTmp - fgkClength[ilayer][istack]/2.0);
521
522   return padPlane;
523
524 }
525
526 //_____________________________________________________________________________
527 void AliTRDgeometry::CreateGeometry(Int_t *idtmed)
528 {
529   //
530   // Create the TRD geometry
531   //
532   //
533   // Names of the TRD volumina (xx = detector number):
534   //
535   //   Volume (Air) wrapping the readout chamber components
536   //     UTxx    includes: UAxx, UDxx, UFxx, UUxx
537   //
538   //   Lower part of the readout chambers (drift volume + radiator)
539   //     UAxx    Aluminum frames                (Al)
540   //
541   //   Upper part of the readout chambers (readout plane + fee)
542   //     UDxx    Wacosit frames of amp. region  (Wacosit)
543   //     UFxx    Aluminum frame of back panel   (Al)
544   //
545   //   Services on chambers (cooling, cables, MCMs, DCS boards, ...)
546   //     UUxx    Volume containing the services (Air) 
547   //
548   //   Material layers inside sensitive area:
549   //     Name    Description                     Mat.      Thick.   Dens.    Radl.    X/X_0
550   //                                                        
551   //     URMYxx  Mylar layers (x2)               Mylar     0.0015   1.39     28.5464  0.005%
552   //     URCBxx  Carbon layer (x2)               Carbon    0.0055   1.75     24.2824  0.023%
553   //     URGLxx  Glue on the carbon layers (x2)  Araldite  0.0065   1.12     37.0664  0.018%
554   //     URRHxx  Rohacell layer (x2)             Rohacell  0.8      0.075    536.005  0.149%
555   //     URFBxx  Fiber mat layer                 PP        3.186    0.068    649.727  0.490%
556   //     
557   //     UJxx    Drift region                    Xe/CO2    3.0      0.00495  1792.37  0.167%
558   //     UKxx    Amplification region            Xe/CO2    0.7      0.00495  1792.37  0.039%
559   //     UWxx    Wire planes (x2)                Copper    0.00011  8.96     1.43503  0.008%
560   //
561   //     UPPDxx  Copper of pad plane             Copper    0.0025   8.96     1.43503  0.174%
562   //     UPPPxx  PCB of pad plane                G10       0.0356   2.0      14.9013  0.239%
563   //     UPGLxx  Glue on pad planes              Araldite  0.0923   1.12     37.0664  0.249%
564   //             + add. glue (ca. 600g)          Araldite  0.0505   1.12     37.0663  0.107%
565   //     UPCBxx  Carbon fiber mats (x2)          Carbon    0.019    1.75     24.2824  0.078%
566   //     UPHCxx  Honeycomb structure             Aramide   2.0299   0.032    1198.84  0.169%
567   //     UPPCxx  PCB of readout board            G10       0.0486   2.0      14.9013  0.326%
568   //     UPRDxx  Copper of readout board         Copper    0.0057   8.96     1.43503  0.404%
569   //     UPELxx  Electronics + cables            Copper    0.0029   8.96     1.43503  0.202%
570   //
571
572   const Int_t kNparTrd = 4;
573   const Int_t kNparCha = 3;
574
575   Float_t xpos;
576   Float_t ypos;
577   Float_t zpos;
578
579   Float_t parTrd[kNparTrd];
580   Float_t parCha[kNparCha];
581
582   Char_t  cTagV[100];
583   Char_t  cTagM[100];
584
585   // There are three TRD volumes for the supermodules in order to accomodate
586   // the different arrangements in front of PHOS
587   // UTR1: Default supermodule
588   // UTR2: Supermodule in front of PHOS with double carbon cover
589   // UTR3: As UTR2, but w/o middle stack
590   //
591   // The mother volume for one sector (Air), full length in z-direction
592   // Provides material for side plates of super module
593   parTrd[0] = fgkSwidth1/2.0;
594   parTrd[1] = fgkSwidth2/2.0;
595   parTrd[2] = fgkSlength/2.0;
596   parTrd[3] = fgkSheight/2.0;
597   gMC->Gsvolu("UTR1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
598   gMC->Gsvolu("UTR2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
599   gMC->Gsvolu("UTR3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
600   // The outer aluminum plates of the super module (Al)
601   parTrd[0] = fgkSwidth1/2.0;
602   parTrd[1] = fgkSwidth2/2.0;
603   parTrd[2] = fgkSlength/2.0;
604   parTrd[3] = fgkSheight/2.0;
605   gMC->Gsvolu("UTS1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
606   gMC->Gsvolu("UTS2","TRD1",idtmed[1301-1],parTrd,kNparTrd);
607   gMC->Gsvolu("UTS3","TRD1",idtmed[1301-1],parTrd,kNparTrd);
608   // The inner part of the TRD mother volume for one sector (Air), 
609   // full length in z-direction
610   parTrd[0] = fgkSwidth1/2.0 - fgkSMpltT;
611   parTrd[1] = fgkSwidth2/2.0 - fgkSMpltT;
612   parTrd[2] = fgkSlength/2.0;
613   parTrd[3] = fgkSheight/2.0 - fgkSMpltT;
614   gMC->Gsvolu("UTI1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
615   gMC->Gsvolu("UTI2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
616   gMC->Gsvolu("UTI3","TRD1",idtmed[1302-1],parTrd,kNparTrd);
617
618   // The inner part of the TRD mother volume for services in front
619   // of the supermodules  (Air), 
620   parTrd[0] = fgkSwidth1/2.0;
621   parTrd[1] = fgkSwidth2/2.0;
622   parTrd[2] = fgkFlength/2.0;
623   parTrd[3] = fgkSheight/2.0;
624   gMC->Gsvolu("UTF1","TRD1",idtmed[1302-1],parTrd,kNparTrd);
625   gMC->Gsvolu("UTF2","TRD1",idtmed[1302-1],parTrd,kNparTrd);
626
627   for (Int_t istack = 0; istack < kNstack; istack++) {
628     for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {  
629
630       Int_t iDet = GetDetectorSec(ilayer,istack);
631
632       // The lower part of the readout chambers (drift volume + radiator) 
633       // The aluminum frames 
634       sprintf(cTagV,"UA%02d",iDet);
635       parCha[0] = fgkCwidth[ilayer]/2.0;
636       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
637       parCha[2] = fgkCraH/2.0 + fgkCdrH/2.0;
638       gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
639       // The additional aluminum on the frames
640       // This part has not the correct shape but is just supposed to
641       // represent the missing material. The correct form of the L-shaped
642       // profile would not fit into the alignable volume. 
643       sprintf(cTagV,"UZ%02d",iDet);
644       parCha[0] = fgkCalWmod/2.0;
645       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
646       parCha[2] = fgkCalHmod/2.0;
647       gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
648       // The additional Wacosit on the frames
649       sprintf(cTagV,"UP%02d",iDet);
650       parCha[0] = fgkCwsW/2.0;
651       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
652       parCha[2] = fgkCwsH/2.0;
653       gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
654       // The Wacosit frames 
655       sprintf(cTagV,"UB%02d",iDet);
656       parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT; 
657       parCha[1] = -1.0;
658       parCha[2] = -1.0;
659       gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
660       // The glue around the radiator
661       sprintf(cTagV,"UX%02d",iDet);
662       parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT; 
663       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
664       parCha[2] = fgkCraH/2.0;
665       gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
666       // The inner part of radiator (air)
667       sprintf(cTagV,"UC%02d",iDet);
668       parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT - fgkCglT; 
669       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT - fgkCglT;
670       parCha[2] = -1.0;
671       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
672
673       // The upper part of the readout chambers (amplification volume)
674       // The Wacosit frames
675       sprintf(cTagV,"UD%02d",iDet);
676       parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW;
677       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
678       parCha[2] = fgkCamH/2.0;
679       gMC->Gsvolu(cTagV,"BOX ",idtmed[1307-1],parCha,kNparCha);
680       // The inner part of the Wacosit frame (air)
681       sprintf(cTagV,"UE%02d",iDet);
682       parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCcuTb; 
683       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCcuTa;
684       parCha[2] = -1.;
685       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
686
687       // The back panel, including pad plane and readout boards
688       // The aluminum frames
689       sprintf(cTagV,"UF%02d",iDet);
690       parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW;
691       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
692       parCha[2] = fgkCroH/2.0;
693       gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parCha,kNparCha);
694       // The inner part of the aluminum frames
695       sprintf(cTagV,"UG%02d",iDet);
696       parCha[0] = fgkCwidth[ilayer]/2.0 + fgkCroW - fgkCauT; 
697       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCauT;
698       parCha[2] = -1.0;
699       gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parCha,kNparCha);
700
701       //
702       // The material layers inside the chambers
703       //
704
705       // Mylar layer (radiator)
706       parCha[0] = -1.0;
707       parCha[1] = -1.0;
708       parCha[2] = fgkRMyThick/2.0;
709       sprintf(cTagV,"URMY%02d",iDet);
710       gMC->Gsvolu(cTagV,"BOX ",idtmed[1327-1],parCha,kNparCha);
711       // Carbon layer (radiator)
712       parCha[0] = -1.0;
713       parCha[1] = -1.0;
714       parCha[2] = fgkRCbThick/2.0;
715       sprintf(cTagV,"URCB%02d",iDet);
716       gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha);
717       // Araldite layer (radiator)
718       parCha[0] = -1.0;
719       parCha[1] = -1.0;
720       parCha[2] = fgkRGlThick/2.0;
721       sprintf(cTagV,"URGL%02d",iDet);
722       gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
723       // Rohacell layer (radiator)
724       parCha[0] = -1.0;
725       parCha[1] = -1.0;
726       parCha[2] = fgkRRhThick/2.0;
727       sprintf(cTagV,"URRH%02d",iDet);
728       gMC->Gsvolu(cTagV,"BOX ",idtmed[1315-1],parCha,kNparCha);
729       // Fiber layer (radiator)
730       parCha[0] = -1.0;
731       parCha[1] = -1.0;
732       parCha[2] = fgkRFbThick/2.0;
733       sprintf(cTagV,"URFB%02d",iDet);
734       gMC->Gsvolu(cTagV,"BOX ",idtmed[1328-1],parCha,kNparCha);
735
736       // Xe/Isobutane layer (drift volume) 
737       parCha[0] = fgkCwidth[ilayer]/2.0 - fgkCalT - fgkCclsT;
738       parCha[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0 - fgkCclfT;
739       parCha[2] = fgkDrThick/2.0;
740       sprintf(cTagV,"UJ%02d",iDet);
741       gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);
742
743       // Xe/Isobutane layer (amplification volume)
744       parCha[0] = -1.0;
745       parCha[1] = -1.0;
746       parCha[2] = fgkAmThick/2.0;
747       sprintf(cTagV,"UK%02d",iDet);
748       gMC->Gsvolu(cTagV,"BOX ",idtmed[1309-1],parCha,kNparCha);  
749       // Cu layer (wire plane)
750       parCha[0] = -1.0;
751       parCha[1] = -1.0;
752       parCha[2] = fgkWrThick/2.0;
753       sprintf(cTagV,"UW%02d",iDet);
754       gMC->Gsvolu(cTagV,"BOX ",idtmed[1303-1],parCha,kNparCha);
755
756       // Cu layer (pad plane)
757       parCha[0] = -1.0;
758       parCha[1] = -1.0;
759       parCha[2] = fgkPPdThick/2.0;
760       sprintf(cTagV,"UPPD%02d",iDet);
761       gMC->Gsvolu(cTagV,"BOX ",idtmed[1305-1],parCha,kNparCha);
762       // G10 layer (pad plane)
763       parCha[0] = -1.0;
764       parCha[1] = -1.0;
765       parCha[2] = fgkPPpThick/2.0;
766       sprintf(cTagV,"UPPP%02d",iDet);
767       gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
768       // Araldite layer (glue)
769       parCha[0] = -1.0;
770       parCha[1] = -1.0;
771       parCha[2] = fgkPGlThick/2.0;
772       sprintf(cTagV,"UPGL%02d",iDet);
773       gMC->Gsvolu(cTagV,"BOX ",idtmed[1311-1],parCha,kNparCha);
774       // Carbon layer (carbon fiber mats)
775       parCha[0] = -1.0;
776       parCha[1] = -1.0;
777       parCha[2] = fgkPCbThick/2.0;
778       sprintf(cTagV,"UPCB%02d",iDet);
779       gMC->Gsvolu(cTagV,"BOX ",idtmed[1326-1],parCha,kNparCha);
780       // Aramide layer (honeycomb)
781       parCha[0] = -1.0;
782       parCha[1] = -1.0;
783       parCha[2] = fgkPHcThick/2.0;
784       sprintf(cTagV,"UPHC%02d",iDet);
785       gMC->Gsvolu(cTagV,"BOX ",idtmed[1310-1],parCha,kNparCha);
786       // G10 layer (PCB readout board)
787       parCha[0] = -1.0;
788       parCha[1] = -1.0;
789       parCha[2] = fgkPPcThick/2;
790       sprintf(cTagV,"UPPC%02d",iDet);
791       gMC->Gsvolu(cTagV,"BOX ",idtmed[1313-1],parCha,kNparCha);
792       // Cu layer (traces in readout board)
793       parCha[0] = -1.0;
794       parCha[1] = -1.0;
795       parCha[2] = fgkPRbThick/2.0;
796       sprintf(cTagV,"UPRB%02d",iDet);
797       gMC->Gsvolu(cTagV,"BOX ",idtmed[1306-1],parCha,kNparCha);
798       // Cu layer (other material on in readout board, incl. screws)
799       parCha[0] = -1.0;
800       parCha[1] = -1.0;
801       parCha[2] = fgkPElThick/2.0;
802       sprintf(cTagV,"UPEL%02d",iDet);
803       gMC->Gsvolu(cTagV,"BOX ",idtmed[1304-1],parCha,kNparCha);
804
805       //
806       // Position the layers in the chambers
807       //
808       xpos = 0.0;
809       ypos = 0.0;
810
811       // Lower part
812       // Mylar layers (radiator)
813       zpos =  fgkRMyThick/2.0 - fgkCraH/2.0;
814       sprintf(cTagV,"URMY%02d",iDet);
815       sprintf(cTagM,"UC%02d",iDet);
816       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
817       zpos = -fgkRMyThick/2.0 + fgkCraH/2.0;
818       sprintf(cTagV,"URMY%02d",iDet);
819       sprintf(cTagM,"UC%02d",iDet);
820       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
821       // Carbon layers (radiator)
822       zpos =  fgkRCbThick/2.0 + fgkRMyThick - fgkCraH/2.0;
823       sprintf(cTagV,"URCB%02d",iDet);
824       sprintf(cTagM,"UC%02d",iDet);
825       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
826       zpos = -fgkRCbThick/2.0 - fgkRMyThick + fgkCraH/2.0;
827       sprintf(cTagV,"URCB%02d",iDet);
828       sprintf(cTagM,"UC%02d",iDet);
829       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
830       // Carbon layers (radiator)
831       zpos =  fgkRGlThick/2.0 + fgkRCbThick + fgkRMyThick - fgkCraH/2.0;
832       sprintf(cTagV,"URGL%02d",iDet);
833       sprintf(cTagM,"UC%02d",iDet);
834       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
835       zpos = -fgkRGlThick/2.0 - fgkRCbThick - fgkRMyThick + fgkCraH/2.0;
836       sprintf(cTagV,"URGL%02d",iDet);
837       sprintf(cTagM,"UC%02d",iDet);
838       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
839       // Rohacell layers (radiator)
840       zpos =  fgkRRhThick/2.0 + fgkRGlThick + fgkRCbThick + fgkRMyThick - fgkCraH/2.0;
841       sprintf(cTagV,"URRH%02d",iDet);
842       sprintf(cTagM,"UC%02d",iDet);
843       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
844       zpos = -fgkRRhThick/2.0 - fgkRGlThick - fgkRCbThick - fgkRMyThick + fgkCraH/2.0;
845       sprintf(cTagV,"URRH%02d",iDet);
846       sprintf(cTagM,"UC%02d",iDet);
847       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
848       // Fiber layers (radiator)
849       zpos =  0.0;
850       sprintf(cTagV,"URFB%02d",iDet);
851       sprintf(cTagM,"UC%02d",iDet);
852       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
853
854       // Xe/Isobutane layer (drift volume) 
855       zpos = fgkDrZpos;
856       sprintf(cTagV,"UJ%02d",iDet);
857       sprintf(cTagM,"UB%02d",iDet);
858       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
859
860       // Upper part
861       // Xe/Isobutane layer (amplification volume)
862       zpos = fgkAmZpos;
863       sprintf(cTagV,"UK%02d",iDet);
864       sprintf(cTagM,"UE%02d",iDet);
865       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
866       // Cu layer (wire planes inside amplification volume)
867       zpos = fgkWrZposA; 
868       sprintf(cTagV,"UW%02d",iDet);
869       sprintf(cTagM,"UK%02d",iDet);
870       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
871       zpos = fgkWrZposB; 
872       sprintf(cTagV,"UW%02d",iDet);
873       sprintf(cTagM,"UK%02d",iDet);
874       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
875
876       // Back panel + pad plane + readout part
877       // Cu layer (pad plane)
878       zpos =  fgkPPdThick/2.0 - fgkCroH/2.0;
879       sprintf(cTagV,"UPPD%02d",iDet);
880       sprintf(cTagM,"UG%02d",iDet);
881       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
882       // G10  layer (pad plane)
883       zpos =  fgkPPpThick/2.0 + fgkPPdThick - fgkCroH/2.0;
884       sprintf(cTagV,"UPPP%02d",iDet);
885       sprintf(cTagM,"UG%02d",iDet);
886       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
887       // Araldite layer (glue)
888       zpos =  fgkPGlThick/2.0 + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
889       sprintf(cTagV,"UPGL%02d",iDet);
890       sprintf(cTagM,"UG%02d",iDet);
891       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
892       // Carbon layers (carbon fiber mats)
893       zpos =  fgkPCbThick/2.0 + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
894       sprintf(cTagV,"UPCB%02d",iDet);
895       sprintf(cTagM,"UG%02d",iDet);
896       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
897       zpos = -fgkPCbThick/2.0 - fgkPPcThick - fgkPRbThick - fgkPElThick + fgkCroH/2.0;
898       sprintf(cTagV,"UPCB%02d",iDet);
899       sprintf(cTagM,"UG%02d",iDet);
900       gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
901       // Aramide layer (honeycomb)
902       zpos =  fgkPHcThick/2.0 + fgkPCbThick + fgkPGlThick + fgkPPpThick + fgkPPdThick - fgkCroH/2.0;
903       sprintf(cTagV,"UPHC%02d",iDet);
904       sprintf(cTagM,"UG%02d",iDet);
905       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
906       // G10 layer (PCB readout board)
907       zpos = -fgkPPcThick/2.0 - fgkPRbThick - fgkPElThick + fgkCroH/2.0;
908       sprintf(cTagV,"UPPC%02d",iDet);
909       sprintf(cTagM,"UG%02d",iDet);
910       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
911       // Cu layer (traces in readout board)
912       zpos = -fgkPRbThick/2.0 - fgkPElThick + fgkCroH/2.0;
913       sprintf(cTagV,"UPRB%02d",iDet);
914       sprintf(cTagM,"UG%02d",iDet);
915       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
916       // Cu layer (other materials on readout board, incl. screws)
917       zpos = -fgkPElThick/2.0 + fgkCroH/2.0;
918       sprintf(cTagV,"UPEL%02d",iDet);
919       sprintf(cTagM,"UG%02d",iDet);
920       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
921
922       // Position the inner volumes of the chambers in the frames
923       xpos = 0.0;
924       ypos = 0.0;
925
926       // The inner part of the radiator (air)
927       zpos = 0.0;
928       sprintf(cTagV,"UC%02d",iDet);
929       sprintf(cTagM,"UX%02d",iDet);
930       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
931       // The glue around the radiator
932       zpos = fgkCraH/2.0 - fgkCdrH/2.0 - fgkCraH/2.0;
933       sprintf(cTagV,"UX%02d",iDet);
934       sprintf(cTagM,"UB%02d",iDet);
935       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
936       // The lower Wacosit frame inside the aluminum frame
937       zpos = 0.0;
938       sprintf(cTagV,"UB%02d",iDet);
939       sprintf(cTagM,"UA%02d",iDet);
940       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
941
942       // The inside of the upper Wacosit frame
943       zpos = 0.0;
944       sprintf(cTagV,"UE%02d",iDet);
945       sprintf(cTagM,"UD%02d",iDet);
946       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
947
948       // The inside of the upper aluminum frame
949       zpos = 0.0;
950       sprintf(cTagV,"UG%02d",iDet);
951       sprintf(cTagM,"UF%02d",iDet);
952       gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");      
953
954     }
955   }
956
957   // Create the volumes of the super module frame
958   CreateFrame(idtmed);
959
960   // Create the volumes of the services
961   CreateServices(idtmed);
962   
963   for (Int_t istack = 0; istack < kNstack; istack++) {
964     for (Int_t ilayer = 0; ilayer < kNlayer; ilayer++) {  
965       AssembleChamber(ilayer,istack);
966     }
967   }
968   
969   xpos = 0.0;
970   ypos = 0.0;
971   zpos = 0.0;
972   gMC->Gspos("UTI1",1,"UTS1",xpos,ypos,zpos,0,"ONLY");
973   gMC->Gspos("UTI2",1,"UTS2",xpos,ypos,zpos,0,"ONLY");
974   gMC->Gspos("UTI3",1,"UTS3",xpos,ypos,zpos,0,"ONLY");
975
976   xpos = 0.0;
977   ypos = 0.0;
978   zpos = 0.0;
979   gMC->Gspos("UTS1",1,"UTR1",xpos,ypos,zpos,0,"ONLY");
980   gMC->Gspos("UTS2",1,"UTR2",xpos,ypos,zpos,0,"ONLY");
981   gMC->Gspos("UTS3",1,"UTR3",xpos,ypos,zpos,0,"ONLY");
982
983   // Put the TRD volumes into the space frame mother volumes
984   // if enabled via status flag
985   xpos = 0.0;
986   ypos = 0.0;
987   zpos = 0.0;
988   for (Int_t isector = 0; isector < kNsector; isector++) {
989     if (GetSMstatus(isector)) {
990       sprintf(cTagV,"BTRD%d",isector);
991       switch (isector) {
992       case 13:
993       case 14:
994       case 15:
995         // Double carbon, w/o middle stack
996         gMC->Gspos("UTR3",1,cTagV,xpos,ypos,zpos,0,"ONLY");
997         break;
998       case 11:
999       case 12:
1000         // Double carbon, all stacks
1001         gMC->Gspos("UTR2",1,cTagV,xpos,ypos,zpos,0,"ONLY");
1002         break;
1003       default:
1004         // Standard supermodule
1005         gMC->Gspos("UTR1",1,cTagV,xpos,ypos,zpos,0,"ONLY");
1006       };
1007     }
1008   }
1009
1010   // Put the TRD volumes into the space frame mother volumes
1011   // if enabled via status flag
1012   xpos = 0.0;
1013   ypos = 0.5*fgkSlength + 0.5*fgkFlength;
1014   zpos = 0.0;
1015   for (Int_t isector = 0; isector < kNsector; isector++) {
1016     if (GetSMstatus(isector)) {
1017       sprintf(cTagV,"BTRD%d",isector);
1018       gMC->Gspos("UTF1",1,cTagV,xpos, ypos,zpos,0,"ONLY");
1019       gMC->Gspos("UTF2",1,cTagV,xpos,-ypos,zpos,0,"ONLY");
1020     }
1021   }
1022
1023 }
1024
1025 //_____________________________________________________________________________
1026 void AliTRDgeometry::CreateFrame(Int_t *idtmed)
1027 {
1028   //
1029   // Create the geometry of the frame of the supermodule
1030   //
1031   // Names of the TRD services volumina
1032   //
1033   //        USRL    Support rails for the chambers (Al)
1034   //        USxx    Support cross bars between the chambers (Al)
1035   //        USHx    Horizontal connection between the cross bars (Al)
1036   //        USLx    Long corner ledges (Al)
1037   //
1038
1039   Int_t   ilayer = 0;
1040
1041   Float_t xpos  = 0.0;
1042   Float_t ypos  = 0.0;
1043   Float_t zpos  = 0.0;
1044
1045   Char_t  cTagV[100];
1046   Char_t  cTagM[100];
1047
1048   const Int_t kNparTRD = 4;
1049   Float_t parTRD[kNparTRD];
1050   const Int_t kNparBOX = 3;
1051   Float_t parBOX[kNparBOX];
1052   const Int_t kNparTRP = 11;
1053   Float_t parTRP[kNparTRP];
1054
1055   // The rotation matrices
1056   const Int_t kNmatrix = 7;
1057   Int_t   matrix[kNmatrix];
1058   gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0);
1059   gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0);
1060   gMC->Matrix(matrix[2],  90.0,   0.0,   0.0,   0.0,  90.0,  90.0);
1061   gMC->Matrix(matrix[3],  90.0, 180.0,   0.0, 180.0,  90.0,  90.0);
1062   gMC->Matrix(matrix[4], 170.0,   0.0,  80.0,   0.0,  90.0,  90.0);
1063   gMC->Matrix(matrix[5], 170.0, 180.0,  80.0, 180.0,  90.0,  90.0);
1064   gMC->Matrix(matrix[6], 180.0, 180.0,  90.0, 180.0,  90.0,  90.0);
1065
1066   //
1067   // The carbon inserts in the top/bottom aluminum plates
1068   //
1069
1070   const Int_t kNparCrb = 3;
1071   Float_t parCrb[kNparCrb];
1072   parCrb[0] = 0.0;
1073   parCrb[1] = 0.0;
1074   parCrb[2] = 0.0;
1075   gMC->Gsvolu("USCR","BOX ",idtmed[1326-1],parCrb,0);
1076   // Bottom 1 (all sectors)
1077   parCrb[0] =  77.49/2.0;
1078   parCrb[1] = 104.60/2.0;
1079   parCrb[2] = fgkSMpltT/2.0;
1080   xpos      =   0.0;
1081   ypos      =   0.0;
1082   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1083   gMC->Gsposp("USCR", 1,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1084   gMC->Gsposp("USCR", 2,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1085   gMC->Gsposp("USCR", 3,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1086   // Bottom 2 (all sectors)
1087   parCrb[0] =  77.49/2.0;
1088   parCrb[1] =  55.80/2.0;
1089   parCrb[2] = fgkSMpltT/2.0;
1090   xpos      =   0.0;
1091   ypos      =  85.6;
1092   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1093   gMC->Gsposp("USCR", 4,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1094   gMC->Gsposp("USCR", 5,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1095   gMC->Gsposp("USCR", 6,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1096   gMC->Gsposp("USCR", 7,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1097   gMC->Gsposp("USCR", 8,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1098   gMC->Gsposp("USCR", 9,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1099   // Bottom 3 (all sectors)
1100   parCrb[0] =  77.49/2.0;
1101   parCrb[1] =  56.00/2.0;
1102   parCrb[2] = fgkSMpltT/2.0;
1103   xpos      =   0.0;
1104   ypos      = 148.5;
1105   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1106   gMC->Gsposp("USCR",10,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1107   gMC->Gsposp("USCR",11,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1108   gMC->Gsposp("USCR",12,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1109   gMC->Gsposp("USCR",13,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1110   gMC->Gsposp("USCR",14,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1111   gMC->Gsposp("USCR",15,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1112   // Bottom 4 (all sectors)
1113   parCrb[0] =  77.49/2.0;
1114   parCrb[1] = 118.00/2.0;
1115   parCrb[2] = fgkSMpltT/2.0;
1116   xpos      =   0.0;
1117   ypos      = 240.5;
1118   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1119   gMC->Gsposp("USCR",16,"UTS1", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1120   gMC->Gsposp("USCR",17,"UTS2", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1121   gMC->Gsposp("USCR",18,"UTS3", xpos, ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1122   gMC->Gsposp("USCR",19,"UTS1", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1123   gMC->Gsposp("USCR",20,"UTS2", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1124   gMC->Gsposp("USCR",21,"UTS3", xpos,-ypos, zpos,0,"ONLY",parCrb,kNparCrb);
1125   // Top 1 (only in front of PHOS)
1126   parCrb[0] = 111.48/2.0;
1127   parCrb[1] = 105.00/2.0;
1128   parCrb[2] = fgkSMpltT/2.0;
1129   xpos      =   0.0;
1130   ypos      =   0.0;
1131   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1132   gMC->Gsposp("USCR",22,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1133   gMC->Gsposp("USCR",23,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1134   // Top 2 (only in front of PHOS)
1135   parCrb[0] = 111.48/2.0;
1136   parCrb[1] =  56.00/2.0;
1137   parCrb[2] = fgkSMpltT/2.0;
1138   xpos      =   0.0;
1139   ypos      =  85.5;
1140   zpos      = fgkSMpltT/2.0 - fgkSheight/2.0;
1141   gMC->Gsposp("USCR",24,"UTS2", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1142   gMC->Gsposp("USCR",25,"UTS3", xpos, ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1143   gMC->Gsposp("USCR",26,"UTS2", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1144   gMC->Gsposp("USCR",27,"UTS3", xpos,-ypos,-zpos,0,"ONLY",parCrb,kNparCrb);
1145
1146   //
1147   // The chamber support rails
1148   //
1149
1150   const Float_t kSRLhgt  = 2.00;
1151   const Float_t kSRLwidA = 2.3;
1152   const Float_t kSRLwidB = 1.947;
1153   const Float_t kSRLdst  = 1.135;
1154   const Int_t   kNparSRL = 11;
1155   Float_t parSRL[kNparSRL];
1156   // Trapezoidal shape
1157   parSRL[ 0] = fgkSlength/2.0;
1158   parSRL[ 1] = 0.0;
1159   parSRL[ 2] = 0.0;
1160   parSRL[ 3] = kSRLhgt  /2.0;
1161   parSRL[ 4] = kSRLwidB /2.0;
1162   parSRL[ 5] = kSRLwidA /2.0;
1163   parSRL[ 6] = 5.0;
1164   parSRL[ 7] = kSRLhgt  /2.0;
1165   parSRL[ 8] = kSRLwidB /2.0;
1166   parSRL[ 9] = kSRLwidA /2.0;
1167   parSRL[10] = 5.0;
1168   gMC->Gsvolu("USRL","TRAP",idtmed[1301-1],parSRL,kNparSRL);
1169
1170   xpos  = 0.0;
1171   ypos  = 0.0;
1172   zpos  = 0.0;
1173   for (ilayer = 1; ilayer < kNlayer; ilayer++) {
1174     xpos  = fgkCwidth[ilayer]/2.0 + kSRLwidA/2.0 + kSRLdst;
1175     ypos  = 0.0;
1176     zpos  = fgkVrocsm + fgkSMpltT - fgkCalZpos - fgkSheight/2.0  
1177           + fgkCraH + fgkCdrH - fgkCalH - kSRLhgt/2.0 
1178           + ilayer * (fgkCH + fgkVspace);
1179     gMC->Gspos("USRL",ilayer+1          ,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
1180     gMC->Gspos("USRL",ilayer+1+  kNlayer,"UTI1",-xpos,ypos,zpos,matrix[3],"ONLY");
1181     gMC->Gspos("USRL",ilayer+1+2*kNlayer,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY");
1182     gMC->Gspos("USRL",ilayer+1+3*kNlayer,"UTI2",-xpos,ypos,zpos,matrix[3],"ONLY");
1183     gMC->Gspos("USRL",ilayer+1+4*kNlayer,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY");
1184     gMC->Gspos("USRL",ilayer+1+5*kNlayer,"UTI3",-xpos,ypos,zpos,matrix[3],"ONLY");
1185   }
1186
1187   //
1188   // The cross bars between the chambers
1189   //
1190
1191   const Float_t kSCBwid  = 1.0;
1192   const Float_t kSCBthk  = 2.0;
1193   const Float_t kSCHhgt  = 0.3;
1194
1195   const Int_t   kNparSCB = 3;
1196   Float_t parSCB[kNparSCB];
1197   parSCB[1] = kSCBwid/2.0;
1198   parSCB[2] = fgkCH  /2.0 + fgkVspace/2.0 - kSCHhgt;
1199
1200   const Int_t   kNparSCI = 3;
1201   Float_t parSCI[kNparSCI];
1202   parSCI[1] = -1;
1203
1204   xpos  = 0.0;
1205   ypos  = 0.0;
1206   zpos  = 0.0;
1207   for (ilayer = 0; ilayer < kNlayer; ilayer++) {
1208
1209     // The aluminum of the cross bars
1210     parSCB[0] = fgkCwidth[ilayer]/2.0 + kSRLdst/2.0;
1211     sprintf(cTagV,"USF%01d",ilayer);
1212     gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCB,kNparSCB);
1213
1214     // The empty regions in the cross bars
1215     Float_t thkSCB = kSCBthk;
1216     if (ilayer < 2) {
1217       thkSCB *= 1.5;
1218     }
1219     parSCI[2] = parSCB[2] - thkSCB;
1220     parSCI[0] = parSCB[0]/4.0 - kSCBthk;
1221     sprintf(cTagV,"USI%01d",ilayer);
1222     gMC->Gsvolu(cTagV,"BOX ",idtmed[1302-1],parSCI,kNparSCI);
1223
1224     sprintf(cTagV,"USI%01d",ilayer);
1225     sprintf(cTagM,"USF%01d",ilayer);
1226     ypos  = 0.0;
1227     zpos  = 0.0;
1228     xpos  =   parSCI[0] + thkSCB/2.0;
1229     gMC->Gspos(cTagV,1,cTagM,xpos,ypos,zpos,0,"ONLY");
1230     xpos  = - parSCI[0] - thkSCB/2.0;
1231     gMC->Gspos(cTagV,2,cTagM,xpos,ypos,zpos,0,"ONLY");
1232     xpos  =   3.0 * parSCI[0] + 1.5 * thkSCB;
1233     gMC->Gspos(cTagV,3,cTagM,xpos,ypos,zpos,0,"ONLY");
1234     xpos  = - 3.0 * parSCI[0] - 1.5 * thkSCB;
1235     gMC->Gspos(cTagV,4,cTagM,xpos,ypos,zpos,0,"ONLY");
1236
1237     sprintf(cTagV,"USF%01d",ilayer);
1238     xpos  = 0.0;
1239     zpos  = fgkVrocsm + fgkSMpltT + parSCB[2] - fgkSheight/2.0 
1240           + ilayer * (fgkCH + fgkVspace);
1241
1242     ypos  =   fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1];
1243     gMC->Gspos(cTagV, 1,"UTI1", xpos,ypos,zpos,0,"ONLY");
1244     gMC->Gspos(cTagV, 3,"UTI2", xpos,ypos,zpos,0,"ONLY");
1245     gMC->Gspos(cTagV, 5,"UTI3", xpos,ypos,zpos,0,"ONLY");
1246
1247     ypos  = - fgkClength[ilayer][2]/2.0 - fgkClength[ilayer][1];
1248     gMC->Gspos(cTagV, 2,"UTI1", xpos,ypos,zpos,0,"ONLY");
1249     gMC->Gspos(cTagV, 4,"UTI2", xpos,ypos,zpos,0,"ONLY");
1250     gMC->Gspos(cTagV, 6,"UTI3", xpos,ypos,zpos,0,"ONLY");
1251
1252   }
1253
1254   //
1255   // The horizontal connections between the cross bars
1256   //
1257
1258   const Int_t   kNparSCH = 3;
1259   Float_t parSCH[kNparSCH];
1260
1261   for (ilayer = 1; ilayer < kNlayer-1; ilayer++) {
1262
1263     parSCH[0] = fgkCwidth[ilayer]/2.0;
1264     parSCH[1] = (fgkClength[ilayer+1][2]/2.0 + fgkClength[ilayer+1][1]
1265                - fgkClength[ilayer  ][2]/2.0 - fgkClength[ilayer  ][1])/2.0;
1266     parSCH[2] = kSCHhgt/2.0;
1267
1268     sprintf(cTagV,"USH%01d",ilayer);
1269     gMC->Gsvolu(cTagV,"BOX ",idtmed[1301-1],parSCH,kNparSCH);
1270     xpos  = 0.0;
1271     ypos  = fgkClength[ilayer][2]/2.0 + fgkClength[ilayer][1] + parSCH[1];
1272     zpos  = fgkVrocsm + fgkSMpltT - kSCHhgt/2.0 - fgkSheight/2.0 
1273           + (ilayer+1) * (fgkCH + fgkVspace);
1274     gMC->Gspos(cTagV,1,"UTI1", xpos,ypos,zpos,0,"ONLY");
1275     gMC->Gspos(cTagV,3,"UTI2", xpos,ypos,zpos,0,"ONLY");
1276     gMC->Gspos(cTagV,5,"UTI3", xpos,ypos,zpos,0,"ONLY");
1277     ypos  = -ypos;
1278     gMC->Gspos(cTagV,2,"UTI1", xpos,ypos,zpos,0,"ONLY");
1279     gMC->Gspos(cTagV,4,"UTI2", xpos,ypos,zpos,0,"ONLY");
1280     gMC->Gspos(cTagV,6,"UTI3", xpos,ypos,zpos,0,"ONLY");
1281
1282   }
1283
1284   //
1285   // The aymmetric flat frame in the middle
1286   //
1287
1288   // The envelope volume (aluminum)
1289   parTRD[0]  =  87.60/2.0;
1290   parTRD[1]  = 114.00/2.0;
1291   parTRD[2]  =   1.20/2.0;
1292   parTRD[3]  =  71.30/2.0;
1293   gMC->Gsvolu("USDB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
1294   // Empty spaces (air)
1295   parTRP[ 0] =   1.20/2.0;
1296   parTRP[ 1] =   0.0;
1297   parTRP[ 2] =   0.0;
1298   parTRP[ 3] =  27.00/2.0;
1299   parTRP[ 4] =  50.60/2.0;
1300   parTRP[ 5] =   5.00/2.0;
1301   parTRP[ 6] =   3.5;
1302   parTRP[ 7] =  27.00/2.0;
1303   parTRP[ 8] =  50.60/2.0;
1304   parTRP[ 9] =   5.00/2.0;
1305   parTRP[10] =   3.5;
1306   gMC->Gsvolu("USD1","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1307   xpos       =  18.0;
1308   ypos       =   0.0;
1309   zpos       =   27.00/2.0 - 71.3/2.0;
1310   gMC->Gspos("USD1",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1311   // Empty spaces (air)
1312   parTRP[ 0] =   1.20/2.0;
1313   parTRP[ 1] =   0.0;
1314   parTRP[ 2] =   0.0;
1315   parTRP[ 3] =  33.00/2.0;
1316   parTRP[ 4] =   5.00/2.0;
1317   parTRP[ 5] =  62.10/2.0;
1318   parTRP[ 6] =   3.5;
1319   parTRP[ 7] =  33.00/2.0;
1320   parTRP[ 8] =   5.00/2.0;
1321   parTRP[ 9] =  62.10/2.0;
1322   parTRP[10] =   3.5;
1323   gMC->Gsvolu("USD2","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1324   xpos       =  21.0;
1325   ypos       =   0.0;
1326   zpos       =  71.3/2.0 - 33.0/2.0;
1327   gMC->Gspos("USD2",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1328   // Empty spaces (air)
1329   parBOX[ 0] =  22.50/2.0;
1330   parBOX[ 1] =   1.20/2.0;
1331   parBOX[ 2] =  70.50/2.0;
1332   gMC->Gsvolu("USD3","BOX ",idtmed[1302-1],parBOX,kNparBOX);
1333   xpos       = -25.75;
1334   ypos       =   0.0;
1335   zpos       =   0.4;
1336   gMC->Gspos("USD3",1,"USDB", xpos, ypos, zpos,        0,"ONLY");
1337   // Empty spaces (air)
1338   parTRP[ 0] =   1.20/2.0;
1339   parTRP[ 1] =   0.0;
1340   parTRP[ 2] =   0.0;
1341   parTRP[ 3] =  25.50/2.0;
1342   parTRP[ 4] =   5.00/2.0;
1343   parTRP[ 5] =  65.00/2.0;
1344   parTRP[ 6] =  -1.0;
1345   parTRP[ 7] =  25.50/2.0;
1346   parTRP[ 8] =   5.00/2.0;
1347   parTRP[ 9] =  65.00/2.0;
1348   parTRP[10] =  -1.0;
1349   gMC->Gsvolu("USD4","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1350   xpos       =   2.0;
1351   ypos       =   0.0;
1352   zpos       =  -1.6;
1353   gMC->Gspos("USD4",1,"USDB", xpos, ypos, zpos,matrix[6],"ONLY");
1354   // Empty spaces (air)
1355   parTRP[ 0] =   1.20/2.0;
1356   parTRP[ 1] =   0.0;
1357   parTRP[ 2] =   0.0;
1358   parTRP[ 3] =  23.50/2.0;
1359   parTRP[ 4] =  63.50/2.0;
1360   parTRP[ 5] =   5.00/2.0;
1361   parTRP[ 6] =  16.0;
1362   parTRP[ 7] =  23.50/2.0;
1363   parTRP[ 8] =  63.50/2.0;
1364   parTRP[ 9] =   5.00/2.0;
1365   parTRP[10] =  16.0;
1366   gMC->Gsvolu("USD5","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1367   xpos       =  36.5;
1368   ypos       =   0.0;
1369   zpos       =  -1.5;
1370   gMC->Gspos("USD5",1,"USDB", xpos, ypos, zpos,matrix[5],"ONLY");
1371   // Empty spaces (air)
1372   parTRP[ 0] =   1.20/2.0;
1373   parTRP[ 1] =   0.0;
1374   parTRP[ 2] =   0.0;
1375   parTRP[ 3] =  70.50/2.0;
1376   parTRP[ 4] =   4.50/2.0;
1377   parTRP[ 5] =  16.50/2.0;
1378   parTRP[ 6] =  -5.0;
1379   parTRP[ 7] =  70.50/2.0;
1380   parTRP[ 8] =   4.50/2.0;
1381   parTRP[ 9] =  16.50/2.0;
1382   parTRP[10] =  -5.0;
1383   gMC->Gsvolu("USD6","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1384   xpos       = -43.7;
1385   ypos       =   0.0;
1386   zpos       =   0.4;
1387   gMC->Gspos("USD6",1,"USDB", xpos, ypos, zpos,matrix[2],"ONLY");
1388   xpos       =   0.0;
1389   ypos       =   fgkClength[5][2]/2.0;
1390   zpos       =   0.04;
1391   gMC->Gspos("USDB",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1392   gMC->Gspos("USDB",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1393   gMC->Gspos("USDB",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1394   gMC->Gspos("USDB",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1395   gMC->Gspos("USDB",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1396   gMC->Gspos("USDB",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1397   // Upper bar (aluminum)
1398   parBOX[0] = 95.00/2.0;
1399   parBOX[1] =  1.20/2.0;
1400   parBOX[2] =  3.00/2.0;
1401   gMC->Gsvolu("USD7","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1402   xpos       =   0.0;
1403   ypos       =   fgkClength[5][2]/2.0;
1404   zpos       =   fgkSheight/2.0 - fgkSMpltT  - 3.00/2.0;
1405   gMC->Gspos("USD7",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1406   gMC->Gspos("USD7",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1407   gMC->Gspos("USD7",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1408   gMC->Gspos("USD7",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1409   gMC->Gspos("USD7",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1410   gMC->Gspos("USD7",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1411   // Lower bar (aluminum)
1412   parBOX[0] = 90.22/2.0;
1413   parBOX[1] =  1.20/2.0;
1414   parBOX[2] =  1.74/2.0;
1415   gMC->Gsvolu("USD8","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1416   xpos       =   0.0;
1417   ypos       =   fgkClength[5][2]/2.0 - 0.1;
1418   zpos       =  -fgkSheight/2.0 + fgkSMpltT + 2.27;
1419   gMC->Gspos("USD8",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1420   gMC->Gspos("USD8",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1421   gMC->Gspos("USD8",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1422   gMC->Gspos("USD8",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1423   gMC->Gspos("USD8",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1424   gMC->Gspos("USD8",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1425   // Lower bar (aluminum)
1426   parBOX[0] = 82.60/2.0;
1427   parBOX[1] =  1.20/2.0;
1428   parBOX[2] =  1.40/2.0;
1429   gMC->Gsvolu("USD9","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1430   xpos       =   0.0;
1431   ypos       =   fgkClength[5][2]/2.0;
1432   zpos       =  -fgkSheight/2.0 + fgkSMpltT + 1.40/2.0;
1433   gMC->Gspos("USD9",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1434   gMC->Gspos("USD9",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1435   gMC->Gspos("USD9",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1436   gMC->Gspos("USD9",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1437   gMC->Gspos("USD9",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1438   gMC->Gspos("USD9",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1439   // Front sheet (aluminum)
1440   parTRP[ 0] =   0.10/2.0;
1441   parTRP[ 1] =   0.0;
1442   parTRP[ 2] =   0.0;
1443   parTRP[ 3] =  74.50/2.0;
1444   parTRP[ 4] =  31.70/2.0;
1445   parTRP[ 5] =  44.00/2.0;
1446   parTRP[ 6] =  -5.0;
1447   parTRP[ 7] =  74.50/2.0;
1448   parTRP[ 8] =  31.70/2.0;
1449   parTRP[ 9] =  44.00/2.0;
1450   parTRP[10] =  -5.0;
1451   gMC->Gsvolu("USDF","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1452   xpos       = -32.0;
1453   ypos       =   fgkClength[5][2]/2.0 + 1.20/2.0 + 0.10/2.0;
1454   zpos       =   0.0;
1455   gMC->Gspos("USDF",1,"UTI1", xpos, ypos, zpos,matrix[2],"ONLY");
1456   gMC->Gspos("USDF",2,"UTI1", xpos,-ypos, zpos,matrix[2],"ONLY");
1457   gMC->Gspos("USDF",3,"UTI2", xpos, ypos, zpos,matrix[2],"ONLY");
1458   gMC->Gspos("USDF",4,"UTI2", xpos,-ypos, zpos,matrix[2],"ONLY");
1459   gMC->Gspos("USDF",5,"UTI3", xpos, ypos, zpos,matrix[2],"ONLY");
1460   gMC->Gspos("USDF",6,"UTI3", xpos,-ypos, zpos,matrix[2],"ONLY");
1461
1462   //
1463   // The flat frame in front of the chambers
1464   //
1465
1466   // The envelope volume (aluminum)
1467   parTRD[0]  =  90.00/2.0 - 0.1;
1468   parTRD[1]  = 114.00/2.0 - 0.1;
1469   parTRD[2]  =   1.50/2.0;
1470   parTRD[3]  =  70.30/2.0;
1471   gMC->Gsvolu("USCB","TRD1",idtmed[1301-1],parTRD,kNparTRD);
1472   // Empty spaces (air)
1473   parTRD[0]  =  87.00/2.0;
1474   parTRD[1]  =  10.00/2.0;
1475   parTRD[2]  =   1.50/2.0;
1476   parTRD[3]  =  26.35/2.0;
1477   gMC->Gsvolu("USC1","TRD1",idtmed[1302-1],parTRD,kNparTRD);
1478   xpos       =  0.0;
1479   ypos       =  0.0;
1480   zpos       = 26.35/2.0 - 70.3/2.0;
1481   gMC->Gspos("USC1",1,"USCB",xpos,ypos,zpos,0,"ONLY");
1482   // Empty spaces (air)
1483   parTRD[0]  =  10.00/2.0;
1484   parTRD[1]  = 111.00/2.0;
1485   parTRD[2]  =   1.50/2.0;
1486   parTRD[3]  =  35.05/2.0;
1487   gMC->Gsvolu("USC2","TRD1",idtmed[1302-1],parTRD,kNparTRD);
1488   xpos       =  0.0;
1489   ypos       =  0.0;
1490   zpos       = 70.3/2.0 - 35.05/2.0;
1491   gMC->Gspos("USC2",1,"USCB",xpos,ypos,zpos,0,"ONLY");
1492   // Empty spaces (air)
1493   parTRP[ 0] =   1.50/2.0;
1494   parTRP[ 1] =   0.0;
1495   parTRP[ 2] =   0.0;
1496   parTRP[ 3] =  37.60/2.0;
1497   parTRP[ 4] =  63.90/2.0;
1498   parTRP[ 5] =   8.86/2.0;
1499   parTRP[ 6] =  16.0;
1500   parTRP[ 7] =  37.60/2.0;
1501   parTRP[ 8] =  63.90/2.0;
1502   parTRP[ 9] =   8.86/2.0;
1503   parTRP[10] =  16.0;
1504   gMC->Gsvolu("USC3","TRAP",idtmed[1302-1],parTRP,kNparTRP);
1505   xpos       = -30.5;
1506   ypos       =   0.0;
1507   zpos       =  -2.0;
1508   gMC->Gspos("USC3",1,"USCB", xpos, ypos, zpos,matrix[4],"ONLY");
1509   gMC->Gspos("USC3",2,"USCB",-xpos, ypos, zpos,matrix[5],"ONLY");
1510   xpos       =   0.0;
1511   ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
1512   zpos       =   0.0;
1513   gMC->Gspos("USCB",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1514   gMC->Gspos("USCB",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1515   gMC->Gspos("USCB",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1516   gMC->Gspos("USCB",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1517   gMC->Gspos("USCB",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1518   gMC->Gspos("USCB",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1519   // Upper bar (aluminum)
1520   parBOX[0] = 95.00/2.0;
1521   parBOX[1] =  1.50/2.0;
1522   parBOX[2] =  3.00/2.0;
1523   gMC->Gsvolu("USC4","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1524   xpos       =   0.0;
1525   ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
1526   zpos       =   fgkSheight/2.0 - fgkSMpltT - 3.00/2.0;
1527   gMC->Gspos("USC4",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1528   gMC->Gspos("USC4",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1529   gMC->Gspos("USC4",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1530   gMC->Gspos("USC4",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1531   gMC->Gspos("USC4",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1532   gMC->Gspos("USC4",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1533   // Lower bar (aluminum)
1534   parBOX[0] = 90.22/2.0;
1535   parBOX[1] =  1.50/2.0;
1536   parBOX[2] =  2.00/2.0;
1537   gMC->Gsvolu("USC5","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1538   xpos       =   0.0;
1539   ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
1540   zpos       =  -fgkSheight/2.0 + fgkSMpltT + 2.60;
1541   gMC->Gspos("USC5",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1542   gMC->Gspos("USC5",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1543   gMC->Gspos("USC5",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1544   gMC->Gspos("USC5",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1545   gMC->Gspos("USC5",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1546   gMC->Gspos("USC5",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1547   // Lower bar (aluminum)
1548   parBOX[0] = 82.60/2.0;
1549   parBOX[1] =  1.50/2.0;
1550   parBOX[2] =  1.60/2.0;
1551   gMC->Gsvolu("USC6","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1552   xpos       =   0.0;
1553   ypos       =   fgkClength[5][2]/2.0 + fgkClength[5][1] + fgkClength[5][0];
1554   zpos       =  -fgkSheight/2.0 + fgkSMpltT + 1.60/2.0;
1555   gMC->Gspos("USC6",1,"UTI1", xpos, ypos, zpos,        0,"ONLY");
1556   gMC->Gspos("USC6",2,"UTI1", xpos,-ypos, zpos,        0,"ONLY");
1557   gMC->Gspos("USC6",3,"UTI2", xpos, ypos, zpos,        0,"ONLY");
1558   gMC->Gspos("USC6",4,"UTI2", xpos,-ypos, zpos,        0,"ONLY");
1559   gMC->Gspos("USC6",5,"UTI3", xpos, ypos, zpos,        0,"ONLY");
1560   gMC->Gspos("USC6",6,"UTI3", xpos,-ypos, zpos,        0,"ONLY");
1561
1562   //
1563   // The long corner ledges
1564   //
1565
1566   const Int_t   kNparSCL  =  3;
1567   Float_t parSCL[kNparSCL];
1568   const Int_t   kNparSCLb = 11;
1569   Float_t parSCLb[kNparSCLb];
1570
1571   // Upper ledges 
1572   // Thickness of the corner ledges
1573   const Float_t kSCLthkUa  =  0.6; 
1574   const Float_t kSCLthkUb  =  0.6; 
1575   // Width of the corner ledges
1576   const Float_t kSCLwidUa  =  3.2;
1577   const Float_t kSCLwidUb  =  4.8;
1578   // Position of the corner ledges
1579   const Float_t kSCLposxUa = 0.7;
1580   const Float_t kSCLposxUb = 3.3;
1581   const Float_t kSCLposzUa = 1.65;
1582   const Float_t kSCLposzUb = 0.3;
1583   // Vertical
1584   parSCL[0]  = kSCLthkUa /2.0;
1585   parSCL[1]  = fgkSlength/2.0;
1586   parSCL[2]  = kSCLwidUa /2.0;
1587   gMC->Gsvolu("USL1","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1588   xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUa;
1589   ypos  =   0.0;
1590   zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUa;
1591   gMC->Gspos("USL1",1,"UTI1", xpos,ypos,zpos,matrix[0],"ONLY");
1592   xpos  = -xpos;
1593   gMC->Gspos("USL1",2,"UTI1", xpos,ypos,zpos,matrix[1],"ONLY");
1594   // Horizontal
1595   parSCL[0]  = kSCLwidUb /2.0;
1596   parSCL[1]  = fgkSlength/2.0;
1597   parSCL[2]  = kSCLthkUb /2.0;
1598   gMC->Gsvolu("USL2","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1599   xpos  =   fgkSwidth2/2.0 - fgkSMpltT - kSCLposxUb;
1600   ypos  =   0.0;
1601   zpos  =   fgkSheight/2.0 - fgkSMpltT - kSCLposzUb; 
1602   gMC->Gspos("USL2",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
1603   gMC->Gspos("USL2",3,"UTI2", xpos,ypos,zpos,        0,"ONLY");
1604   gMC->Gspos("USL2",5,"UTI3", xpos,ypos,zpos,        0,"ONLY");
1605   xpos  = -xpos;
1606   gMC->Gspos("USL2",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
1607   gMC->Gspos("USL2",4,"UTI2", xpos,ypos,zpos,        0,"ONLY");
1608   gMC->Gspos("USL2",6,"UTI3", xpos,ypos,zpos,        0,"ONLY");
1609
1610   // Lower ledges 
1611   // Thickness of the corner ledges
1612   const Float_t kSCLthkLa  =  2.464; 
1613   const Float_t kSCLthkLb  =  1.0; 
1614   // Width of the corner ledges
1615   const Float_t kSCLwidLa  =  8.3;
1616   const Float_t kSCLwidLb  =  4.0;
1617   // Position of the corner ledges
1618   const Float_t kSCLposxLa = (3.0 * kSCLthkLb - kSCLthkLa) / 4.0 + 0.05;
1619   const Float_t kSCLposxLb = kSCLthkLb + kSCLwidLb/2.0 + 0.05;
1620   const Float_t kSCLposzLa = kSCLwidLa/2.0;
1621   const Float_t kSCLposzLb = kSCLthkLb/2.0;
1622   // Vertical
1623   // Trapezoidal shape
1624   parSCLb[ 0] = fgkSlength/2.0;
1625   parSCLb[ 1] = 0.0;
1626   parSCLb[ 2] = 0.0;
1627   parSCLb[ 3] = kSCLwidLa /2.0;
1628   parSCLb[ 4] = kSCLthkLb /2.0;
1629   parSCLb[ 5] = kSCLthkLa /2.0;
1630   parSCLb[ 6] = 5.0;
1631   parSCLb[ 7] = kSCLwidLa /2.0;
1632   parSCLb[ 8] = kSCLthkLb /2.0;
1633   parSCLb[ 9] = kSCLthkLa /2.0;
1634   parSCLb[10] = 5.0;
1635   gMC->Gsvolu("USL3","TRAP",idtmed[1301-1],parSCLb,kNparSCLb);
1636   xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLa;
1637   ypos  =   0.0;
1638   zpos  = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLa;
1639   gMC->Gspos("USL3",1,"UTI1", xpos,ypos,zpos,matrix[2],"ONLY");
1640   gMC->Gspos("USL3",3,"UTI2", xpos,ypos,zpos,matrix[2],"ONLY");
1641   gMC->Gspos("USL3",5,"UTI3", xpos,ypos,zpos,matrix[2],"ONLY");
1642   xpos  = -xpos;
1643   gMC->Gspos("USL3",2,"UTI1", xpos,ypos,zpos,matrix[3],"ONLY");
1644   gMC->Gspos("USL3",4,"UTI2", xpos,ypos,zpos,matrix[3],"ONLY");
1645   gMC->Gspos("USL3",6,"UTI3", xpos,ypos,zpos,matrix[3],"ONLY");
1646   // Horizontal part
1647   parSCL[0]  = kSCLwidLb /2.0;
1648   parSCL[1]  = fgkSlength/2.0;
1649   parSCL[2]  = kSCLthkLb /2.0;
1650   gMC->Gsvolu("USL4","BOX ",idtmed[1301-1],parSCL,kNparSCL);
1651   xpos  =   fgkSwidth1/2.0 - fgkSMpltT - kSCLposxLb;
1652   ypos  =   0.0;
1653   zpos  = - fgkSheight/2.0 + fgkSMpltT + kSCLposzLb;
1654   gMC->Gspos("USL4",1,"UTI1", xpos,ypos,zpos,        0,"ONLY");
1655   gMC->Gspos("USL4",3,"UTI2", xpos,ypos,zpos,        0,"ONLY");
1656   gMC->Gspos("USL4",5,"UTI3", xpos,ypos,zpos,        0,"ONLY");
1657   xpos  = -xpos;
1658   gMC->Gspos("USL4",2,"UTI1", xpos,ypos,zpos,        0,"ONLY");
1659   gMC->Gspos("USL4",4,"UTI2", xpos,ypos,zpos,        0,"ONLY");
1660   gMC->Gspos("USL4",6,"UTI3", xpos,ypos,zpos,        0,"ONLY");
1661
1662   //
1663   // Aluminum plates in the front part of the super modules
1664   //
1665
1666   const Int_t kNparTrd = 4;
1667   Float_t parTrd[kNparTrd];
1668   parTrd[0] = fgkSwidth1/2.0 - 2.5;
1669   parTrd[1] = fgkSwidth2/2.0 - 2.5;
1670   parTrd[2] = fgkSMpltT /2.0;
1671   parTrd[3] = fgkSheight/2.0 - 1.0;
1672   gMC->Gsvolu("UTA1","TRD1",idtmed[1301-1],parTrd,kNparTrd);
1673   xpos      =  0.0;
1674   ypos      =  fgkSMpltT/2.0 - fgkFlength/2.0;
1675   zpos      = -0.5;
1676   gMC->Gspos("UTA1",1,"UTF1",xpos, ypos,zpos,        0,"ONLY");
1677   gMC->Gspos("UTA1",2,"UTF2",xpos,-ypos,zpos,        0,"ONLY");
1678
1679   const Int_t kNparPlt = 3;
1680   Float_t parPlt[kNparPlt];
1681   parPlt[0] =  0.0;
1682   parPlt[1] =  0.0;
1683   parPlt[2] =  0.0;
1684   gMC->Gsvolu("UTA2","BOX ",idtmed[1301-1],parPlt,0);
1685   xpos      =  0.0;
1686   ypos      =  0.0;
1687   zpos      =  fgkSheight/2.0 - fgkSMpltT/2.0;
1688   parPlt[0] = fgkSwidth2/2.0 - 0.2;
1689   parPlt[1] = fgkFlength/2.0;
1690   parPlt[2] = fgkSMpltT /2.0;
1691   gMC->Gsposp("UTA2",1,"UTF2",xpos,ypos,zpos
1692                     ,        0,"ONLY",parPlt,kNparPlt);
1693   xpos      = (fgkSwidth1 + fgkSwidth2)/4.0 - fgkSMpltT/2.0 - 0.0016;
1694   ypos      =  0.0;
1695   zpos      =  0.0;
1696   parPlt[0] = fgkSMpltT /2.0;
1697   parPlt[1] = fgkFlength/2.0;
1698   parPlt[2] = fgkSheight/2.0;
1699   gMC->Gsposp("UTA2",2,"UTF2", xpos,ypos,zpos
1700                     ,matrix[0],"ONLY",parPlt,kNparPlt);
1701   gMC->Gsposp("UTA2",3,"UTF2",-xpos,ypos,zpos
1702                     ,matrix[1],"ONLY",parPlt,kNparPlt);
1703
1704   // Additional aluminum bar
1705   parBOX[0] = 80.0/2.0;
1706   parBOX[1] =  1.0/2.0;
1707   parBOX[2] = 10.0/2.0;
1708   gMC->Gsvolu("UTA3","BOX ",idtmed[1301-1],parBOX,kNparBOX);
1709   xpos      =  0.0;
1710   ypos      =  1.0/2.0 + fgkSMpltT - fgkFlength/2.0;
1711   zpos      =  fgkSheight/2.0 - 1.5 - 10.0/2.0;
1712   gMC->Gspos("UTA3",1,"UTF1", xpos, ypos, zpos,        0,"ONLY");
1713   gMC->Gspos("UTA3",2,"UTF2", xpos,-ypos, zpos,        0,"ONLY");
1714
1715 }
1716
1717 //_____________________________________________________________________________
1718 void AliTRDgeometry::CreateServices(Int_t *idtmed)
1719 {
1720   //
1721   // Create the geometry of the services
1722   //
1723   // Names of the TRD services volumina
1724   //
1725   //        UTC1    Cooling arterias (Al)
1726   //        UTC2    Cooling arterias (Water)
1727   //        UUxx    Volumes for the services at the chambers (Air)
1728   //        UMCM    Readout MCMs     (G10/Cu/Si)
1729   //        UDCS    DCSs boards      (G10/Cu)
1730   //        UTP1    Power bars       (Cu)
1731   //        UTCP    Cooling pipes    (Fe)
1732   //        UTCH    Cooling pipes    (Water)
1733   //        UTPL    Power lines      (Cu)
1734   //        UTGD    Gas distribution box (V2A)
1735   //
1736
1737   Int_t   ilayer = 0;
1738   Int_t   istack = 0;
1739
1740   Float_t xpos  = 0.0;
1741   Float_t ypos  = 0.0;
1742   Float_t zpos  = 0.0;
1743
1744   Char_t  cTagV[100];
1745
1746   const Int_t kNparBox  = 3;
1747   Float_t parBox[kNparBox];
1748
1749   const Int_t kNparTube = 3;
1750   Float_t parTube[kNparTube];
1751
1752   // Services inside the baby frame
1753   const Float_t kBBMdz = 223.0;
1754   const Float_t kBBSdz =   8.5;
1755
1756   // Services inside the back frame
1757   const Float_t kBFMdz = 118.0;
1758   const Float_t kBFSdz =   8.5;
1759
1760   // The rotation matrices
1761   const Int_t kNmatrix = 10;
1762   Int_t   matrix[kNmatrix];
1763   gMC->Matrix(matrix[0], 100.0,   0.0,  90.0,  90.0,  10.0,   0.0); // rotation around y-axis
1764   gMC->Matrix(matrix[1],  80.0,   0.0,  90.0,  90.0,  10.0, 180.0); // rotation around y-axis
1765   gMC->Matrix(matrix[2],   0.0,   0.0,  90.0,  90.0,  90.0,   0.0);
1766   gMC->Matrix(matrix[3], 180.0,   0.0,  90.0,  90.0,  90.0, 180.0);
1767   gMC->Matrix(matrix[4],  90.0,   0.0,   0.0,   0.0,  90.0,  90.0);
1768   gMC->Matrix(matrix[5], 100.0,   0.0,  90.0, 270.0,  10.0,   0.0);
1769   gMC->Matrix(matrix[6],  80.0,   0.0,  90.0, 270.0,  10.0, 180.0);
1770   gMC->Matrix(matrix[7],  90.0,  10.0,  90.0, 100.0,   0.0,   0.0); // rotation around z-axis
1771   gMC->Matrix(matrix[8],  90.0, 350.0,  90.0,  80.0,   0.0,   0.0); // rotation around z-axis
1772   gMC->Matrix(matrix[9],  90.0,  90.0,  90.0, 180.0,   0.0,   0.0); // rotation around z-axis
1773     
1774   //
1775   // The cooling arterias
1776   //
1777
1778   // Width of the cooling arterias
1779   const Float_t kCOLwid  =  0.8; 
1780   // Height of the cooling arterias
1781   const Float_t kCOLhgt  =  6.5;
1782   // Positioning of the cooling 
1783   const Float_t kCOLposx =  1.0;
1784   const Float_t kCOLposz = -1.2;
1785   // Thickness of the walls of the cooling arterias
1786   const Float_t kCOLthk  =  0.1;
1787   const Int_t   kNparCOL =  3;
1788   Float_t parCOL[kNparCOL];
1789   parCOL[0] = 0.0;
1790   parCOL[1] = 0.0;
1791   parCOL[2] = 0.0;
1792   gMC->Gsvolu("UTC1","BOX ",idtmed[1308-1],parCOL,0);
1793   gMC->Gsvolu("UTC3","BOX ",idtmed[1308-1],parCOL,0);
1794   parCOL[0] =  kCOLwid/2.0 - kCOLthk;
1795   parCOL[1] = -1.0;
1796   parCOL[2] =  kCOLhgt/2.0 - kCOLthk;
1797   gMC->Gsvolu("UTC2","BOX ",idtmed[1314-1],parCOL,kNparCOL);
1798   gMC->Gsvolu("UTC4","BOX ",idtmed[1314-1],parCOL,kNparCOL);
1799
1800   xpos  = 0.0;
1801   ypos  = 0.0;
1802   zpos  = 0.0;
1803   gMC->Gspos("UTC2",1,"UTC1", xpos,ypos,zpos,0,"ONLY");
1804   gMC->Gspos("UTC4",1,"UTC3", xpos,ypos,zpos,0,"ONLY");
1805
1806   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
1807
1808     // Along the chambers
1809     xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
1810     ypos      = 0.0;
1811     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1812               + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
1813               + ilayer * (fgkCH + fgkVspace);
1814     parCOL[0] = kCOLwid   /2.0;
1815     parCOL[1] = fgkSlength/2.0;
1816     parCOL[2] = kCOLhgt   /2.0;
1817     gMC->Gsposp("UTC1",ilayer          ,"UTI1", xpos,ypos,zpos
1818                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1819     gMC->Gsposp("UTC1",ilayer+  kNlayer,"UTI1",-xpos,ypos,zpos
1820                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1821     gMC->Gsposp("UTC1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
1822                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1823     gMC->Gsposp("UTC1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
1824                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1825     gMC->Gsposp("UTC1",ilayer+8*kNlayer ,"UTI3", xpos,ypos,zpos
1826                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1827     gMC->Gsposp("UTC1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
1828                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1829
1830     // Front of supermodules
1831     xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx;
1832     ypos      = 0.0;
1833     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1834               + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
1835               + ilayer * (fgkCH + fgkVspace);
1836     parCOL[0] = kCOLwid   /2.0;
1837     parCOL[1] = fgkFlength/2.0;
1838     parCOL[2] = kCOLhgt   /2.0;
1839     gMC->Gsposp("UTC3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
1840                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1841     gMC->Gsposp("UTC3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
1842                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1843     gMC->Gsposp("UTC3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
1844                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1845     gMC->Gsposp("UTC3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
1846                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1847
1848   }
1849
1850   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
1851
1852     // In baby frame
1853     xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 2.5;
1854     ypos      = kBBSdz/2.0 - kBBMdz/2.0;
1855     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1856               + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
1857               + ilayer * (fgkCH + fgkVspace);
1858     parCOL[0] = kCOLwid/2.0;
1859     parCOL[1] = kBBSdz /2.0;
1860     parCOL[2] = kCOLhgt/2.0;
1861     gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
1862                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1863     gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1864                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1865
1866   }
1867
1868   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
1869
1870     // In back frame
1871     xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 + kCOLposx - 0.3;
1872     ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
1873     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1874               + kCOLhgt/2.0 - fgkSheight/2.0 + kCOLposz 
1875               + ilayer * (fgkCH + fgkVspace);
1876     parCOL[0] = kCOLwid/2.0;
1877     parCOL[1] = kBFSdz /2.0;
1878     parCOL[2] = kCOLhgt/2.0;
1879     gMC->Gsposp("UTC3",ilayer+6*kNlayer,"BFTRD", xpos,ypos,zpos
1880                       ,matrix[0],"ONLY",parCOL,kNparCOL);
1881     gMC->Gsposp("UTC3",ilayer+7*kNlayer,"BFTRD",-xpos,ypos,zpos
1882                       ,matrix[1],"ONLY",parCOL,kNparCOL);
1883
1884   }
1885
1886   // The upper most layer
1887   // Along the chambers
1888   xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1889   ypos      = 0.0;
1890   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
1891   parCOL[0] = kCOLwid   /2.0;
1892   parCOL[1] = fgkSlength/2.0;
1893   parCOL[2] = kCOLhgt   /2.0;
1894   gMC->Gsposp("UTC1",6          ,"UTI1", xpos,ypos,zpos
1895                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1896   gMC->Gsposp("UTC1",6+  kNlayer,"UTI1",-xpos,ypos,zpos
1897                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1898   gMC->Gsposp("UTC1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
1899                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1900   gMC->Gsposp("UTC1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
1901                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1902   gMC->Gsposp("UTC1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
1903                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1904   gMC->Gsposp("UTC1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
1905                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1906   // Front of supermodules
1907   xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1908   ypos      = 0.0;
1909   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
1910   parCOL[0] = kCOLwid   /2.0;
1911   parCOL[1] = fgkFlength/2.0;
1912   parCOL[2] = kCOLhgt   /2.0;
1913   gMC->Gsposp("UTC3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
1914                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1915   gMC->Gsposp("UTC3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
1916                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1917   gMC->Gsposp("UTC3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
1918                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1919   gMC->Gsposp("UTC3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
1920                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1921   // In baby frame
1922   xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 3.1;
1923   ypos      = kBBSdz/2.0 - kBBMdz/2.0;
1924   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
1925   parCOL[0] = kCOLwid/2.0;
1926   parCOL[1] = kBBSdz /2.0;
1927   parCOL[2] = kCOLhgt/2.0;
1928   gMC->Gsposp("UTC3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
1929                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1930   gMC->Gsposp("UTC3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
1931                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1932   // In back frame
1933   xpos      = fgkCwidth[5]/2.0 - kCOLhgt/2.0 - 1.3;
1934   ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
1935   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.4 - kCOLwid/2.0; 
1936   parCOL[0] = kCOLwid/2.0;
1937   parCOL[1] = kBFSdz /2.0;
1938   parCOL[2] = kCOLhgt/2.0;
1939   gMC->Gsposp("UTC3",6+6*kNlayer,"BFTRD", xpos,ypos,zpos
1940                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1941   gMC->Gsposp("UTC3",6+7*kNlayer,"BFTRD",-xpos,ypos,zpos
1942                     ,matrix[3],"ONLY",parCOL,kNparCOL);
1943
1944   //
1945   // The power bus bars
1946   //
1947
1948   const Float_t kPWRwid  =  0.6;
1949   // Increase the height of the power bus bars to take into
1950   // account the material of additional cables, etc.
1951   const Float_t kPWRhgtA =  5.0 + 0.2;
1952   const Float_t kPWRhgtB =  5.0;
1953   const Float_t kPWRposx =  2.0;
1954   const Float_t kPWRposz =  0.1;
1955   const Int_t   kNparPWR =  3;
1956   Float_t parPWR[kNparPWR];
1957   parPWR[0] = 0.0;
1958   parPWR[1] = 0.0;
1959   parPWR[2] = 0.0;
1960   gMC->Gsvolu("UTP1","BOX ",idtmed[1325-1],parPWR,0);
1961   gMC->Gsvolu("UTP3","BOX ",idtmed[1325-1],parPWR,0);
1962   
1963   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
1964
1965     // Along the chambers
1966     xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
1967     ypos      = 0.0;
1968     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1969               + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
1970               + ilayer * (fgkCH + fgkVspace);
1971     parPWR[0] = kPWRwid   /2.0;
1972     parPWR[1] = fgkSlength/2.0;
1973     parPWR[2] = kPWRhgtA  /2.0;
1974     gMC->Gsposp("UTP1",ilayer          ,"UTI1", xpos,ypos,zpos
1975                       ,matrix[0],"ONLY",parPWR,kNparPWR);
1976     gMC->Gsposp("UTP1",ilayer+  kNlayer,"UTI1",-xpos,ypos,zpos
1977                       ,matrix[1],"ONLY",parPWR,kNparPWR);
1978     gMC->Gsposp("UTP1",ilayer+6*kNlayer,"UTI2", xpos,ypos,zpos
1979                       ,matrix[0],"ONLY",parPWR,kNparPWR);
1980     gMC->Gsposp("UTP1",ilayer+7*kNlayer,"UTI2",-xpos,ypos,zpos
1981                       ,matrix[1],"ONLY",parPWR,kNparPWR);
1982     gMC->Gsposp("UTP1",ilayer+8*kNlayer,"UTI3", xpos,ypos,zpos
1983                       ,matrix[0],"ONLY",parPWR,kNparPWR);
1984     gMC->Gsposp("UTP1",ilayer+9*kNlayer,"UTI3",-xpos,ypos,zpos
1985                       ,matrix[1],"ONLY",parPWR,kNparPWR);
1986
1987     // Front of supermodule
1988     xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx;
1989     ypos      = 0.0;
1990     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
1991               + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
1992               + ilayer * (fgkCH + fgkVspace);
1993     parPWR[0] = kPWRwid   /2.0;
1994     parPWR[1] = fgkFlength/2.0;
1995     parPWR[2] = kPWRhgtA  /2.0;
1996     gMC->Gsposp("UTP3",ilayer+2*kNlayer,"UTF1", xpos,ypos,zpos
1997                       ,matrix[0],"ONLY",parPWR,kNparPWR);
1998     gMC->Gsposp("UTP3",ilayer+3*kNlayer,"UTF1",-xpos,ypos,zpos
1999                       ,matrix[1],"ONLY",parPWR,kNparPWR);
2000     gMC->Gsposp("UTP3",ilayer+4*kNlayer,"UTF2", xpos,ypos,zpos
2001                       ,matrix[0],"ONLY",parPWR,kNparPWR);
2002     gMC->Gsposp("UTP3",ilayer+5*kNlayer,"UTF2",-xpos,ypos,zpos
2003                       ,matrix[1],"ONLY",parPWR,kNparPWR);
2004
2005   }
2006
2007   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
2008
2009     // In baby frame
2010     xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 2.5;
2011     ypos      = kBBSdz/2.0 - kBBMdz/2.0;
2012     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
2013               + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz 
2014               + ilayer * (fgkCH + fgkVspace);
2015     parPWR[0] = kPWRwid /2.0;
2016     parPWR[1] = kBBSdz  /2.0;
2017     parPWR[2] = kPWRhgtB/2.0;
2018     gMC->Gsposp("UTP3",ilayer+6*kNlayer,"BBTRD", xpos, ypos, zpos
2019                       ,matrix[0],"ONLY",parPWR,kNparPWR);
2020     gMC->Gsposp("UTP3",ilayer+7*kNlayer,"BBTRD",-xpos, ypos, zpos
2021                       ,matrix[1],"ONLY",parPWR,kNparPWR);
2022
2023   }
2024
2025   for (ilayer = 1; ilayer < kNlayer; ilayer++) { 
2026
2027     // In back frame
2028     xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0 + kPWRposx - 0.3;
2029     ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
2030     zpos      = fgkVrocsm + fgkSMpltT - fgkCalZpos 
2031               + kPWRhgtB/2.0 - fgkSheight/2.0 + kPWRposz 
2032               + ilayer * (fgkCH + fgkVspace);
2033     parPWR[0] = kPWRwid /2.0;
2034     parPWR[1] = kBFSdz  /2.0;
2035     parPWR[2] = kPWRhgtB/2.0;
2036     gMC->Gsposp("UTP3",ilayer+8*kNlayer,"BFTRD", xpos,ypos,zpos
2037                       ,matrix[0],"ONLY",parPWR,kNparPWR);
2038     gMC->Gsposp("UTP3",ilayer+9*kNlayer,"BFTRD",-xpos,ypos,zpos
2039                       ,matrix[1],"ONLY",parPWR,kNparPWR);
2040
2041   }
2042
2043   // The upper most layer
2044   // Along the chambers
2045   xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
2046   ypos      = 0.0;
2047   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
2048   parPWR[0] = kPWRwid   /2.0;
2049   parPWR[1] = fgkSlength/2.0;
2050   parPWR[2] = kPWRhgtB  /2.0 ;
2051   gMC->Gsposp("UTP1",6          ,"UTI1", xpos,ypos,zpos
2052                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2053   gMC->Gsposp("UTP1",6+  kNlayer,"UTI1",-xpos,ypos,zpos
2054                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2055   gMC->Gsposp("UTP1",6+6*kNlayer,"UTI2", xpos,ypos,zpos
2056                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2057   gMC->Gsposp("UTP1",6+7*kNlayer,"UTI2",-xpos,ypos,zpos
2058                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2059   gMC->Gsposp("UTP1",6+8*kNlayer,"UTI3", xpos,ypos,zpos
2060                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2061   gMC->Gsposp("UTP1",6+9*kNlayer,"UTI3",-xpos,ypos,zpos
2062                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2063   // Front of supermodules
2064   xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
2065   ypos      = 0.0;
2066   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
2067   parPWR[0] = kPWRwid   /2.0;
2068   parPWR[1] = fgkFlength/2.0;
2069   parPWR[2] = kPWRhgtB  /2.0;
2070   gMC->Gsposp("UTP3",6+2*kNlayer,"UTF1", xpos,ypos,zpos
2071                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2072   gMC->Gsposp("UTP3",6+3*kNlayer,"UTF1",-xpos,ypos,zpos
2073                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2074   gMC->Gsposp("UTP3",6+4*kNlayer,"UTF2", xpos,ypos,zpos
2075                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2076   gMC->Gsposp("UTP3",6+5*kNlayer,"UTF2",-xpos,ypos,zpos
2077                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2078   // In baby frame
2079   xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 3.0;
2080   ypos      = kBBSdz/2.0 - kBBMdz/2.0;
2081   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
2082   parPWR[0] = kPWRwid /2.0;
2083   parPWR[1] = kBBSdz  /2.0;
2084   parPWR[2] = kPWRhgtB/2.0;
2085   gMC->Gsposp("UTP3",6+6*kNlayer,"BBTRD", xpos, ypos, zpos
2086                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2087   gMC->Gsposp("UTP3",6+7*kNlayer,"BBTRD",-xpos, ypos, zpos
2088                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2089   // In back frame
2090   xpos      = fgkCwidth[5]/2.0 + kPWRhgtB/2.0 - 1.3;
2091   ypos      = -kBFSdz/2.0 + kBFMdz/2.0;
2092   zpos      = fgkSheight/2.0 - fgkSMpltT - 0.6 - kPWRwid/2.0; 
2093   parPWR[0] = kPWRwid /2.0;
2094   parPWR[1] = kBFSdz  /2.0;
2095   parPWR[2] = kPWRhgtB/2.0;
2096   gMC->Gsposp("UTP3",6+8*kNlayer,"BFTRD", xpos,ypos,zpos
2097                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2098   gMC->Gsposp("UTP3",6+9*kNlayer,"BFTRD",-xpos,ypos,zpos
2099                     ,matrix[3],"ONLY",parPWR,kNparPWR);
2100
2101   //
2102   // The gas tubes connecting the chambers in the super modules with holes
2103   // Material: Stainless steel
2104   //
2105
2106   parTube[0] = 0.0;
2107   parTube[1] = 2.2/2.0;
2108   parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0;
2109   gMC->Gsvolu("UTG1","TUBE",idtmed[1308-1],parTube,kNparTube);
2110   parTube[0] = 0.0;
2111   parTube[1] = 2.1/2.0;
2112   parTube[2] = fgkClength[5][2]/2.0 - fgkHspace/2.0;
2113   gMC->Gsvolu("UTG2","TUBE",idtmed[1309-1],parTube,kNparTube);
2114   xpos  = 0.0;
2115   ypos  = 0.0;
2116   zpos  = 0.0;
2117   gMC->Gspos("UTG2",1,"UTG1",xpos,ypos,zpos,0,"ONLY");
2118   for (ilayer = 0; ilayer < kNlayer; ilayer++) { 
2119     xpos      = fgkCwidth[ilayer]/2.0 + kCOLwid/2.0 - 1.5;
2120     ypos      = 0.0;
2121     zpos      = fgkVrocsm + fgkSMpltT + kCOLhgt/2.0 - fgkSheight/2.0 + 5.0 
2122               + ilayer * (fgkCH + fgkVspace);
2123     gMC->Gspos("UTG1",1+ilayer,"UTI3", xpos, ypos, zpos,matrix[4],"ONLY");
2124     gMC->Gspos("UTG1",7+ilayer,"UTI3",-xpos, ypos, zpos,matrix[4],"ONLY");
2125   }
2126
2127   //
2128   // The volumes for the services at the chambers
2129   //
2130
2131   const Int_t kNparServ = 3;
2132   Float_t parServ[kNparServ];
2133
2134   for (istack = 0; istack < kNstack; istack++) {
2135     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2136
2137       Int_t iDet = GetDetectorSec(ilayer,istack);
2138
2139       sprintf(cTagV,"UU%02d",iDet);
2140       parServ[0] = fgkCwidth[ilayer]         /2.0;
2141       parServ[1] = fgkClength[ilayer][istack]/2.0 - fgkHspace/2.0;
2142       parServ[2] = fgkCsvH                 /2.0;
2143       gMC->Gsvolu(cTagV,"BOX",idtmed[1302-1],parServ,kNparServ);
2144
2145     }
2146   }
2147
2148   //
2149   // The cooling pipes inside the service volumes
2150   //
2151
2152   // The cooling pipes
2153   parTube[0] =  0.0;
2154   parTube[1] =  0.0;
2155   parTube[2] =  0.0;
2156   gMC->Gsvolu("UTCP","TUBE",idtmed[1324-1],parTube,0);
2157   // The cooling water
2158   parTube[0] =  0.0;
2159   parTube[1] =  0.2/2.0;
2160   parTube[2] = -1.0;
2161   gMC->Gsvolu("UTCH","TUBE",idtmed[1314-1],parTube,kNparTube);
2162   // Water inside the cooling pipe
2163   xpos = 0.0;
2164   ypos = 0.0;
2165   zpos = 0.0;
2166   gMC->Gspos("UTCH",1,"UTCP",xpos,ypos,zpos,0,"ONLY");
2167
2168   // Position the cooling pipes in the mother volume
2169   for (istack = 0; istack < kNstack; istack++) {
2170     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2171       Int_t   iDet    = GetDetectorSec(ilayer,istack);
2172       Int_t   iCopy   = GetDetector(ilayer,istack,0) * 100;
2173       Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
2174       Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
2175                       / ((Float_t) nMCMrow);
2176       sprintf(cTagV,"UU%02d",iDet);
2177       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2178         xpos   = 0.0;
2179         ypos   = (0.5 + iMCMrow) * ySize 
2180                - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2181         zpos   = 0.0 + 0.742/2.0;                 
2182         // The cooling pipes
2183         parTube[0] = 0.0;
2184         parTube[1] = 0.3/2.0; // Thickness of the cooling pipes
2185         parTube[2] = fgkCwidth[ilayer]/2.0;
2186         gMC->Gsposp("UTCP",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
2187                           ,matrix[2],"ONLY",parTube,kNparTube);
2188       }
2189     }
2190   }
2191
2192   //
2193   // The power lines
2194   //
2195
2196   // The copper power lines
2197   parTube[0] = 0.0;
2198   parTube[1] = 0.0;
2199   parTube[2] = 0.0;
2200   gMC->Gsvolu("UTPL","TUBE",idtmed[1305-1],parTube,0);
2201
2202   // Position the power lines in the mother volume
2203   for (istack = 0; istack < kNstack; istack++) {
2204     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2205       Int_t   iDet    = GetDetectorSec(ilayer,istack);
2206       Int_t   iCopy   = GetDetector(ilayer,istack,0) * 100;
2207       Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
2208       Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
2209                       / ((Float_t) nMCMrow);
2210       sprintf(cTagV,"UU%02d",iDet);
2211       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2212         xpos       = 0.0;
2213         ypos       = (0.5 + iMCMrow) * ySize - 1.0 
2214                    - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2215         zpos       = -0.4 + 0.742/2.0;
2216         parTube[0] = 0.0;
2217         parTube[1] = 0.2/2.0; // Thickness of the power lines
2218         parTube[2] = fgkCwidth[ilayer]/2.0;
2219         gMC->Gsposp("UTPL",iCopy+iMCMrow,cTagV,xpos,ypos,zpos
2220                           ,matrix[2],"ONLY",parTube,kNparTube);
2221       }
2222     }
2223   }
2224
2225   //
2226   // The MCMs
2227   //
2228
2229   const Float_t kMCMx    = 3.0;
2230   const Float_t kMCMy    = 3.0;
2231   const Float_t kMCMz    = 0.3;
2232   
2233   const Float_t kMCMpcTh = 0.1;
2234   const Float_t kMCMcuTh = 0.0025;
2235   const Float_t kMCMsiTh = 0.03;
2236   const Float_t kMCMcoTh = 0.04;
2237
2238   // The mother volume for the MCMs (air)
2239   const Int_t kNparMCM = 3;
2240   Float_t parMCM[kNparMCM];
2241   parMCM[0] = kMCMx   /2.0;
2242   parMCM[1] = kMCMy   /2.0;
2243   parMCM[2] = kMCMz   /2.0;
2244   gMC->Gsvolu("UMCM","BOX",idtmed[1302-1],parMCM,kNparMCM);
2245
2246   // The MCM carrier G10 layer
2247   parMCM[0] = kMCMx   /2.0;
2248   parMCM[1] = kMCMy   /2.0;
2249   parMCM[2] = kMCMpcTh/2.0;
2250   gMC->Gsvolu("UMC1","BOX",idtmed[1319-1],parMCM,kNparMCM);
2251   // The MCM carrier Cu layer
2252   parMCM[0] = kMCMx   /2.0;
2253   parMCM[1] = kMCMy   /2.0;
2254   parMCM[2] = kMCMcuTh/2.0;
2255   gMC->Gsvolu("UMC2","BOX",idtmed[1318-1],parMCM,kNparMCM);
2256   // The silicon of the chips
2257   parMCM[0] = kMCMx   /2.0;
2258   parMCM[1] = kMCMy   /2.0;
2259   parMCM[2] = kMCMsiTh/2.0;
2260   gMC->Gsvolu("UMC3","BOX",idtmed[1320-1],parMCM,kNparMCM);
2261   // The aluminum of the cooling plates
2262   parMCM[0] = kMCMx   /2.0;
2263   parMCM[1] = kMCMy   /2.0;
2264   parMCM[2] = kMCMcoTh/2.0;
2265   gMC->Gsvolu("UMC4","BOX",idtmed[1324-1],parMCM,kNparMCM);
2266
2267   // Put the MCM material inside the MCM mother volume
2268   xpos  =  0.0;
2269   ypos  =  0.0;
2270   zpos  = -kMCMz   /2.0 + kMCMpcTh/2.0;
2271   gMC->Gspos("UMC1",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2272   zpos +=  kMCMpcTh/2.0 + kMCMcuTh/2.0;
2273   gMC->Gspos("UMC2",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2274   zpos +=  kMCMcuTh/2.0 + kMCMsiTh/2.0;
2275   gMC->Gspos("UMC3",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2276   zpos +=  kMCMsiTh/2.0 + kMCMcoTh/2.0;
2277   gMC->Gspos("UMC4",1,"UMCM",xpos,ypos,zpos,0,"ONLY");
2278
2279   // Position the MCMs in the mother volume
2280   for (istack = 0; istack < kNstack; istack++) {
2281     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2282       Int_t   iDet    = GetDetectorSec(ilayer,istack);
2283       Int_t   iCopy   = GetDetector(ilayer,istack,0) * 1000;
2284       Int_t   nMCMrow = GetRowMax(ilayer,istack,0);
2285       Float_t ySize   = (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW)
2286                       / ((Float_t) nMCMrow);
2287       Int_t   nMCMcol = 8;
2288       Float_t xSize   = (GetChamberWidth(ilayer)         - 2.0*fgkCpadW)
2289                       / ((Float_t) nMCMcol + 6);             // Introduce 6 gaps
2290       Int_t   iMCM[8] = {  1,  2,  3,  5,  8,  9, 10, 12 };  // 0..7 MCM + 6 gap structure
2291       sprintf(cTagV,"UU%02d",iDet);
2292       for (Int_t iMCMrow = 0; iMCMrow < nMCMrow; iMCMrow++) {
2293         for (Int_t iMCMcol = 0; iMCMcol < nMCMcol; iMCMcol++) {
2294           xpos      = (0.5 + iMCM[iMCMcol]) * xSize + 1.0
2295                     - fgkCwidth[ilayer]/2.0;
2296           ypos      = (0.5 + iMCMrow) * ySize + 1.0
2297                     - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2298           zpos      = -0.4 + 0.742/2.0;
2299           gMC->Gspos("UMCM",iCopy+iMCMrow*10+iMCMcol,cTagV
2300                            ,xpos,ypos,zpos,0,"ONLY");
2301           // Add two additional smaller cooling pipes on top of the MCMs
2302           // to mimic the meandering structure
2303           xpos      = (0.5 + iMCM[iMCMcol]) * xSize + 1.0
2304                     - fgkCwidth[ilayer]/2.0;
2305           ypos      = (0.5 + iMCMrow) * ySize
2306                     - fgkClength[ilayer][istack]/2.0 + fgkHspace/2.0;
2307           zpos      = 0.0 + 0.742/2.0;                 
2308           parTube[0] = 0.0;
2309           parTube[1] = 0.3/2.0; // Thickness of the cooling pipes
2310           parTube[2] = kMCMx/2.0;
2311           gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+ 50,cTagV
2312                             ,xpos,ypos+1.0,zpos
2313                             ,matrix[2],"ONLY",parTube,kNparTube);
2314           gMC->Gsposp("UTCP",iCopy+iMCMrow*10+iMCMcol+500,cTagV
2315                             ,xpos,ypos+2.0,zpos
2316                             ,matrix[2],"ONLY",parTube,kNparTube);
2317
2318         }
2319       }
2320
2321     }
2322   }
2323
2324   //
2325   // The DCS boards
2326   //
2327
2328   const Float_t kDCSx    =  9.0;
2329   const Float_t kDCSy    = 14.5;
2330   const Float_t kDCSz    =  0.3;
2331   
2332   const Float_t kDCSpcTh =  0.15;
2333   const Float_t kDCScuTh =  0.01;
2334   const Float_t kDCScoTh =  0.04;
2335
2336   // The mother volume for the DCSs (air)
2337   const Int_t kNparDCS = 3;
2338   Float_t parDCS[kNparDCS];
2339   parDCS[0] = kDCSx   /2.0;
2340   parDCS[1] = kDCSy   /2.0;
2341   parDCS[2] = kDCSz   /2.0;
2342   gMC->Gsvolu("UDCS","BOX",idtmed[1302-1],parDCS,kNparDCS);
2343
2344   // The DCS carrier G10 layer
2345   parDCS[0] = kDCSx   /2.0;
2346   parDCS[1] = kDCSy   /2.0;
2347   parDCS[2] = kDCSpcTh/2.0;
2348   gMC->Gsvolu("UDC1","BOX",idtmed[1319-1],parDCS,kNparDCS);
2349   // The DCS carrier Cu layer
2350   parDCS[0] = kDCSx   /2.0;
2351   parDCS[1] = kDCSy   /2.0;
2352   parDCS[2] = kDCScuTh/2.0;
2353   gMC->Gsvolu("UDC2","BOX",idtmed[1318-1],parDCS,kNparDCS);
2354   // The aluminum of the cooling plates
2355   parDCS[0] = 5.0     /2.0;
2356   parDCS[1] = 5.0     /2.0;
2357   parDCS[2] = kDCScoTh/2.0;
2358   gMC->Gsvolu("UDC3","BOX",idtmed[1324-1],parDCS,kNparDCS);
2359
2360   // Put the DCS material inside the DCS mother volume
2361   xpos  =  0.0;
2362   ypos  =  0.0;
2363   zpos  = -kDCSz   /2.0 + kDCSpcTh/2.0;
2364   gMC->Gspos("UDC1",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
2365   zpos +=  kDCSpcTh/2.0 + kDCScuTh/2.0;
2366   gMC->Gspos("UDC2",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
2367   zpos +=  kDCScuTh/2.0 + kDCScoTh/2.0;
2368   gMC->Gspos("UDC3",1,"UDCS",xpos,ypos,zpos,0,"ONLY");
2369
2370   // Put the DCS board in the chamber services mother volume
2371   for (istack = 0; istack < kNstack; istack++) {
2372     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2373       Int_t   iDet    = GetDetectorSec(ilayer,istack);
2374       Int_t   iCopy   = iDet + 1;
2375       xpos =  fgkCwidth[ilayer]/2.0 - 1.9 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
2376                                         / ((Float_t) GetRowMax(ilayer,istack,0));
2377       ypos =  0.05 * fgkClength[ilayer][istack];
2378       zpos =  kDCSz/2.0 - fgkCsvH/2.0;
2379       sprintf(cTagV,"UU%02d",iDet);
2380       gMC->Gspos("UDCS",iCopy,cTagV,xpos,ypos,zpos,0,"ONLY");
2381     }
2382   }
2383
2384   //
2385   // The ORI boards
2386   //
2387
2388   const Float_t kORIx    =  4.2;
2389   const Float_t kORIy    = 13.5;
2390   const Float_t kORIz    =  0.3;
2391   
2392   const Float_t kORIpcTh =  0.15;
2393   const Float_t kORIcuTh =  0.01;
2394   const Float_t kORIcoTh =  0.04;
2395
2396   // The mother volume for the ORIs (air)
2397   const Int_t kNparORI = 3;
2398   Float_t parORI[kNparORI];
2399   parORI[0] = kORIx   /2.0;
2400   parORI[1] = kORIy   /2.0;
2401   parORI[2] = kORIz   /2.0;
2402   gMC->Gsvolu("UORI","BOX",idtmed[1302-1],parORI,kNparORI);
2403
2404   // The ORI carrier G10 layer
2405   parORI[0] = kORIx   /2.0;
2406   parORI[1] = kORIy   /2.0;
2407   parORI[2] = kORIpcTh/2.0;
2408   gMC->Gsvolu("UOR1","BOX",idtmed[1319-1],parORI,kNparORI);
2409   // The ORI carrier Cu layer
2410   parORI[0] = kORIx   /2.0;
2411   parORI[1] = kORIy   /2.0;
2412   parORI[2] = kORIcuTh/2.0;
2413   gMC->Gsvolu("UOR2","BOX",idtmed[1318-1],parORI,kNparORI);
2414   // The aluminum of the cooling plates
2415   parORI[0] = kORIx   /2.0;
2416   parORI[1] = kORIy   /2.0;
2417   parORI[2] = kORIcoTh/2.0;
2418   gMC->Gsvolu("UOR3","BOX",idtmed[1324-1],parORI,kNparORI);
2419
2420   // Put the ORI material inside the ORI mother volume
2421   xpos  =  0.0;
2422   ypos  =  0.0;
2423   zpos  = -kORIz   /2.0 + kORIpcTh/2.0;
2424   gMC->Gspos("UOR1",1,"UORI",xpos,ypos,zpos,0,"ONLY");
2425   zpos +=  kORIpcTh/2.0 + kORIcuTh/2.0;
2426   gMC->Gspos("UOR2",1,"UORI",xpos,ypos,zpos,0,"ONLY");
2427   zpos +=  kORIcuTh/2.0 + kORIcoTh/2.0;
2428   gMC->Gspos("UOR3",1,"UORI",xpos,ypos,zpos,0,"ONLY");
2429
2430   // Put the ORI board in the chamber services mother volume
2431   for (istack = 0; istack < kNstack; istack++) {
2432     for (ilayer = 0; ilayer < kNlayer; ilayer++) {
2433       Int_t   iDet    = GetDetectorSec(ilayer,istack);
2434       Int_t   iCopy   = iDet + 1;
2435       xpos =  fgkCwidth[ilayer]/2.0 - 1.92 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
2436                                         / ((Float_t) GetRowMax(ilayer,istack,0));
2437       ypos = -16.0;
2438       zpos =  kORIz/2.0 - fgkCsvH/2.0;
2439       sprintf(cTagV,"UU%02d",iDet);
2440       gMC->Gspos("UORI",iCopy      ,cTagV,xpos,ypos,zpos,0,"ONLY");
2441       xpos = -fgkCwidth[ilayer]/2.0 + 3.8 * (GetChamberLength(ilayer,istack) - 2.0*fgkRpadW) 
2442                                         / ((Float_t) GetRowMax(ilayer,istack,0));
2443       ypos = -16.0;
2444       zpos =  kORIz/2.0 - fgkCsvH/2.0;
2445       sprintf(cTagV,"UU%02d",iDet);
2446       gMC->Gspos("UORI",iCopy+kNdet,cTagV,xpos,ypos,zpos,0,"ONLY");
2447     }
2448   }
2449
2450   //
2451   // Services in front of the super module
2452   //
2453
2454   // Gas in-/outlet pipes (INOX)
2455   parTube[0] = 0.0;
2456   parTube[1] = 0.0;
2457   parTube[2] = 0.0;
2458   gMC->Gsvolu("UTG3","TUBE",idtmed[1308-1],parTube,0);
2459   // The gas inside the in-/outlet pipes (Xe)
2460   parTube[0] =  0.0;
2461   parTube[1] =  1.2/2.0;
2462   parTube[2] = -1.0;
2463   gMC->Gsvolu("UTG4","TUBE",idtmed[1309-1],parTube,kNparTube);
2464   xpos = 0.0;
2465   ypos = 0.0;
2466   zpos = 0.0;
2467   gMC->Gspos("UTG4",1,"UTG3",xpos,ypos,zpos,0,"ONLY");
2468   for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { 
2469     xpos       = 0.0;
2470     ypos       = fgkClength[ilayer][2]/2.0 
2471                + fgkClength[ilayer][1] 
2472                + fgkClength[ilayer][0];
2473     zpos       = 9.0 - fgkSheight/2.0
2474                + ilayer * (fgkCH + fgkVspace);
2475     parTube[0] = 0.0;
2476     parTube[1] = 1.5/2.0;
2477     parTube[2] = fgkCwidth[ilayer]/2.0 - 2.5;
2478     gMC->Gsposp("UTG3",ilayer+1          ,"UTI1", xpos, ypos, zpos
2479                       ,matrix[2],"ONLY",parTube,kNparTube);
2480     gMC->Gsposp("UTG3",ilayer+1+1*kNlayer,"UTI1", xpos,-ypos, zpos
2481                       ,matrix[2],"ONLY",parTube,kNparTube);
2482     gMC->Gsposp("UTG3",ilayer+1+2*kNlayer,"UTI2", xpos, ypos, zpos
2483                       ,matrix[2],"ONLY",parTube,kNparTube);
2484     gMC->Gsposp("UTG3",ilayer+1+3*kNlayer,"UTI2", xpos,-ypos, zpos
2485                       ,matrix[2],"ONLY",parTube,kNparTube);
2486     gMC->Gsposp("UTG3",ilayer+1+4*kNlayer,"UTI3", xpos, ypos, zpos
2487                       ,matrix[2],"ONLY",parTube,kNparTube);
2488     gMC->Gsposp("UTG3",ilayer+1+5*kNlayer,"UTI3", xpos,-ypos, zpos
2489                       ,matrix[2],"ONLY",parTube,kNparTube);
2490   }
2491
2492   // Gas distribution box
2493   parBox[0] = 14.50/2.0;
2494   parBox[1] =  4.52/2.0;
2495   parBox[2] =  5.00/2.0;
2496   gMC->Gsvolu("UTGD","BOX ",idtmed[1308-1],parBox,kNparBox);
2497   parBox[0] = 14.50/2.0;
2498   parBox[1] =  4.00/2.0;
2499   parBox[2] =  4.40/2.0;
2500   gMC->Gsvolu("UTGI","BOX ",idtmed[1309-1],parBox,kNparBox);
2501   parTube[0] = 0.0;
2502   parTube[1] = 4.0/2.0;
2503   parTube[2] = 8.0/2.0;
2504   gMC->Gsvolu("UTGT","TUBE",idtmed[1308-1],parTube,kNparTube);
2505   parTube[0] = 0.0;
2506   parTube[1] = 3.4/2.0;
2507   parTube[2] = 8.0/2.0;
2508   gMC->Gsvolu("UTGG","TUBE",idtmed[1309-1],parTube,kNparTube);
2509   xpos = 0.0;
2510   ypos = 0.0;
2511   zpos = 0.0;
2512   gMC->Gspos("UTGI",1,"UTGD",xpos,ypos,zpos,        0,"ONLY");
2513   gMC->Gspos("UTGG",1,"UTGT",xpos,ypos,zpos,        0,"ONLY");
2514   xpos = 0.0;
2515   ypos = 0.0;
2516   zpos = 0.0;
2517   gMC->Gspos("UTGD",1,"UTF1",xpos,ypos,zpos,        0,"ONLY");
2518   xpos =  -3.0;
2519   ypos =   0.0;
2520   zpos =   6.5;
2521   gMC->Gspos("UTGT",1,"UTF1",xpos,ypos,zpos,        0,"ONLY");
2522   xpos = -11.25;
2523   ypos =   0.0;
2524   zpos =   0.5;
2525   gMC->Gspos("UTGT",3,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
2526   xpos =  11.25;
2527   ypos =   0.0;
2528   zpos =   0.5;
2529   gMC->Gspos("UTGT",5,"UTF1",xpos,ypos,zpos,matrix[2],"ONLY");
2530
2531   // Cooling manifolds
2532   parBox[0]  =  5.0/2.0;
2533   parBox[1]  = 23.0/2.0;
2534   parBox[2]  = 70.0/2.0;
2535   gMC->Gsvolu("UTCM","BOX ",idtmed[1302-1],parBox,kNparBox);
2536   parBox[0]  =  5.0/2.0;
2537   parBox[1]  =  5.0/2.0;
2538   parBox[2]  = 70.0/2.0;
2539   gMC->Gsvolu("UTCA","BOX ",idtmed[1308-1],parBox,kNparBox);
2540   parBox[0]  =  5.0/2.0 - 0.3;
2541   parBox[1]  =  5.0/2.0 - 0.3;
2542   parBox[2]  = 70.0/2.0 - 0.3;
2543   gMC->Gsvolu("UTCW","BOX ",idtmed[1314-1],parBox,kNparBox);
2544   xpos       =  0.0;
2545   ypos       =  0.0;
2546   zpos       =  0.0;
2547   gMC->Gspos("UTCW",1,"UTCA", xpos, ypos, zpos,        0,"ONLY");
2548   xpos       =  0.0;
2549   ypos       =  5.0/2.0 - 23.0/2.0;
2550   zpos       =  0.0;
2551   gMC->Gspos("UTCA",1,"UTCM", xpos, ypos, zpos,        0,"ONLY");
2552   parTube[0] =  0.0;
2553   parTube[1] =  3.0/2.0;
2554   parTube[2] = 18.0/2.0;
2555   gMC->Gsvolu("UTCO","TUBE",idtmed[1308-1],parTube,kNparTube);
2556   parTube[0] =  0.0;
2557   parTube[1] =  3.0/2.0 - 0.3;
2558   parTube[2] = 18.0/2.0;
2559   gMC->Gsvolu("UTCL","TUBE",idtmed[1314-1],parTube,kNparTube);
2560   xpos       =  0.0;
2561   ypos       =  0.0;
2562   zpos       =  0.0;
2563   gMC->Gspos("UTCL",1,"UTCO", xpos, ypos, zpos,        0,"ONLY");
2564   xpos       =  0.0;
2565   ypos       =  2.5;
2566   zpos       = -70.0/2.0 + 7.0;
2567   gMC->Gspos("UTCO",1,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2568   zpos      +=  7.0;
2569   gMC->Gspos("UTCO",2,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2570   zpos      +=  7.0;
2571   gMC->Gspos("UTCO",3,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2572   zpos      +=  7.0;
2573   gMC->Gspos("UTCO",4,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2574   zpos      +=  7.0;
2575   gMC->Gspos("UTCO",5,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2576   zpos      +=  7.0;
2577   gMC->Gspos("UTCO",6,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2578   zpos      +=  7.0;
2579   gMC->Gspos("UTCO",7,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2580   zpos      +=  7.0;
2581   gMC->Gspos("UTCO",8,"UTCM", xpos, ypos, zpos,matrix[4],"ONLY");
2582
2583   xpos = 40.0;
2584   ypos =  fgkFlength/2.0 - 23.0/2.0;
2585   zpos =  0.0;
2586   gMC->Gspos("UTCM",1,"UTF1", xpos, ypos, zpos,matrix[0],"ONLY");
2587   gMC->Gspos("UTCM",2,"UTF1",-xpos, ypos, zpos,matrix[1],"ONLY");
2588   gMC->Gspos("UTCM",3,"UTF2", xpos,-ypos, zpos,matrix[5],"ONLY");
2589   gMC->Gspos("UTCM",4,"UTF2",-xpos,-ypos, zpos,matrix[6],"ONLY");
2590
2591   // Power connection boards (Cu)
2592   parBox[0] =  0.5/2.0;
2593   parBox[1] = 15.0/2.0;
2594   parBox[2] =  7.0/2.0;
2595   gMC->Gsvolu("UTPC","BOX ",idtmed[1325-1],parBox,kNparBox);
2596   for (ilayer = 0; ilayer < kNlayer-1; ilayer++) { 
2597     xpos      = fgkCwidth[ilayer]/2.0 + kPWRwid/2.0;
2598     ypos      = 0.0;
2599     zpos      = fgkVrocsm + fgkSMpltT + kPWRhgtA/2.0 - fgkSheight/2.0 + kPWRposz 
2600               + (ilayer+1) * (fgkCH + fgkVspace);
2601     gMC->Gspos("UTPC",ilayer        ,"UTF1", xpos,ypos,zpos,matrix[0],"ONLY");
2602     gMC->Gspos("UTPC",ilayer+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[1],"ONLY");
2603   }
2604   xpos      = fgkCwidth[5]/2.0 + kPWRhgtA/2.0 - 2.0;
2605   ypos      = 0.0;
2606   zpos      = fgkSheight/2.0 - fgkSMpltT - 2.0; 
2607   gMC->Gspos("UTPC",5        ,"UTF1", xpos,ypos,zpos,matrix[3],"ONLY");
2608   gMC->Gspos("UTPC",5+kNlayer,"UTF1",-xpos,ypos,zpos,matrix[3],"ONLY");
2609
2610   // Power connection panel (Al)
2611   parBox[0] = 60.0/2.0;
2612   parBox[1] = 10.0/2.0;
2613   parBox[2] =  3.0/2.0;
2614   gMC->Gsvolu("UTPP","BOX ",idtmed[1301-1],parBox,kNparBox);
2615   xpos      =  0.0;
2616   ypos      =  0.0;
2617   zpos      = 18.0;
2618   gMC->Gspos("UTPP",1,"UTF1", xpos,ypos,zpos,0,"ONLY");
2619
2620   //
2621   // Electronics boxes
2622   //
2623
2624   // Casing (INOX)
2625   parBox[0] = 60.0/2.0;
2626   parBox[1] = 10.0/2.0;
2627   parBox[2] =  6.0/2.0;
2628   gMC->Gsvolu("UTE1","BOX ",idtmed[1308-1],parBox,kNparBox);
2629   // Interior (air)
2630   parBox[0] = parBox[0] - 0.5;
2631   parBox[1] = parBox[1] - 0.5;
2632   parBox[2] = parBox[2] - 0.5;
2633   gMC->Gsvolu("UTE2","BOX ",idtmed[1302-1],parBox,kNparBox);
2634   xpos      = 0.0;
2635   ypos      = 0.0;
2636   zpos      = 0.0;
2637   gMC->Gspos("UTE2",1,"UTE1",xpos,ypos,zpos,0,"ONLY");
2638   xpos      = 0.0;
2639   ypos      =  fgkSlength/2.0 - 10.0/2.0 - 3.0;
2640   zpos      = -fgkSheight/2.0 +  6.0/2.0 + 1.0;
2641   gMC->Gspos("UTE1",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2642   gMC->Gspos("UTE1",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2643   gMC->Gspos("UTE1",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2644
2645   // Casing (INOX)
2646   parBox[0] = 50.0/2.0;
2647   parBox[1] = 15.0/2.0;
2648   parBox[2] = 20.0/2.0;
2649   gMC->Gsvolu("UTE3","BOX ",idtmed[1308-1],parBox,kNparBox);
2650   // Interior (air)
2651   parBox[0] = parBox[0] - 0.5;
2652   parBox[1] = parBox[1] - 0.5;
2653   parBox[2] = parBox[2] - 0.5;
2654   gMC->Gsvolu("UTE4","BOX ",idtmed[1302-1],parBox,kNparBox);
2655   xpos      = 0.0;
2656   ypos      = 0.0;
2657   zpos      = 0.0;
2658   gMC->Gspos("UTE4",1,"UTE3",xpos,ypos,zpos,0,"ONLY");
2659   xpos      = 0.0;
2660   ypos      = -fgkSlength/2.0 + 15.0/2.0 + 3.0;
2661   zpos      = -fgkSheight/2.0 + 20.0/2.0 + 1.0;
2662   gMC->Gspos("UTE3",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2663   gMC->Gspos("UTE3",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2664   gMC->Gspos("UTE3",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2665
2666   // Casing (INOX)
2667   parBox[0] = 20.0/2.0;
2668   parBox[1] =  7.0/2.0;
2669   parBox[2] = 20.0/2.0;
2670   gMC->Gsvolu("UTE5","BOX ",idtmed[1308-1],parBox,kNparBox);
2671   // Interior (air)
2672   parBox[0] = parBox[0] - 0.5;
2673   parBox[1] = parBox[1] - 0.5;
2674   parBox[2] = parBox[2] - 0.5;
2675   gMC->Gsvolu("UTE6","BOX ",idtmed[1302-1],parBox,kNparBox);
2676   xpos      = 0.0;
2677   ypos      = 0.0;
2678   zpos      = 0.0;
2679   gMC->Gspos("UTE6",1,"UTE5",xpos,ypos,zpos,0,"ONLY");
2680   xpos      = 20.0;
2681   ypos      = -fgkSlength/2.0 +  7.0/2.0 + 3.0;
2682   zpos      = 0.0;
2683   gMC->Gspos("UTE5",1,"UTI1", xpos,ypos,zpos,0,"ONLY");
2684   gMC->Gspos("UTE5",2,"UTI2", xpos,ypos,zpos,0,"ONLY");
2685   gMC->Gspos("UTE5",3,"UTI3", xpos,ypos,zpos,0,"ONLY");
2686   xpos      = -xpos;
2687   gMC->Gspos("UTE5",4,"UTI1", xpos,ypos,zpos,0,"ONLY");
2688   gMC->Gspos("UTE5",5,"UTI2", xpos,ypos,zpos,0,"ONLY");
2689   gMC->Gspos("UTE5",6,"UTI3", xpos,ypos,zpos,0,"ONLY");
2690
2691 }
2692
2693 //_____________________________________________________________________________
2694 void AliTRDgeometry::AssembleChamber(Int_t ilayer, Int_t istack)
2695 {
2696   //
2697   // Group volumes UA, UD, UF, UU into an assembly that defines the
2698   // alignable volume of a single readout chamber
2699   //
2700
2701   Char_t  cTagM[100];
2702   Char_t  cTagV[100];
2703
2704   Double_t xpos = 0.0;
2705   Double_t ypos = 0.0;
2706   Double_t zpos = 0.0;
2707
2708   Int_t idet = GetDetectorSec(ilayer,istack);
2709
2710   // Create the assembly for a given ROC
2711   sprintf(cTagM,"UT%02d",idet);
2712   TGeoVolume *roc = new TGeoVolumeAssembly(cTagM);
2713
2714   // Add the lower part of the chamber (aluminum frame),
2715   // including radiator and drift region
2716   xpos = 0.0;
2717   ypos = 0.0;
2718   zpos = fgkCraH/2.0 + fgkCdrH/2.0 - fgkCHsv/2.0;
2719   sprintf(cTagV,"UA%02d",idet);
2720   TGeoVolume *rocA = gGeoManager->GetVolume(cTagV);
2721   roc->AddNode(rocA,1,new TGeoTranslation(xpos,ypos,zpos));
2722
2723   // Add the additional aluminum ledges
2724   xpos = fgkCwidth[ilayer]/2.0 + fgkCalWmod/2.0;
2725   ypos = 0.0;
2726   zpos = fgkCraH + fgkCdrH - fgkCalZpos - fgkCalHmod/2.0 - fgkCHsv/2.0;
2727   sprintf(cTagV,"UZ%02d",idet);
2728   TGeoVolume *rocZ = gGeoManager->GetVolume(cTagV);
2729   roc->AddNode(rocZ,1,new TGeoTranslation( xpos,ypos,zpos));
2730   roc->AddNode(rocZ,2,new TGeoTranslation(-xpos,ypos,zpos));
2731
2732   // Add the additional wacosit ledges
2733   xpos = fgkCwidth[ilayer]/2.0 + fgkCwsW/2.0;
2734   ypos = 0.0;
2735   zpos = fgkCraH + fgkCdrH - fgkCwsH/2.0 - fgkCHsv/2.0;
2736   sprintf(cTagV,"UP%02d",idet);
2737   TGeoVolume *rocP = gGeoManager->GetVolume(cTagV);
2738   roc->AddNode(rocP,1,new TGeoTranslation( xpos,ypos,zpos));
2739   roc->AddNode(rocP,2,new TGeoTranslation(-xpos,ypos,zpos));
2740
2741   // Add the middle part of the chamber (G10 frame),
2742   // including amplification region
2743   xpos = 0.0;
2744   ypos = 0.0;
2745   zpos = fgkCamH/2.0 + fgkCraH + fgkCdrH - fgkCHsv/2.0;
2746   sprintf(cTagV,"UD%02d",idet);
2747   TGeoVolume *rocD = gGeoManager->GetVolume(cTagV);
2748   roc->AddNode(rocD,1,new TGeoTranslation(xpos,ypos,zpos));
2749
2750   // Add the upper part of the chamber (aluminum frame),
2751   // including back panel and FEE
2752   xpos = 0.0;
2753   ypos = 0.0;
2754   zpos = fgkCroH/2.0 + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0;
2755   sprintf(cTagV,"UF%02d",idet);
2756   TGeoVolume *rocF = gGeoManager->GetVolume(cTagV);
2757   roc->AddNode(rocF,1,new TGeoTranslation(xpos,ypos,zpos));
2758
2759   // Add the volume with services on top of the back panel
2760   xpos = 0.0;
2761   ypos = 0.0;
2762   zpos = fgkCsvH/2.0 + fgkCroH + fgkCamH + fgkCraH + fgkCdrH - fgkCHsv/2.0;
2763   sprintf(cTagV,"UU%02d",idet);
2764   TGeoVolume *rocU = gGeoManager->GetVolume(cTagV);
2765   roc->AddNode(rocU,1,new TGeoTranslation(xpos,ypos,zpos));
2766
2767   // Place the ROC assembly into the super modules
2768   xpos = 0.0;
2769   ypos = 0.0;
2770   ypos  = fgkClength[ilayer][0] + fgkClength[ilayer][1] + fgkClength[ilayer][2]/2.0;
2771   for (Int_t ic = 0; ic < istack; ic++) {
2772     ypos -= fgkClength[ilayer][ic];
2773   }
2774   ypos -= fgkClength[ilayer][istack]/2.0;
2775   zpos  = fgkVrocsm + fgkSMpltT + fgkCHsv/2.0 - fgkSheight/2.0
2776         + ilayer * (fgkCH + fgkVspace);
2777   TGeoVolume *sm1 = gGeoManager->GetVolume("UTI1");
2778   TGeoVolume *sm2 = gGeoManager->GetVolume("UTI2");
2779   TGeoVolume *sm3 = gGeoManager->GetVolume("UTI3");
2780   sm1->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
2781   sm2->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
2782   if (istack != 2) {
2783     // w/o middle stack
2784     sm3->AddNode(roc,1,new TGeoTranslation(xpos,ypos,zpos));
2785   }
2786
2787 }
2788
2789 //_____________________________________________________________________________
2790 Bool_t AliTRDgeometry::RotateBack(Int_t det
2791                                 , const Double_t * const loc
2792                                 , Double_t *glb) const
2793 {
2794   //
2795   // Rotates a chambers to transform the corresponding local frame
2796   // coordinates <loc> into the coordinates of the ALICE restframe <glb>.
2797   //
2798
2799   Int_t sector = GetSector(det);
2800
2801   glb[0] = loc[0] * fRotB11[sector] - loc[1] * fRotB12[sector];
2802   glb[1] = loc[0] * fRotB21[sector] + loc[1] * fRotB22[sector];
2803   glb[2] = loc[2];
2804
2805   return kTRUE;
2806
2807 }
2808
2809 //_____________________________________________________________________________
2810 Int_t AliTRDgeometry::GetDetectorSec(Int_t layer, Int_t stack)
2811 {
2812   //
2813   // Convert plane / stack into detector number for one single sector
2814   //
2815
2816   return (layer + stack * fgkNlayer);
2817
2818 }
2819
2820 //_____________________________________________________________________________
2821 Int_t AliTRDgeometry::GetDetector(Int_t layer, Int_t stack, Int_t sector)
2822 {
2823   //
2824   // Convert layer / stack / sector into detector number
2825   //
2826
2827   return (layer + stack * fgkNlayer + sector * fgkNlayer * fgkNstack);
2828
2829 }
2830
2831 //_____________________________________________________________________________
2832 Int_t AliTRDgeometry::GetLayer(Int_t det)
2833 {
2834   //
2835   // Reconstruct the layer number from the detector number
2836   //
2837
2838   return ((Int_t) (det % fgkNlayer));
2839
2840 }
2841
2842 //_____________________________________________________________________________
2843 Int_t AliTRDgeometry::GetStack(Int_t det)
2844 {
2845   //
2846   // Reconstruct the stack number from the detector number
2847   //
2848
2849   return ((Int_t) (det % (fgkNlayer * fgkNstack)) / fgkNlayer);
2850
2851 }
2852
2853 //_____________________________________________________________________________
2854 Int_t AliTRDgeometry::GetStack(Double_t z, Int_t layer)
2855 {
2856   //
2857   // Reconstruct the chamber number from the z position and layer number
2858   //
2859   // The return function has to be protected for positiveness !!
2860   //
2861
2862   if ((layer <          0) || 
2863       (layer >= fgkNlayer)) return -1;
2864         
2865   Int_t    istck = fgkNstack;
2866   Double_t zmin;
2867   Double_t zmax;
2868
2869   do {
2870     istck--;
2871     if (istck < 0) break;
2872     AliTRDpadPlane *pp = GetPadPlane(layer,istck);
2873     zmax  = pp->GetRow0();
2874     Int_t nrows = pp->GetNrows();
2875     zmin = zmax -         2 * pp->GetLengthOPad() 
2876                 - (nrows-2) * pp->GetLengthIPad() 
2877                 - (nrows-1) * pp->GetRowSpacing();
2878   } while((z < zmin) || (z > zmax));
2879   
2880   return istck;
2881
2882 }
2883
2884 //_____________________________________________________________________________
2885 Int_t AliTRDgeometry::GetSector(Int_t det)
2886 {
2887   //
2888   // Reconstruct the sector number from the detector number
2889   //
2890
2891   return ((Int_t) (det / (fgkNlayer * fgkNstack)));
2892
2893 }
2894
2895 //_____________________________________________________________________________
2896 AliTRDpadPlane *AliTRDgeometry::GetPadPlane(Int_t layer, Int_t stack)
2897 {
2898   //
2899   // Returns the pad plane for a given plane <pl> and stack <st> number
2900   //
2901
2902   if (!fgPadPlaneArray) {
2903     CreatePadPlaneArray();
2904   }
2905
2906   Int_t ipp = GetDetectorSec(layer,stack);
2907   return ((AliTRDpadPlane *) fgPadPlaneArray->At(ipp));
2908
2909 }
2910
2911 //_____________________________________________________________________________
2912 Int_t AliTRDgeometry::GetRowMax(Int_t layer, Int_t stack, Int_t /*sector*/)
2913 {
2914   //
2915   // Returns the number of rows on the pad plane
2916   //
2917
2918   return GetPadPlane(layer,stack)->GetNrows();
2919
2920 }
2921
2922 //_____________________________________________________________________________
2923 Int_t AliTRDgeometry::GetColMax(Int_t layer)
2924 {
2925   //
2926   // Returns the number of rows on the pad plane
2927   //
2928
2929   return GetPadPlane(layer,0)->GetNcols();
2930
2931 }
2932
2933 //_____________________________________________________________________________
2934 Double_t AliTRDgeometry::GetRow0(Int_t layer, Int_t stack, Int_t /*sector*/)
2935 {
2936   //
2937   // Returns the position of the border of the first pad in a row
2938   //
2939
2940   return GetPadPlane(layer,stack)->GetRow0();
2941
2942 }
2943
2944 //_____________________________________________________________________________
2945 Double_t AliTRDgeometry::GetCol0(Int_t layer)
2946 {
2947   //
2948   // Returns the position of the border of the first pad in a column
2949   //
2950
2951   return GetPadPlane(layer,0)->GetCol0();
2952
2953 }
2954
2955 //_____________________________________________________________________________
2956 Bool_t AliTRDgeometry::CreateClusterMatrixArray()
2957 {
2958   //
2959   // Create the matrices to transform cluster coordinates from the 
2960   // local chamber system to the tracking coordinate system
2961   //
2962
2963   if (!gGeoManager) {
2964     return kFALSE;
2965   }
2966
2967   if(fgClusterMatrixArray)
2968     return kTRUE;
2969
2970   TString volPath;
2971   TString vpStr   = "ALIC_1/B077_1/BSEGMO";
2972   TString vpApp1  = "_1/BTRD";
2973   TString vpApp2  = "_1";
2974   TString vpApp3a = "/UTR1_1/UTS1_1/UTI1_1";
2975   TString vpApp3b = "/UTR2_1/UTS2_1/UTI2_1";
2976   TString vpApp3c = "/UTR3_1/UTS3_1/UTI3_1";
2977
2978   fgClusterMatrixArray = new TObjArray(kNdet);
2979   AliAlignObjParams o;
2980
2981   for (Int_t iLayer = AliGeomManager::kTRD1; iLayer <= AliGeomManager::kTRD6; iLayer++) {
2982     for (Int_t iModule = 0; iModule < AliGeomManager::LayerSize(iLayer); iModule++) {
2983       
2984       Int_t        isector   = iModule/Nstack();
2985       Int_t        istack    = iModule%Nstack();
2986       Int_t        iLayerTRD = iLayer - AliGeomManager::kTRD1;
2987       Int_t        lid       = GetDetector(iLayerTRD,istack,isector);    
2988
2989       // Check for disabled supermodules
2990       volPath  = vpStr;
2991       volPath += isector;
2992       volPath += vpApp1;
2993       volPath += isector;
2994       volPath += vpApp2;
2995       switch (isector) {
2996       case 13:
2997       case 14:
2998       case 15:
2999         if (istack == 2) {
3000           continue;
3001         }
3002         volPath += vpApp3c;
3003         break;
3004       case 11:
3005       case 12:
3006         volPath += vpApp3b;
3007         break;
3008       default:
3009         volPath += vpApp3a;
3010       };
3011       if (!gGeoManager->CheckPath(volPath)) {
3012         continue;
3013       }
3014
3015       // Check for holes in from of PHOS
3016       if (((isector == 13) || (isector == 14) || (isector == 15)) && 
3017           (istack == 2)) {
3018         continue; 
3019       }
3020
3021       UShort_t     volid   = AliGeomManager::LayerToVolUID(iLayer,iModule);
3022       const char  *symname = AliGeomManager::SymName(volid);
3023       TGeoPNEntry *pne     = gGeoManager->GetAlignableEntry(symname);
3024       const char  *path    = symname;
3025       if (pne) {
3026         path = pne->GetTitle();
3027       }
3028       else {
3029         continue;
3030       }
3031       if (!strstr(path,"ALIC")) {
3032         //AliDebugClass(1,Form("Not a valid path: %s\n",path));
3033         continue;
3034       }
3035       if (!gGeoManager->cd(path)) {
3036         //AliErrorClass(Form("Cannot go to path: %s\n",path));
3037         continue;
3038       }
3039       TGeoHMatrix *m         = gGeoManager->GetCurrentMatrix();
3040       
3041       TGeoRotation mchange; 
3042       mchange.RotateY(90); 
3043       mchange.RotateX(90);
3044
3045       //
3046       // Cluster transformation matrix
3047       //
3048       TGeoHMatrix  rotMatrix(mchange.Inverse());
3049       rotMatrix.MultiplyLeft(m);
3050       Double_t sectorAngle = 20.0 * (isector % 18) + 10.0;
3051       TGeoHMatrix  rotSector;
3052       rotSector.RotateZ(sectorAngle);
3053       rotMatrix.MultiplyLeft(&rotSector.Inverse());
3054
3055       fgClusterMatrixArray->AddAt(new TGeoHMatrix(rotMatrix),lid);       
3056
3057     }    
3058   }
3059
3060   return kTRUE;
3061
3062 }
3063
3064 //_____________________________________________________________________________
3065 TGeoHMatrix *AliTRDgeometry::GetClusterMatrix(Int_t det)
3066 {
3067   //
3068   // Returns the cluster transformation matrix for a given detector
3069   //
3070
3071   if (!fgClusterMatrixArray) {
3072     if (!CreateClusterMatrixArray()) {
3073       return NULL;
3074     }
3075   }  
3076   return (TGeoHMatrix *) fgClusterMatrixArray->At(det);
3077
3078 }
3079
3080 //_____________________________________________________________________________
3081 Bool_t AliTRDgeometry::ChamberInGeometry(Int_t det)
3082 {
3083   //
3084   // Checks whether the given detector is part of the current geometry
3085   //
3086
3087   if (!GetClusterMatrix(det)) {
3088     return kFALSE;
3089   }
3090   else {
3091     return kTRUE;
3092   }
3093
3094 }
3095
3096 //_____________________________________________________________________________
3097 Bool_t AliTRDgeometry::IsHole(Int_t /*la*/, Int_t st, Int_t se) const
3098 {
3099   //
3100   // Checks for holes in front of PHOS
3101   //
3102
3103   if (((se == 13) || (se == 14) || (se == 15)) && 
3104       (st == 2)) {
3105     return kTRUE; 
3106   }
3107
3108   return kFALSE;
3109
3110 }
3111
3112 //_____________________________________________________________________________
3113 Bool_t AliTRDgeometry::IsOnBoundary(Int_t det, Float_t y, Float_t z, Float_t eps) const
3114 {
3115   //
3116   // Checks whether position is at the boundary of the sensitive volume 
3117   //
3118
3119   Int_t ly = GetLayer(det);
3120   if ((ly <          0) || 
3121       (ly >= fgkNlayer)) return kTRUE;
3122         
3123   Int_t stk = GetStack(det);
3124   if ((stk <          0) || 
3125       (stk >= fgkNstack)) return kTRUE;
3126
3127   AliTRDpadPlane *pp = (AliTRDpadPlane*) fgPadPlaneArray->At(GetDetectorSec(ly, stk));
3128   if(!pp) return kTRUE;
3129
3130   Double_t max  = pp->GetRow0();
3131   Int_t n = pp->GetNrows();
3132   Double_t min = max - 2 * pp->GetLengthOPad() 
3133                  - (n-2) * pp->GetLengthIPad() 
3134                  - (n-1) * pp->GetRowSpacing();
3135   if(z < min+eps || z > max-eps){ 
3136     //printf("z : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, z, max-eps, max);
3137     return kTRUE;
3138   }
3139   min  = pp->GetCol0();
3140   n = pp->GetNcols();
3141   max = min +2 * pp->GetWidthOPad() 
3142        + (n-2) * pp->GetWidthIPad() 
3143        + (n-1) * pp->GetColSpacing();
3144   if(y < min+eps || y > max-eps){ 
3145     //printf("y : min[%7.2f (%7.2f)] %7.2f max[(%7.2f) %7.2f]\n", min, min+eps, y, max-eps, max);
3146     return kTRUE;
3147   }
3148
3149   return kFALSE;
3150
3151 }