// -*- mode: c++ -*- #ifndef ALICALORAWANALYZER_H #define ALICALORAWANALYZER_H /************************************************************************** * This file is property of and copyright by * * the Relatvistic Heavy Ion Group (RHIG), Yale University, US, 2009 * * * * Primary Author: Per Thomas Hille * * * * Contributors are mentioned in the code where appropriate. * * Please report bugs to p.t.hille@fys.uio.no * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //Base class for extraction //of signal amplitude and peak position //From CALO Calorimeter RAW data #include "Rtypes.h" #include "TObject.h" #include #include "TObjArray.h" #include "AliCaloFitResults.h" #include "AliCaloConstants.h" using namespace ALTRO; using namespace CALO; class AliCaloBunchInfo; class AliCaloRawAnalyzer : public TObject { public: AliCaloRawAnalyzer(const char *name="AliCaloRawAnalyzer", const char *nameshort="RawAna"); virtual ~AliCaloRawAnalyzer(); virtual AliCaloFitResults Evaluate( const std::vector &/*bunchvector*/, const UInt_t /*altrocfg1*/, const UInt_t /*altrocfg2*/ ) = 0; void PrintBunches( const std::vector &bunchvector ) const; void PrintBunch( const AliCaloBunchInfo &bunch ) const ; int PreFitEvaluateSamples( const std::vector &bunchvector, const UInt_t altrocfg1, const UInt_t altrocfg2, Int_t & index, Float_t & maxf, short & maxamp, short & maxampindex, Float_t & ped, int & first, int & last, const int acut); void SetTimeConstraint(const int min, const int max ); void SetVerbose(bool verbose = true){ fVerbose = verbose; }; void SetIsZeroSuppressed(const bool iszs = true) { fIsZerosupressed = iszs; } ; void SetAmpCut(const Float_t cut) { fAmpCut = cut ; } ; void SetFitArrayCut(const Int_t cut) { fFitArrayCut = cut ; } ; void SetNsampleCut(const Int_t cut) { fNsampleCut = cut ; } ; void SetOverflowCut(const Int_t cut) { fOverflowCut = cut ; } ; void SetNsamplePed(const Int_t i) { fNsamplePed = i ; } ; bool GetIsZeroSuppressed() const { return fIsZerosupressed;} ; Float_t GetAmpCut() const { return fAmpCut; } ; Int_t GetFitArrayCut() const { return fFitArrayCut; } ; Int_t GetNsampleCut() const { return fNsampleCut; } ; Int_t GetOverflowCut() const { return fOverflowCut; } ; Int_t GetNsamplePed() const { return fNsamplePed; } ; // access to array info Double_t GetReversed(const int i) const { return fReversed[i]; } const char * GetAlgoName() const { return fName; }; const char * GetAlgoAbbr() const { return fNameShort; }; Algo::fitAlgorithm GetAlgo() const { return fAlgo; }; Double_t CalculateChi2(const Double_t amp, const Double_t time, const Int_t first, const Int_t last, const Double_t adcErr=1, const Double_t tau=2.35) const; void CalculateMeanAndRMS(const Int_t first, const Int_t last, Double_t & mean, Double_t & rms); void SetL1Phase(const Double_t phase) {fL1Phase = phase;}; short Max( const AliCaloBunchInfo *const bunch, int *const maxindex) const; UShort_t Max(const UShort_t *data, const int length ) const; bool CheckBunchEdgesForMax( const AliCaloBunchInfo *const bunch) const; bool IsInTimeRange( const int maxindex, const int maxtime, const int mintime ) const; Float_t ReverseAndSubtractPed( const AliCaloBunchInfo *bunch, const UInt_t altrocfg1, const UInt_t altrocfg2, double *outarray ) const; int SelectBunch( const std::vector &bunchvector, short *const maxampbin, short *const maxamplitude ); void SelectSubarray( const Double_t *date, const int length, const short maxindex, int *const first, int *const last, const int cut) const; Float_t EvaluatePedestal(const UShort_t * const data, const int length ) const; Float_t GetTau() const { return fTau;}; void SetTau( const Float_t tau ) { fTau =tau ;}; protected: Double_t fReversed[ALTROMAXSAMPLES]; //Reversed sequence of samples (pedestalsubtracted) int fMinTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fMaxTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fFitArrayCut; //Cut on ADC value (after ped. subtraction) for signals used for fit Float_t fAmpCut; //Max ADC - pedestal must be higher than this befor attemting to extract the amplitude int fNsampleCut; //Minimum number of sample require before attemting to extract signal parameters int fOverflowCut; // value when ADC starts to saturate int fNsamplePed; //Number of samples used for pedestal calculation (first in bunch) bool fIsZerosupressed; //Wether or not the data is zeros supressed, by default its assumed that the baseline is also subtracted if set to true bool fVerbose; //Print debug information to std out if set to true char fName[256]; // Name of the algorithm char fNameShort[256]; // Abbrevation for the name Algo::fitAlgorithm fAlgo; // Which algorithm to use Double_t fL1Phase; // Phase of the ADC sampling clock relative to the LHC clock Double_t fAmp; // The amplitude in entities of ADC counts Double_t fTof; // The amplitude in entities of ADC counts Float_t fTau; // Rise time of the signal (peak position = t0 +tau), by defauly it is 235 ns ClassDef(AliCaloRawAnalyzer, 2) }; #endif