// // Class for handling of ESD track cuts. // // The class manages a number of track quality cuts, a // track-to-vertex cut and a number of kinematic cuts. Two methods // can be used to figure out if an ESD track survives the cuts: // AcceptTrack which takes a single AliESDtrack as argument and // returns kTRUE/kFALSE or GetAcceptedTracks which takes an AliESDEvent // object and returns an TObjArray (of AliESDtracks) with the tracks // in the ESD that survived the cuts. // // // TODO: // - add functionality to save and load cuts // - add histograms for kinematic cut variables? // - upper and lower cuts for all (non-boolean) cuts // - update print method // - put comments to each variable // #ifndef ALIESDTRACKCUTS_H #define ALIESDTRACKCUTS_H #include "AliAnalysisCuts.h" class AliESDEvent; class AliESDtrack; class AliLog; class TTree; class TH1; class TH1F; class TH2F; class TF1; class TCollection; class AliESDtrackCuts : public AliAnalysisCuts { public: enum ITSClusterRequirement { kOff = 0, kNone, kAny, kFirst, kOnlyFirst, kSecond, kOnlySecond, kBoth }; enum Detector { kSPD = 0, kSDD, kSSD }; AliESDtrackCuts(const Char_t* name = "AliESDtrackCuts", const Char_t* title = ""); virtual ~AliESDtrackCuts(); Bool_t IsSelected(TObject* obj) {return AcceptTrack((AliESDtrack*)obj);} Bool_t IsSelected(TList* /*list*/) {return kTRUE;} Bool_t AcceptTrack(AliESDtrack* esdTrack); TObjArray* GetAcceptedTracks(AliESDEvent* esd, Bool_t bTPC = kFALSE); Int_t CountAcceptedTracks(AliESDEvent* esd); static Int_t GetReferenceMultiplicity(AliESDEvent* esd, Bool_t tpcOnly); static AliESDtrack* GetTPCOnlyTrack(AliESDEvent* esd, Int_t iTrack); // Standard cut definitions static AliESDtrackCuts* GetStandardTPCOnlyTrackCuts(); virtual Long64_t Merge(TCollection* list); virtual void Copy(TObject &c) const; AliESDtrackCuts(const AliESDtrackCuts& pd); // Copy Constructor AliESDtrackCuts &operator=(const AliESDtrackCuts &c); //###################################################### // track quality cut setters void SetMinNClustersTPC(Int_t min=-1) {fCutMinNClusterTPC=min;} void SetMinNClustersITS(Int_t min=-1) {fCutMinNClusterITS=min;} void SetClusterRequirementITS(Detector det, ITSClusterRequirement req = kOff) { fCutClusterRequirementITS[det] = req; } void SetMaxChi2PerClusterTPC(Float_t max=1e10) {fCutMaxChi2PerClusterTPC=max;} void SetMaxChi2PerClusterITS(Float_t max=1e10) {fCutMaxChi2PerClusterITS=max;} void SetRequireTPCRefit(Bool_t b=kFALSE) {fCutRequireTPCRefit=b;} void SetRequireITSRefit(Bool_t b=kFALSE) {fCutRequireITSRefit=b;} void SetRequireITSStandAlone(Bool_t b) {fCutRequireITSStandAlone = b;} void SetAcceptKinkDaughters(Bool_t b=kTRUE) {fCutAcceptKinkDaughters=b;} void SetMaxCovDiagonalElements(Float_t c1=1e10, Float_t c2=1e10, Float_t c3=1e10, Float_t c4=1e10, Float_t c5=1e10) {fCutMaxC11=c1; fCutMaxC22=c2; fCutMaxC33=c3; fCutMaxC44=c4; fCutMaxC55=c5;} void SetMaxRel1PtUncertainty(Float_t max=1e10) {fCutMaxRel1PtUncertainty=max;} // track to vertex cut setters void SetMaxNsigmaToVertex(Float_t sigma=1e10) {fCutNsigmaToVertex = sigma; SetRequireSigmaToVertex(kTRUE);} void SetRequireSigmaToVertex(Bool_t b=kTRUE) {fCutSigmaToVertexRequired = b;} void SetMaxDCAToVertexXY(Float_t dist=1e10) {fCutMaxDCAToVertexXY = dist;} void SetMaxDCAToVertexZ(Float_t dist=1e10) {fCutMaxDCAToVertexZ = dist;} void SetMinDCAToVertexXY(Float_t dist=0.) {fCutMinDCAToVertexXY = dist;} void SetMinDCAToVertexZ(Float_t dist=0.) {fCutMinDCAToVertexZ = dist;} void SetDCAToVertex2D(Bool_t b=kFALSE) {fCutDCAToVertex2D = b;} // getters Int_t GetMinNClusterTPC() const { return fCutMinNClusterTPC;} Int_t GetMinNClustersITS() const { return fCutMinNClusterITS;} ITSClusterRequirement GetClusterRequirementITS(Detector det) const { return fCutClusterRequirementITS[det]; } Float_t GetMaxChi2PerClusterTPC() const { return fCutMaxChi2PerClusterTPC;} Float_t GetMaxChi2PerClusterITS() const { return fCutMaxChi2PerClusterITS;} Bool_t GetRequireTPCRefit() const { return fCutRequireTPCRefit;} Bool_t GetRequireITSRefit() const { return fCutRequireITSRefit;} Bool_t GetRequireITSStandAlone() const { return fCutRequireITSStandAlone; } Bool_t GetAcceptKinkDaughters() const { return fCutAcceptKinkDaughters;} void GetMaxCovDiagonalElements(Float_t& c1, Float_t& c2, Float_t& c3, Float_t& c4, Float_t& c5) {c1 = fCutMaxC11; c2 = fCutMaxC22; c3 = fCutMaxC33; c4 = fCutMaxC44; c5 = fCutMaxC55;} Float_t GetMaxRel1PtUncertainty() const { return fCutMaxRel1PtUncertainty;} Float_t GetMaxNsigmaToVertex() const { return fCutNsigmaToVertex;} Float_t GetMaxDCAToVertexXY() const { return fCutMaxDCAToVertexXY;} Float_t GetMaxDCAToVertexZ() const { return fCutMaxDCAToVertexZ;} Float_t GetMinDCAToVertexXY() const { return fCutMinDCAToVertexXY;} Float_t GetMinDCAToVertexZ() const { return fCutMinDCAToVertexZ;} Bool_t GetDCAToVertex2D() const { return fCutDCAToVertex2D;} Bool_t GetRequireSigmaToVertex( ) const { return fCutSigmaToVertexRequired;} void GetPRange(Float_t& r1, Float_t& r2) const {r1=fPMin; r2=fPMax;} void GetPtRange(Float_t& r1, Float_t& r2) const {r1=fPtMin; r2=fPtMax;} void GetPxRange(Float_t& r1, Float_t& r2) const {r1=fPxMin; r2=fPxMax;} void GetPyRange(Float_t& r1, Float_t& r2) const {r1=fPyMin; r2=fPyMax;} void GetPzRange(Float_t& r1, Float_t& r2) const {r1=fPzMin; r2=fPzMax;} void GetEtaRange(Float_t& r1, Float_t& r2) const {r1=fEtaMin; r2=fEtaMax;} void GetRapRange(Float_t& r1, Float_t& r2) const {r1=fRapMin; r2=fRapMax;} // track kinmatic cut setters void SetPRange(Float_t r1=0, Float_t r2=1e10) {fPMin=r1; fPMax=r2;} void SetPtRange(Float_t r1=0, Float_t r2=1e10) {fPtMin=r1; fPtMax=r2;} void SetPxRange(Float_t r1=-1e10, Float_t r2=1e10) {fPxMin=r1; fPxMax=r2;} void SetPyRange(Float_t r1=-1e10, Float_t r2=1e10) {fPyMin=r1; fPyMax=r2;} void SetPzRange(Float_t r1=-1e10, Float_t r2=1e10) {fPzMin=r1; fPzMax=r2;} void SetEtaRange(Float_t r1=-1e10, Float_t r2=1e10) {fEtaMin=r1; fEtaMax=r2;} void SetRapRange(Float_t r1=-1e10, Float_t r2=1e10) {fRapMin=r1; fRapMax=r2;} //###################################################### void SetHistogramsOn(Bool_t b=kFALSE) {fHistogramsOn = b;} void DefineHistograms(Int_t color=1); virtual Bool_t LoadHistograms(const Char_t* dir = 0); void SaveHistograms(const Char_t* dir = 0); void DrawHistograms(); static Float_t GetSigmaToVertex(AliESDtrack* esdTrack); static void EnableNeededBranches(TTree* tree); // void SaveQualityCuts(Char_t* file) // void LoadQualityCuts(Char_t* file) TH1F* GetDZNormalized(Int_t i) const { return fhDZNormalized[i]; } protected: void Init(); // sets everything to 0 Bool_t CheckITSClusterRequirement(ITSClusterRequirement req, Bool_t clusterL1, Bool_t clusterL2); enum { kNCuts = 32 }; //###################################################### // esd track quality cuts static const Char_t* fgkCutNames[kNCuts]; //! names of cuts (for internal use) Int_t fCutMinNClusterTPC; // min number of tpc clusters Int_t fCutMinNClusterITS; // min number of its clusters ITSClusterRequirement fCutClusterRequirementITS[3]; // detailed ITS cluster requirements for (SPD, SDD, SSD) Float_t fCutMaxChi2PerClusterTPC; // max tpc fit chi2 per tpc cluster Float_t fCutMaxChi2PerClusterITS; // max its fit chi2 per its cluster Float_t fCutMaxC11; // max cov. matrix diag. elements (res. y^2) Float_t fCutMaxC22; // max cov. matrix diag. elements (res. z^2) Float_t fCutMaxC33; // max cov. matrix diag. elements (res. sin(phi)^2) Float_t fCutMaxC44; // max cov. matrix diag. elements (res. tan(theta_dip)^2) Float_t fCutMaxC55; // max cov. matrix diag. elements (res. 1/pt^2) Float_t fCutMaxRel1PtUncertainty; // max relative uncertainty of 1/pt Bool_t fCutAcceptKinkDaughters; // accepting kink daughters? Bool_t fCutRequireTPCRefit; // require TPC refit Bool_t fCutRequireITSRefit; // require ITS refit Bool_t fCutRequireITSStandAlone; // require ITS standalone tracks // track to vertex cut Float_t fCutNsigmaToVertex; // max number of estimated sigma from track-to-vertex Bool_t fCutSigmaToVertexRequired; // cut track if sigma from track-to-vertex could not be calculated Float_t fCutMaxDCAToVertexXY; // track-to-vertex cut in max absolute distance in xy-plane Float_t fCutMaxDCAToVertexZ; // track-to-vertex cut in max absolute distance in z-plane Float_t fCutMinDCAToVertexXY; // track-to-vertex cut on min absolute distance in xy-plane Float_t fCutMinDCAToVertexZ; // track-to-vertex cut on min absolute distance in z-plane Bool_t fCutDCAToVertex2D; // if true a 2D DCA cut is made. Tracks are accepted if sqrt((DCAXY / fCutMaxDCAToVertexXY)^2 + (DCAZ / fCutMaxDCAToVertexZ)^2) < 1 AND sqrt((DCAXY / fCutMinDCAToVertexXY)^2 + (DCAZ / fCutMinDCAToVertexZ)^2) > 1 // esd kinematics cuts Float_t fPMin, fPMax; // definition of the range of the P Float_t fPtMin, fPtMax; // definition of the range of the Pt Float_t fPxMin, fPxMax; // definition of the range of the Px Float_t fPyMin, fPyMax; // definition of the range of the Py Float_t fPzMin, fPzMax; // definition of the range of the Pz Float_t fEtaMin, fEtaMax; // definition of the range of the eta Float_t fRapMin, fRapMax; // definition of the range of the y //###################################################### // diagnostics histograms Bool_t fHistogramsOn; // histograms on/off TH1F* fhNClustersITS[2]; //-> TH1F* fhNClustersTPC[2]; //-> TH1F* fhChi2PerClusterITS[2]; //-> TH1F* fhChi2PerClusterTPC[2]; //-> TH1F* fhC11[2]; //-> TH1F* fhC22[2]; //-> TH1F* fhC33[2]; //-> TH1F* fhC44[2]; //-> TH1F* fhC55[2]; //-> TH1F* fhRel1PtUncertainty[2]; //-> rel. uncertainty of 1/pt TH1F* fhDXY[2]; //-> TH1F* fhDZ[2]; //-> TH1F* fhDXYDZ[2]; //-> absolute distance sqrt(dxy**2 + dz**2) to vertex; if 2D cut is set, normalized to given values TH2F* fhDXYvsDZ[2]; //-> TH1F* fhDXYNormalized[2]; //-> TH1F* fhDZNormalized[2]; //-> TH2F* fhDXYvsDZNormalized[2]; //-> TH1F* fhNSigmaToVertex[2]; //-> TH1F* fhPt[2]; //-> pt of esd tracks TH1F* fhEta[2]; //-> eta of esd tracks TF1* ffDTheoretical; //-> theoretical distance to vertex normalized (2d gauss) TH1F* fhCutStatistics; //-> statistics of what cuts the tracks did not survive TH2F* fhCutCorrelation; //-> 2d statistics plot ClassDef(AliESDtrackCuts, 7) }; #endif