running local for SP and LYZEP and new histograms for QC
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.h
1 #ifndef ALITRDGEOMETRY_H
2 #define ALITRDGEOMETRY_H
3 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4  * See cxx source for full Copyright notice                               */
5
6 /* $Id$ */
7
8 ///////////////////////////////////////////////////////////////////////////////
9 //                                                                           //
10 //  TRD geometry class                                                       //
11 //                                                                           //
12 ///////////////////////////////////////////////////////////////////////////////
13
14 #include "TObjArray.h"
15
16 #include "AliGeometry.h"
17
18 class TGeoHMatrix;
19
20 class AliTRDpadPlane;
21
22 class AliTRDgeometry : public AliGeometry {
23
24  public:
25
26   enum { kNlayer  =   6
27        , kNstack  =   5
28        , kNsector =  18
29        , kNdet    = 540 
30        , kNdets   =  30 };
31
32   AliTRDgeometry();
33   AliTRDgeometry(const AliTRDgeometry &g);
34   virtual ~AliTRDgeometry();
35   AliTRDgeometry &operator=(const AliTRDgeometry &g);
36
37   virtual void     Init();
38   virtual void     CreateGeometry(Int_t *idtmed);
39   virtual Int_t    IsVersion()                                            { return 1;               }
40   virtual Bool_t   Impact(const TParticle* ) const                        { return kTRUE;           }
41   virtual Bool_t   IsHole(Int_t la, Int_t st, Int_t se) const;
42
43   virtual Bool_t   RotateBack(Int_t det, Double_t *loc, Double_t *glb) const;
44
45           Bool_t   ChamberInGeometry(Int_t det);
46
47           void     GroupChamber(Int_t ilayer, Int_t istack, Int_t *idtmed);
48           void     CreateFrame(Int_t *idtmed);
49           void     CreateServices(Int_t *idtmed);
50
51           Bool_t   CreateClusterMatrixArray();  
52   TGeoHMatrix     *GetClusterMatrix(Int_t det)                           { return (TGeoHMatrix *) 
53                                                                              fClusterMatrixArray->At(det); }
54
55           void     SetSMstatus(Int_t sm, Char_t status)                  { fSMstatus[sm] = status;         }
56
57   static  Int_t    GetDetectorSec(Int_t layer, Int_t stack);
58   static  Int_t    GetDetector(Int_t layer, Int_t stack, Int_t sector);
59   static  Int_t    GetLayer(Int_t det);
60   static  Int_t    GetStack(Int_t det);
61           Int_t    GetStack(Double_t z, Int_t layer);
62   static  Int_t    GetSector(Int_t det);
63
64           void     CreatePadPlaneArray();
65   AliTRDpadPlane  *CreatePadPlane(Int_t layer, Int_t stack);
66   AliTRDpadPlane  *GetPadPlane(Int_t layer, Int_t stack);
67   AliTRDpadPlane  *GetPadPlane(Int_t det)                                { return GetPadPlane(GetLayer(det)
68                                                                                              ,GetStack(det)); }
69           Int_t    GetRowMax(Int_t layer, Int_t stack, Int_t /*sector*/);
70           Int_t    GetColMax(Int_t layer);
71           Double_t GetRow0(Int_t layer, Int_t stack, Int_t /*sector*/);
72           Double_t GetCol0(Int_t layer);
73
74   static  Float_t  GetTime0(Int_t layer)                                 { return fgkTime0[layer];        }
75
76           Char_t   GetSMstatus(Int_t sm) const                           { return fSMstatus[sm];          }
77           Float_t  GetChamberWidth(Int_t layer) const                    { return fCwidth[layer]      ;   }
78           Float_t  GetChamberLength(Int_t layer, Int_t stack) const      { return fClength[layer][stack]; }
79
80   virtual void     GetGlobal(const AliRecPoint*, TVector3&, TMatrixF& ) const { }; 
81   virtual void     GetGlobal(const AliRecPoint*, TVector3& ) const            { };
82
83   static  Double_t GetAlpha()                                            { return 2.0 
84                                                                              * 3.14159265358979324 
85                                                                              / fgkNsector;          } 
86
87   static  Int_t    Nsector()                                             { return fgkNsector;       }
88   static  Int_t    Nlayer()                                              { return fgkNlayer;        }
89   static  Int_t    Nstack()                                              { return fgkNstack;        }
90   static  Int_t    Ndet()                                                { return fgkNdet;          }
91
92   static  Float_t  Cheight()                                             { return fgkCH;            }
93   static  Float_t  Cspace()                                              { return fgkVspace;        }
94   static  Float_t  CraHght()                                             { return fgkCraH;          }
95   static  Float_t  CdrHght()                                             { return fgkCdrH;          }
96   static  Float_t  CamHght()                                             { return fgkCamH;          }
97   static  Float_t  CroHght()                                             { return fgkCroH;          }
98   static  Float_t  CroWid()                                              { return fgkCroW;          }
99   static  Float_t  MyThick()                                             { return fgkMyThick;       }
100   static  Float_t  DrThick()                                             { return fgkDrThick;       }
101   static  Float_t  AmThick()                                             { return fgkAmThick;       }
102   static  Float_t  DrZpos()                                              { return fgkDrZpos;        }
103   static  Float_t  RpadW()                                               { return fgkRpadW;         }
104   static  Float_t  CpadW()                                               { return fgkCpadW;         }
105
106   static  Float_t  Cwidcha()                                             { return (fgkSwidth2 - fgkSwidth1) 
107                                                                                   / fgkSheight 
108                                                                                   * (fgkCH + fgkVspace);      }
109
110   static  Int_t    MCMmax()                                              { return fgkMCMmax;        }
111   static  Int_t    MCMrow()                                              { return fgkMCMrow;        }
112   static  Int_t    ROBmaxC0()                                            { return fgkROBmaxC0;      }
113   static  Int_t    ROBmaxC1()                                            { return fgkROBmaxC1;      }
114   static  Int_t    ADCmax()                                              { return fgkADCmax;        }
115   static  Int_t    TBmax()                                               { return fgkTBmax;         }            
116   static  Int_t    Padmax()                                              { return fgkPadmax;        }
117   static  Int_t    Colmax()                                              { return fgkColmax;        }
118   static  Int_t    RowmaxC0()                                            { return fgkRowmaxC0;      }
119   static  Int_t    RowmaxC1()                                            { return fgkRowmaxC1;      }
120
121  protected:
122
123   static const Int_t    fgkNsector;                          //  Number of sectors in the full detector (18)
124   static const Int_t    fgkNlayer;                           //  Number of layers of the TRD (6)
125   static const Int_t    fgkNstack;                           //  Number of stacks in z-direction (5)
126   static const Int_t    fgkNdet;                             //  Total number of detectors (18 * 6 * 5 = 540)
127
128   static const Float_t  fgkTlength;                          //  Length of the TRD-volume in spaceframe (BTRD)
129
130   static const Float_t  fgkSheight;                          //  Height of the supermodule
131   static const Float_t  fgkSwidth1;                          //  Lower width of the supermodule
132   static const Float_t  fgkSwidth2;                          //  Upper width of the supermodule
133   static const Float_t  fgkSlength;                          //  Length of the supermodule
134
135   static const Float_t  fgkFlength;                          //  Length of the service space in front of a supermodule
136
137   static const Float_t  fgkSMpltT;                           //  Thickness of the super module side plates
138
139   static const Float_t  fgkCraH;                             //  Height of the radiator part of the chambers
140   static const Float_t  fgkCdrH;                             //  Height of the drift region of the chambers
141   static const Float_t  fgkCamH;                             //  Height of the amplification region of the chambers
142   static const Float_t  fgkCroH;                             //  Height of the readout of the chambers
143   static const Float_t  fgkCH;                               //  Total height of the chambers
144
145   static const Float_t  fgkVspace;                           //  Vertical spacing of the chambers
146   static const Float_t  fgkHspace;                           //  Horizontal spacing of the chambers
147   static const Float_t  fgkVrocsm;                           //  Radial distance of the first ROC to the outer SM plates
148   static const Float_t  fgkCalT;                             //  Thickness of the lower aluminum frame
149   static const Float_t  fgkCalW;                             //  Width of additional aluminum on lower frame
150   static const Float_t  fgkCclsT;                            //  Thickness of the lower Wacosit frame sides
151   static const Float_t  fgkCclfT;                            //  Thickness of the lower Wacosit frame front
152   static const Float_t  fgkCglT;                             //  Thichness of the glue around the radiator
153   static const Float_t  fgkCcuT;                             //  Thickness of the upper Wacosit frame
154   static const Float_t  fgkCauT;                             //  Thickness of the aluminum frame of the back panel
155
156   static const Float_t  fgkCroW;                             //  Additional width of the readout chamber frames
157
158   static const Float_t  fgkCpadW;                            //  Difference of outer chamber width and pad plane width
159   static const Float_t  fgkRpadW;                            //  Difference of outer chamber width and pad plane width
160
161   static const Float_t  fgkMyThick;                          //  Thickness of the mylar-layer
162   static const Float_t  fgkRaThick;                          //  Thickness of the radiator
163   static const Float_t  fgkXeThick;                          //  Thickness of the gas volume
164   static const Float_t  fgkDrThick;                          //  Thickness of the drift region
165   static const Float_t  fgkAmThick;                          //  Thickness of the amplification region
166   static const Float_t  fgkWrThick;                          //  Thickness of the wire planes
167   static const Float_t  fgkCuThick;                          //  Thickness of the pad plane
168   static const Float_t  fgkGlThick;                          //  Thickness of the glue layer
169   static const Float_t  fgkSuThick;                          //  Thickness of the NOMEX support structure
170   static const Float_t  fgkRpThick;                          //  Thickness of the PCB readout boards
171   static const Float_t  fgkRcThick;                          //  Thickness of the PCB copper layers
172   static const Float_t  fgkRoThick;                          //  Thickness of all other ROB componentes (caps, etc.)
173
174   static const Float_t  fgkRaZpos;                           //  Position of the radiator
175   static const Float_t  fgkDrZpos;                           //  Position of the drift region
176   static const Float_t  fgkAmZpos;                           //  Position of the amplification region
177   static const Float_t  fgkWrZpos;                           //  Position of the wire planes
178   static const Float_t  fgkCuZpos;                           //  Position of the pad plane
179   static const Float_t  fgkGlZpos;                           //  Position of the glue layer
180   static const Float_t  fgkSuZpos;                           //  Position of the HEXCEL+G10 support structure
181   static const Float_t  fgkRpZpos;                           //  Position of the PCB readout boards
182   static const Float_t  fgkRcZpos;                           //  Position of the PCB copper layers
183   static const Float_t  fgkRoZpos;                           //  Position of all other ROB componentes (caps, etc.)
184
185   static const Int_t    fgkMCMmax;                           //  Maximum number of MCMs per ROB
186   static const Int_t    fgkMCMrow;                           //  Maximum number of MCMs per ROB Row
187   static const Int_t    fgkROBmaxC0;                         //  Maximum number of ROBs per C0 chamber
188   static const Int_t    fgkROBmaxC1;                         //  Maximum number of ROBs per C1 chamber
189   static const Int_t    fgkADCmax;                           //  Maximum number of ADC channels per MCM
190   static const Int_t    fgkTBmax;                            //  Maximum number of Time bins
191   static const Int_t    fgkPadmax;                           //  Maximum number of pads per MCM
192   static const Int_t    fgkColmax;                           //  Maximum number of pads per padplane row
193   static const Int_t    fgkRowmaxC0;                         //  Maximum number of Rows per C0 chamber
194   static const Int_t    fgkRowmaxC1;                         //  Maximum number of Rows per C1 chamber
195
196   Float_t               fCwidth[kNlayer];                    //  Outer widths of the chambers
197   Float_t               fClength[kNlayer][kNstack];          //  Outer lengths of the chambers
198
199   Float_t               fRotB11[kNsector];                   //  Matrix elements for the backward rotation
200   Float_t               fRotB12[kNsector];                   //  Matrix elements for the backward rotation
201   Float_t               fRotB21[kNsector];                   //  Matrix elements for the backward rotation
202   Float_t               fRotB22[kNsector];                   //  Matrix elements for the backward rotation
203
204   static const Double_t fgkTime0Base;                        //  Base value for calculation of Time-position of pad 0
205   static const Float_t  fgkTime0[kNlayer];                   //  Time-position of pad 0
206   
207   Float_t               fChamberUAorig[3*kNdets][3];         //  Volumes origin in
208   Float_t               fChamberUDorig[3*kNdets][3];         //  the chamber
209   Float_t               fChamberUForig[3*kNdets][3];         //  [3] = x, y, z
210   Float_t               fChamberUUorig[3*kNdets][3];         //
211
212   Float_t               fChamberUAboxd[3*kNdets][3];         //  Volumes box
213   Float_t               fChamberUDboxd[3*kNdets][3];         //  dimensions (half)
214   Float_t               fChamberUFboxd[3*kNdets][3];         //  [3] = x, y, z
215   Float_t               fChamberUUboxd[3*kNdets][3];         // 
216
217   TObjArray            *fClusterMatrixArray;                 //! Transformation matrices loc. cluster to tracking cs
218   TObjArray            *fPadPlaneArray;                      //! Array of pad plane objects
219
220   Char_t                fSMstatus[kNsector];                 //  Super module status byte
221
222   ClassDef(AliTRDgeometry,20)                                //  TRD geometry class
223
224 };
225 #endif