#ifndef ALICFUNFOLDING_H #define ALICFUNFOLDING_H //--------------------------------------------------------------------// // // // AliCFUnfolding Class // // Class to handle general unfolding procedure using bayesian method // // // // Author : renaud.vernet@cern.ch // //--------------------------------------------------------------------// #include "TNamed.h" #include "THnSparse.h" class TF1; class AliCFUnfolding : public TNamed { public : AliCFUnfolding(); AliCFUnfolding(const Char_t* name, const Char_t* title, const Int_t nVar, const THnSparse* response, const THnSparse* efficiency, const THnSparse* measured, const THnSparse* prior=0x0); AliCFUnfolding(const AliCFUnfolding& c); AliCFUnfolding& operator= (const AliCFUnfolding& c); ~AliCFUnfolding(); void SetMaxNumberOfIterations(Int_t n) {fMaxNumIterations=n;} void SetMaxChi2(Double_t val) {fMaxChi2=val;} void SetMaxChi2PerDOF(Double_t val); void UseSmoothing(TF1* fcn=0x0, Option_t* opt="iremn") { // if fcn=0x0 then smooth using neighbouring bins fUseSmoothing=kTRUE; // this function must NOT be used if fNVariables > 3 fSmoothFunction=fcn; // the option "opt" is used if "fcn" is specified fSmoothOption=opt; } void Unfold(); THnSparse* GetResponse() const {return fResponse;} THnSparse* GetInverseResponse() const {return fInverseResponse;} THnSparse* GetPrior() const {return fPrior;} THnSparse* GetOriginalPrior() const {return fOriginalPrior;} THnSparse* GetEfficiency() const {return fEfficiency;} THnSparse* GetUnfolded() const {return fUnfolded;} THnSparse* GetEstMeasured() const {return fMeasuredEstimate;} THnSparse* GetMeasured() const {return fMeasured;} THnSparse* GetConditional() const {return fConditional;} TF1* GetSmoothFunction() const {return fSmoothFunction;} private : // user-related settings THnSparse *fResponse; // Response matrix : dimensions must be 2N = 2 x (number of variables) // dimensions 0 -> N-1 must be filled with reconstructed values // dimensions N -> 2N-1 must be filled with generated values THnSparse *fPrior; // This is the assumed generated distribution : dimensions must be N = number of variables // it will be used at the first step // then will be updated automatically at each iteration THnSparse *fEfficiency; // Efficiency map : dimensions must be N = number of variables // this map must be filled only with "true" values of the variables (should not include resolution effects) THnSparse *fMeasured; // Measured spectrum to be unfolded : dimensions must be N = number of variables Int_t fMaxNumIterations; // Maximum number of iterations to be performed Int_t fNVariables; // Number of variables used in analysis spectra (pt, y, ...) Double_t fMaxChi2; // Maximum Chi2 between unfolded and prior distributions. Bool_t fUseSmoothing; // Smooth the unfolded sectrum at each iteration TF1 *fSmoothFunction; // Function used to smooth the unfolded spectrum Option_t *fSmoothOption; // Option to use during the fit (with fSmoothFunction) ; default is "iremn" // internal settings THnSparse *fOriginalPrior; // This is the original prior distribution : will not be modified THnSparse *fInverseResponse; // Inverse response matrix THnSparse *fMeasuredEstimate; // Estimation of the measured (M) spectrum given the a priori (T) distribution THnSparse *fConditional; // Matrix holding the conditional probabilities P(M|T) THnSparse *fProjResponseInT; // Projection of the response matrix on TRUE axis THnSparse *fUnfolded; // Unfolded spectrum Int_t *fCoordinates2N; // Coordinates in 2N (measured,true) space Int_t *fCoordinatesN_M; // Coordinates in measured space Int_t *fCoordinatesN_T; // Coordinates in true space // functions void Init(); // initialisation of the internal settings void GetCoordinates(); // gets a cell coordinates in Measured and True space void CreateConditional(); // creates the conditional matrix from the response matrix void CreateEstMeasured(); // creates the measured spectrum estimation from the conditional matrix and the prior distribution void CreateInvResponse(); // creates the inverse response function (Bayes Theorem) from the conditional matrix and the prior distribution void CreateUnfolded(); // creates the unfolded spectrum from the inverse response matrix and the measured distribution void CreateFlatPrior(); // creates a flat a priori distribution in case the one given in the constructor is null Double_t GetChi2(); // returns the chi2 between unfolded and prior spectra Short_t Smooth(); // function calling smoothing methods Short_t SmoothUsingNeighbours(); // smoothes the unfolded spectrum using the neighbouring cells Short_t SmoothUsingFunction(); // smoothes the unfolded spectrum using a fit function ClassDef(AliCFUnfolding,0); }; #endif