/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ // Produces the data needed to calculate the quality assurance // All data must be mergeable objects // Handles ESDs and Raws // Histos defined will be used for Raw Data control and monitoring // --- ROOT system --- #include #include #include #include #include #include #include #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliESDEvent.h" #include "AliLog.h" #include "AliCDBManager.h" #include "AliCDBStorage.h" #include "AliCDBEntry.h" #include "AliADQADataMakerRec.h" #include "AliQAChecker.h" #include "AliRawReader.h" #include "AliADRawStream.h" #include "AliADdigit.h" #include "AliADConst.h" #include "AliADReconstructor.h" //#include "AliADTrending.h" #include "AliADCalibData.h" #include "AliCTPTimeParams.h" #include "event.h" ClassImp(AliADQADataMakerRec) //____________________________________________________________________________ AliADQADataMakerRec::AliADQADataMakerRec() : AliQADataMakerRec(AliQAv1::GetDetName(AliQAv1::kAD), "AD Quality Assurance Data Maker"), fCalibData(0x0), fTrendingUpdateTime(0), fCycleStartTime(0), fCycleStopTime(0), fTimeSlewing(0) { // Constructor AliDebug(AliQAv1::GetQADebugLevel(), "Construct AD QA Object"); for(Int_t i=0; i<16; i++){ fEven[i] = 0; fOdd[i] = 0; } for(Int_t i=0; i<32; i++){ fADCmean[i] = 0.0; } } //____________________________________________________________________________ AliADQADataMakerRec::AliADQADataMakerRec(const AliADQADataMakerRec& qadm) : AliQADataMakerRec(), fCalibData(0x0), fTrendingUpdateTime(0), fCycleStartTime(0), fCycleStopTime(0), fTimeSlewing(0) { // Copy constructor SetName((const char*)qadm.GetName()) ; SetTitle((const char*)qadm.GetTitle()); } //__________________________________________________________________ AliADQADataMakerRec& AliADQADataMakerRec::operator = (const AliADQADataMakerRec& qadm ) { // Equal operator this->~AliADQADataMakerRec(); new(this) AliADQADataMakerRec(qadm); return *this; } //____________________________________________________________________________ AliADCalibData* AliADQADataMakerRec::GetCalibData() const { AliCDBManager *man = AliCDBManager::Instance(); AliCDBEntry *entry=0; entry = man->Get("AD/Calib/Data",fRun); if(!entry){ AliWarning("Load of calibration data from default storage failed!"); AliWarning("Calibration data will be loaded from local storage ($ALICE_ROOT)"); man->SetDefaultStorage("local://$ALICE_ROOT/OCDB"); entry = man->Get("AD/Calib/Data",fRun); } // Retrieval of data in directory AD/Calib/Data: AliADCalibData *calibdata = 0; if (entry) calibdata = (AliADCalibData*) entry->GetObject(); if (!calibdata) AliFatal("No calibration data from calibration database !"); return calibdata; } //____________________________________________________________________________ void AliADQADataMakerRec::StartOfDetectorCycle() { // Detector specific actions at start of cycle // Reset of the histogram used - to have the trend versus time - fCalibData = GetCalibData(); AliCDBEntry *entry = AliCDBManager::Instance()->Get("GRP/CTP/CTPtiming"); if (!entry) AliFatal("CTP timing parameters are not found in OCDB !"); AliCTPTimeParams *ctpParams = (AliCTPTimeParams*)entry->GetObject(); Float_t l1Delay = (Float_t)ctpParams->GetDelayL1L0()*25.0; AliCDBEntry *entry1 = AliCDBManager::Instance()->Get("GRP/CTP/TimeAlign"); if (!entry1) AliFatal("CTP time-alignment is not found in OCDB !"); AliCTPTimeParams *ctpTimeAlign = (AliCTPTimeParams*)entry1->GetObject(); l1Delay += ((Float_t)ctpTimeAlign->GetDelayL1L0()*25.0); /*/ AliCDBEntry *entry2 = AliCDBManager::Instance()->Get("AD/Calib/TimeDelays"); if (!entry2) AliFatal("AD time delays are not found in OCDB !"); TH1F *delays = (TH1F*)entry2->GetObject(); AliCDBEntry *entry3 = AliCDBManager::Instance()->Get("AD/Calib/TimeSlewing"); if (!entry3) AliFatal("AD time slewing function is not found in OCDB !"); fTimeSlewing = (TF1*)entry3->GetObject(); /*/ for(Int_t i = 0 ; i < 16; ++i) { //Int_t board = AliADCalibData::GetBoardNumber(i); fTimeOffset[i] = ( // ((Float_t)fCalibData->GetTriggerCountOffset(board) - // (Float_t)fCalibData->GetRollOver(board))*25.0 + // fCalibData->GetTimeOffset(i) - // l1Delay+ //delays->GetBinContent(i+1)//+ // kV0Offset 0 ); // AliInfo(Form(" fTimeOffset[%d] = %f kV0offset %f",i,fTimeOffset[i],kV0Offset)); } TTimeStamp currentTime; fCycleStartTime = currentTime.GetSec(); // fNTotEvents = 0; } //____________________________________________________________________________ void AliADQADataMakerRec::EndOfDetectorCycle(AliQAv1::TASKINDEX_t task, TObjArray ** list) { // Detector specific actions at end of cycle // Does the QA checking ResetEventTrigClasses(); // AliQAChecker::Instance()->Run(AliQAv1::kAD, task, list) ; if(task == AliQAv1::kRAWS){ TTimeStamp currentTime; fCycleStopTime = currentTime.GetSec(); } for (Int_t specie = 0 ; specie < AliRecoParam::kNSpecies ; specie++) { if (! IsValidEventSpecie(specie, list)) continue ; SetEventSpecie(AliRecoParam::ConvertIndex(specie)); if(task == AliQAv1::kRAWS) { } else if (task == AliQAv1::kESDS) { } } } //____________________________________________________________________________ void AliADQADataMakerRec::InitESDs() { // Creates histograms to control ESDs } //____________________________________________________________________________ void AliADQADataMakerRec::InitDigits() { } //____________________________________________________________________________ void AliADQADataMakerRec::MakeDigits() { } //____________________________________________________________________________ void AliADQADataMakerRec::MakeDigits(TTree *digitTree) { } //____________________________________________________________________________ void AliADQADataMakerRec::MakeESDs(AliESDEvent * esd) { } //____________________________________________________________________________ void AliADQADataMakerRec::InitRaws() { // Creates RAW histograms in Raws subdir const Bool_t expert = kTRUE ; const Bool_t saveCorr = kTRUE ; const Bool_t image = kTRUE ; const Int_t kNintegrator = 2; const Int_t kNTdcTimeBins = 1280; const Float_t kTdcTimeMin = 0.; const Float_t kTdcTimeMax = 75.; const Int_t kNTdcWidthBins = 256; const Float_t kTdcWidthMin = 0; const Float_t kTdcWidthMax = 200.; const Int_t kNChargeBins = 1024; const Float_t kChargeMin = 0; const Float_t kChargeMax = 1024; const Int_t kNChannelBins = 16; const Float_t kChannelMin = 0; const Float_t kChannelMax = 16; const Int_t kNPedestalBins = 200; const Float_t kPedestalMin = 0; const Float_t kPedestalMax = 200; const Int_t kNPairBins = 8; const Float_t kPairMin = 0; const Float_t kPairMax = 8; TH2I * h2i; TH2F * h2d; TH1I * h1i; TH1F * h1d; int iHisto =0; // Creation of Cell Multiplicity Histograms h1i = new TH1I("H1I_Multiplicity_ADA", "Number of fired cells in ADA;# of Cells;Entries", 10, 0, 10) ; Add2RawsList(h1i,kMultiADA, !expert, image, saveCorr); iHisto++; h1i = new TH1I("H1I_Multiplicity_ADC", "Number of fired cells in ADC;# of Cells;Entries", 10, 0, 10) ; Add2RawsList(h1i,kMultiADC, !expert, image, saveCorr); iHisto++; // Creation of Total Charge Histograms h1d = new TH1F("H1D_Charge_ADA", "Total Charge in ADA;Charge [ADC counts];Counts", 4000, 0, 30000) ; Add2RawsList(h1d,kChargeADA, !expert, image, saveCorr); iHisto++; h1d = new TH1F("H1D_Charge_ADC", "Total Charge in ADC;Charge [ADC counts];Counts", 4000, 0, 50000) ; Add2RawsList(h1d,kChargeADC, !expert, image, saveCorr); iHisto++; h1d = new TH1F("H1D_Charge_AD", "Total Charge in AD;Charge [ADC counts];Counts", 4000, 0, 80000) ; Add2RawsList(h1d,kChargeAD, !expert, image, saveCorr); iHisto++; // Creation of Charge EoI histogram h2d = new TH2F("H2D_ChargeEoI", "Charge Event of Interest;Channel Number;Charge [ADC counts]" ,kNChannelBins, kChannelMin, kChannelMax, kNChargeBins, kChargeMin, 2.*kChargeMax); Add2RawsList(h2d,kChargeEoI, !expert, image, saveCorr); iHisto++; for(Int_t iInt=0;iIntReset() ; AliADRawStream* rawStream = new AliADRawStream(rawReader); if(!(rawStream->Next())) return; eventTypeType eventType = rawReader->GetType(); Int_t mulADA = 0 ; Int_t mulADC = 0 ; Double_t timeADA =0., timeADC = 0.; Double_t weightADA =0., weightADC = 0.; UInt_t itimeADA=0, itimeADC=0; Double_t chargeADA=0., chargeADC=0.; Double_t diffTime=-100000.; Int_t pmulADA = 0; Int_t pmulADC = 0; Double_t pDiffTime =-100000.; switch (eventType){ case PHYSICS_EVENT: // fNTotEvents++; // Use framework counters instead Int_t iFlag=0; Int_t pedestal; Int_t integrator[16]; Bool_t flagBB[16]; Bool_t flagBG[16]; Float_t charge; Int_t offlineCh; Float_t adc[16], time[16], width[16], timeCorr[16]; Int_t iPair=0; for(Int_t iChannel=0; iChannel<16; iChannel++) { // BEGIN : Loop over channels offlineCh = rawStream->GetOfflineChannel(iChannel); // Fill Pedestal histograms for(Int_t j=15; j<21; j++) { if((rawStream->GetBGFlag(iChannel,j) || rawStream->GetBBFlag(iChannel,j))) iFlag++; } if(iFlag == 0){ //No Flag found for(Int_t j=15; j<21; j++){ pedestal= (Int_t) rawStream->GetPedestal(iChannel, j); integrator[offlineCh] = rawStream->GetIntegratorFlag(iChannel, j); FillRawsData((integrator[offlineCh] == 0 ? kPedestalInt0 : kPedestalInt1),offlineCh,pedestal); } } // Fill Charge EoI histograms adc[offlineCh] = 0.0; // Search for the maximum charge in the train of 21 LHC clocks // regardless of the integrator which has been operated: Float_t maxadc = 0; Int_t imax = -1; Float_t adcPedSub[21]; for(Int_t iClock=0; iClock<21; iClock++){ Bool_t iIntegrator = rawStream->GetIntegratorFlag(iChannel,iClock); Int_t k = offlineCh+16*iIntegrator; //printf(Form("clock = %d adc = %f ped %f\n",iClock,rawStream->GetPedestal(iChannel,iClock),fPedestal[k])); adcPedSub[iClock] = rawStream->GetPedestal(iChannel,iClock) - fCalibData->GetPedestal(k); // if(adcPedSub[iClock] <= GetRecoParam()->GetNSigmaPed()*fCalibData->GetSigma(k)) { if(adcPedSub[iClock] <= 2.*fCalibData->GetSigma(k)) { adcPedSub[iClock] = 0; continue; } // if(iClock < GetRecoParam()->GetStartClock() || iClock > GetRecoParam()->GetEndClock()) continue; if(iClock < 8 || iClock > 12) continue; if(adcPedSub[iClock] > maxadc) { maxadc = adcPedSub[iClock]; imax = iClock; } } //printf(Form("Channel %d (online), %d (offline)\n",iChannel,j)); if (imax != -1) { // Int_t start = imax - GetRecoParam()->GetNPreClocks(); Int_t start = imax - 2; if (start < 0) start = 0; // Int_t end = imax + GetRecoParam()->GetNPostClocks(); Int_t end = imax + 1; if (end > 20) end = 20; for(Int_t iClock = start; iClock <= end; iClock++) { adc[offlineCh] += adcPedSub[iClock]; } } Int_t iClock = imax; charge = rawStream->GetPedestal(iChannel,iClock); // Charge at the maximum integrator[offlineCh] = rawStream->GetIntegratorFlag(iChannel,iClock); flagBB[offlineCh] = rawStream->GetBBFlag(iChannel, iClock); flagBG[offlineCh] = rawStream->GetBGFlag(iChannel,iClock ); Int_t board = AliADCalibData::GetBoardNumber(offlineCh); time[offlineCh] = rawStream->GetTime(iChannel)*fCalibData->GetTimeResolution(board); width[offlineCh] = rawStream->GetWidth(iChannel)*fCalibData->GetWidthResolution(board); if (time[offlineCh] >= 1e-6) FillRawsData(kChargeEoI,offlineCh,adc[offlineCh]); FillRawsData((integrator[offlineCh] == 0 ? kChargeEoIInt0 : kChargeEoIInt1),offlineCh,charge); Float_t sigma = fCalibData->GetSigma(offlineCh+16*integrator[offlineCh]); if((adc[offlineCh] > 2.*sigma) && !(time[offlineCh] <1.e-6)){ if(offlineCh<8) { mulADC++; chargeADC += adc[offlineCh]; } else { mulADA++; chargeADA += adc[offlineCh]; } } // Fill HPTDC Time Histograms timeCorr[offlineCh] = CorrectLeadingTime(offlineCh,time[offlineCh],adc[offlineCh]); const Float_t p1 = 2.50; // photostatistics term in the time resolution const Float_t p2 = 3.00; // sleewing related term in the time resolution if(timeCorr[offlineCh]>-1024 + 1.e-6){ Float_t nphe = adc[offlineCh]*kChargePerADC/(fCalibData->GetGain(offlineCh)*TMath::Qe()); Float_t timeErr = 1; /*/ if (nphe>1.e-6) timeErr = TMath::Sqrt(kIntTimeRes*kIntTimeRes+ p1*p1/nphe+ p2*p2*(fTimeSlewing->GetParameter(0)*fTimeSlewing->GetParameter(1))*(fTimeSlewing->GetParameter(0)*fTimeSlewing->GetParameter(1))* TMath::Power(adc[offlineCh]/fCalibData->GetCalibDiscriThr(offlineCh,kTRUE),2.*(fTimeSlewing->GetParameter(1)-1.))/ (fCalibData->GetCalibDiscriThr(offlineCh,kTRUE)*fCalibData->GetCalibDiscriThr(offlineCh,kTRUE)));/*/ if (timeErr>1.e-6) { if (offlineCh<8) { itimeADC++; timeADC += timeCorr[offlineCh]/(timeErr*timeErr); weightADC += 1./(timeErr*timeErr); }else{ itimeADA++; timeADA += timeCorr[offlineCh]/(timeErr*timeErr); weightADA += 1./(timeErr*timeErr); } } } FillRawsData(kHPTDCTime,offlineCh,timeCorr[offlineCh]); FillRawsData(kWidth,offlineCh,width[offlineCh]); }// END of Loop over channels for(Int_t iChannel=0; iChannel<4; iChannel++) {//Loop over pairs ADC offlineCh = rawStream->GetOfflineChannel(iChannel); Float_t sigma = fCalibData->GetSigma(offlineCh+16*integrator[offlineCh]); Float_t sigma4 = fCalibData->GetSigma(offlineCh+4+16*integrator[offlineCh]); if( ((adc[offlineCh] > 2.*sigma) && !(time[offlineCh] <1.e-6)) && ((adc[offlineCh+4] > 2.*sigma4) && !(time[offlineCh+4] <1.e-6)) ){ pmulADC++; if(timeCorr[offlineCh]<-1024.+1.e-6 || timeCorr[offlineCh+4]<-1024.+1.e-6) pDiffTime = -1024.; else pDiffTime = timeCorr[offlineCh+4] - timeCorr[offlineCh]; FillRawsData(kPairDiffTime,iPair,pDiffTime); } FillRawsData(kPairDiffCharge,iPair,TMath::Abs(adc[offlineCh]-adc[offlineCh+4])); iPair++; } for(Int_t iChannel=8; iChannel<12; iChannel++) {//Loop over pairs ADA offlineCh = rawStream->GetOfflineChannel(iChannel); Float_t sigma = fCalibData->GetSigma(offlineCh+16*integrator[offlineCh]); Float_t sigma4 = fCalibData->GetSigma(offlineCh+4+16*integrator[offlineCh]); if( ((adc[offlineCh] > 2.*sigma) && !(time[offlineCh] <1.e-6)) && ((adc[offlineCh+4] > 2.*sigma4) && !(time[offlineCh+4] <1.e-6)) ){ pmulADA++; if(timeCorr[offlineCh]<-1024.+1.e-6 || timeCorr[offlineCh+4]<-1024.+1.e-6) pDiffTime = -1024.; else pDiffTime = timeCorr[offlineCh+4] - timeCorr[offlineCh]; FillRawsData(kPairDiffTime,iPair,pDiffTime); } FillRawsData(kPairDiffCharge,iPair,TMath::Abs(adc[offlineCh]-adc[offlineCh+4])); iPair++; } FillRawsData(kNCoincADA,pmulADA); FillRawsData(kNCoincADC,pmulADC); if(weightADA>1.e-6) timeADA /= weightADA; else timeADA = -1024.; if(weightADC>1.e-6) timeADC /= weightADC; else timeADC = -1024.; if(timeADA<-1024.+1.e-6 || timeADC<-1024.+1.e-6) diffTime = -1024.; else diffTime = timeADA - timeADC; FillRawsData(kADATime,timeADA); FillRawsData(kADCTime,timeADC); FillRawsData(kDiffTime,diffTime); FillRawsData(kTimeADAADC,timeADA,timeADC); FillRawsData(kMultiADA,mulADA); FillRawsData(kMultiADC,mulADC); FillRawsData(kChargeADA,chargeADA); FillRawsData(kChargeADC,chargeADC); FillRawsData(kChargeAD,chargeADA + chargeADC); break; } // END of SWITCH : EVENT TYPE TParameter * p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kMultiADA)->GetName()))) ; if (p) p->SetVal((double)mulADA) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kMultiADC)->GetName()))) ; if (p) p->SetVal((double)mulADC) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kChargeADA)->GetName()))) ; if (p) p->SetVal((double)chargeADA) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kChargeADC)->GetName()))) ; if (p) p->SetVal((double)chargeADC) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kChargeAD)->GetName()))) ; if (p) p->SetVal((double)(chargeADA + chargeADC)) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kADATime)->GetName()))) ; if (p) p->SetVal((double)timeADA) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kADCTime)->GetName()))) ; if (p) p->SetVal((double)timeADC) ; p = dynamic_cast*>(GetParameterList()->FindObject(Form("%s_%s_%s", GetName(), AliQAv1::GetTaskName(AliQAv1::kRAWS).Data(), GetRawsData(kDiffTime)->GetName()))) ; if (p) p->SetVal((double)diffTime) ; delete rawStream; rawStream = 0x0; // IncEvCountCycleRaws(); IncEvCountTotalRaws(); // } //____________________________________________________________________________ Float_t AliADQADataMakerRec::CorrectLeadingTime(Int_t i, Float_t time, Float_t adc) const { // Correct the leading time // for slewing effect and // misalignment of the channels if (time < 1e-6) return -1024; // Channel alignment and general offset subtraction // if (i < 32) time -= kV0CDelayCables; // time -= fTimeOffset[i]; //AliInfo(Form("time-offset %f", time)); // In case of pathological signals //if (adc < 1e-6) return time; // Slewing correction //Float_t thr = fCalibData->GetCalibDiscriThr(i,kTRUE); //AliInfo(Form("adc %f thr %f dtime %f ", adc,thr,fTimeSlewing->Eval(adc/thr))); //time -= fTimeSlewing->Eval(adc/thr); return time; }