// -*- mode: c++ -*- #ifndef ALICALORAWANALYZER_H #define ALICALORAWANALYZER_H /************************************************************************** * This file is property of and copyright by * * the Relatvistic Heavy Ion Group (RHIG), Yale University, US, 2009 * * * * Primary Author: Per Thomas Hille * * * * Contributors are mentioned in the code where appropriate. * * Please report bugs to p.t.hille@fys.uio.no * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //Base class for extraction //of signal amplitude and peak position //From CALO Calorimeter RAW data #include "Rtypes.h" #include "TObject.h" #include #include "TObjArray.h" #include "AliCaloFitResults.h" #include "AliCaloConstants.h" using namespace ALTRO; using namespace CALO; class AliCaloBunchInfo; class AliCaloRawAnalyzer : public TObject { public: AliCaloRawAnalyzer(const char *name="AliCaloRawAnalyzer", const char *nameshort="RawAna"); virtual ~AliCaloRawAnalyzer() { ; } virtual AliCaloFitResults Evaluate( const std::vector &/*bunchvector*/, UInt_t /*altrocfg1*/, UInt_t /*altrocfg2*/ ) = 0; static void PrintBunches( const std::vector &bunchvector ); static void PrintBunch ( const AliCaloBunchInfo &bunch ); int PreFitEvaluateSamples( const std::vector &bunchvector, UInt_t altrocfg1, UInt_t altrocfg2, Int_t & index, Float_t & maxf, short & maxamp, short & maxampindex, Float_t & ped, int & first, int & last, int acut); void SetTimeConstraint (int min, int max ); void SetVerbose (bool verbose = true){ fVerbose = verbose; } void SetIsZeroSuppressed(bool iszs = true) { fIsZerosupressed = iszs ; } void SetAmpCut (Float_t cut) { fAmpCut = cut ; } void SetFitArrayCut(Int_t cut) { fFitArrayCut = cut ; } void SetNsampleCut (Int_t cut) { fNsampleCut = cut ; } void SetOverflowCut(Int_t cut) { fOverflowCut = cut ; } void SetNsamplePed (Int_t i) { fNsamplePed = i ; } void SetL1Phase (Double_t phase) { fL1Phase = phase ; } bool GetIsZeroSuppressed() const { return fIsZerosupressed;} Float_t GetAmpCut() const { return fAmpCut ; } Int_t GetFitArrayCut() const { return fFitArrayCut ; } Int_t GetNsampleCut() const { return fNsampleCut ; } Int_t GetOverflowCut() const { return fOverflowCut ; } Int_t GetNsamplePed() const { return fNsamplePed ; } // access to array info Double_t GetReversed(const int i) const { return fReversed[i]; } const char * GetAlgoName() const { return fName ; } const char * GetAlgoAbbr() const { return fNameShort ; } Algo::fitAlgorithm GetAlgo() const { return fAlgo ; } Double_t CalculateChi2(const Double_t amp, const Double_t time, const Int_t first, const Int_t last, const Double_t adcErr=1, const Double_t tau=2.35) const; void CalculateMeanAndRMS(const Int_t first, const Int_t last, Double_t & mean, Double_t & rms); short Max( const AliCaloBunchInfo *const bunch, int * maxindex) const; UShort_t Max(const UShort_t *data, const int length ) const; bool CheckBunchEdgesForMax( const AliCaloBunchInfo *const bunch) const; bool IsInTimeRange( const int maxindex, const int maxtime, const int mintime ) const; Float_t ReverseAndSubtractPed( const AliCaloBunchInfo *bunch, UInt_t altrocfg1, UInt_t altrocfg2, double * outarray ) const; int SelectBunch( const std::vector &bunchvector, short * maxampbin, short * maxamplitude ); void SelectSubarray( const Double_t *date, int length, short maxindex, int * first, int * last, int cut) const; Float_t EvaluatePedestal(const UShort_t * const data, const int length ) const; // Used in AliCaloRawAnalyzerFitter Float_t GetTau() const { return fTau ; } void SetTau (Float_t tau) { fTau = tau ; } Bool_t GetFixTau() const { return fFixTau ; } void SetFixTau(Bool_t b) { fFixTau = b ; } protected: Double_t fReversed[ALTROMAXSAMPLES]; //Reversed sequence of samples (pedestalsubtracted) int fMinTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fMaxTimeIndex; //The timebin of the max signal value must be between fMinTimeIndex and fMaxTimeIndex int fFitArrayCut; //Cut on ADC value (after ped. subtraction) for signals used for fit Float_t fAmpCut; //Max ADC - pedestal must be higher than this befor attemting to extract the amplitude int fNsampleCut; //Minimum number of sample require before attemting to extract signal parameters int fOverflowCut; // value when ADC starts to saturate int fNsamplePed; //Number of samples used for pedestal calculation (first in bunch) bool fIsZerosupressed; //Wether or not the data is zeros supressed, by default its assumed that the baseline is also subtracted if set to true bool fVerbose; //Print debug information to std out if set to true char fName[256]; // Name of the algorithm char fNameShort[256]; // Abbrevation for the name Algo::fitAlgorithm fAlgo; // Which algorithm to use Double_t fL1Phase; // Phase of the ADC sampling clock relative to the LHC clock Double_t fAmp; // The amplitude in entities of ADC counts Double_t fTof; // The amplitude in entities of ADC counts Float_t fTau; // Rise time of the signal (peak position = t0 +tau), by defauly it is 235 ns Bool_t fFixTau; // Fixed fit parameter or not, used in AliCaloRawAnalyzerFitter ClassDef(AliCaloRawAnalyzer, 3) }; #endif