/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Base Class for EMCAL description: // This class contains material definitions // for the EMCAL - It does not place the detector in Alice //*-- Author: Yves Schutz (SUBATECH) // //*-- Additional Contributions: Sahal Yacoob (LBNL/UCT) // ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- class TFile; #include #include #include #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliMagF.h" #include "AliEMCAL.h" #include "AliEMCALGetter.h" #include "AliRun.h" #include "AliEMCALSDigitizer.h" #include "AliEMCALDigitizer.h" #include "AliAltroBuffer.h" ClassImp(AliEMCAL) Double_t AliEMCAL::fgCapa = 1.; // 1pF Int_t AliEMCAL::fgOrder = 2 ; Double_t AliEMCAL::fgTimeMax = 2.56E-5 ; // each sample is over 100 ns fTimeMax/fTimeBins Double_t AliEMCAL::fgTimePeak = 4.1E-6 ; // 4 micro seconds Double_t AliEMCAL::fgTimeTrigger = 100E-9 ; // 100ns, just for a reference //____________________________________________________________________________ AliEMCAL::AliEMCAL():AliDetector() { // Default ctor fName = "EMCAL" ; } //____________________________________________________________________________ AliEMCAL::AliEMCAL(const char* name, const char* title): AliDetector(name,title) { // ctor : title is used to identify the layout fHighCharge = 8.2 ; // adjusted for a high gain range of 5.12 GeV (10 bits) fHighGain = 6.64 ; fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fLowGainOffset = 1 ; // offset added to the module id to distinguish high and low gain data } //____________________________________________________________________________ AliEMCAL::~AliEMCAL() { } //____________________________________________________________________________ void AliEMCAL::Copy(AliEMCAL & emcal) { TObject::Copy(emcal) ; emcal.fHighCharge = fHighCharge ; emcal.fHighGain = fHighGain ; emcal.fHighLowGainFactor = fHighLowGainFactor ; emcal.fLowGainOffset = fLowGainOffset; } //____________________________________________________________________________ AliDigitizer* AliEMCAL::CreateDigitizer(AliRunDigitizer* manager) const { return new AliEMCALDigitizer(manager); } //____________________________________________________________________________ void AliEMCAL::CreateMaterials() { // Definitions of materials to build EMCAL and associated tracking media. // media number in idtmed are 1599 to 1698. // --- Air --- Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; AliMixture(0, "Air$", aAir, zAir, dAir, 4, wAir) ; // --- Lead --- AliMaterial(1, "Pb$", 207.2, 82, 11.35, 0.56, 0., 0, 0) ; // --- The polysterene scintillator (CH) --- Float_t aP[2] = {12.011, 1.00794} ; Float_t zP[2] = {6.0, 1.0} ; Float_t wP[2] = {1.0, 1.0} ; Float_t dP = 1.032 ; AliMixture(2, "Polystyrene$", aP, zP, dP, -2, wP) ; // --- Aluminium --- AliMaterial(3, "Al$", 26.98, 13., 2.7, 8.9, 999., 0, 0) ; // --- Absorption length is ignored ^ // 25-aug-04 by PAI - see PMD/AliPMDv0.cxx for STEEL definition Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; AliMixture(4, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); // DEFINITION OF THE TRACKING MEDIA // for EMCAL: idtmed[1599->1698] equivalent to fIdtmed[0->100] Int_t * idtmed = fIdtmed->GetArray() - 1599 ; Int_t isxfld = gAlice->Field()->Integ() ; Float_t sxmgmx = gAlice->Field()->Max() ; // Air -> idtmed[1599] AliMedium(0, "Air$", 0, 0, isxfld, sxmgmx, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; // The Lead -> idtmed[1600] AliMedium(1, "Lead$", 1, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The scintillator of the CPV made of Polystyrene scintillator -> idtmed[1601] AliMedium(2, "Scintillator$", 2, 1, isxfld, sxmgmx, 10.0, 0.001, 0.1, 0.001, 0.001, 0, 0) ; // Various Aluminium parts made of Al -> idtmed[1602] AliMedium(3, "Al$", 3, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.001, 0.001, 0, 0) ; // 25-aug-04 by PAI : see PMD/AliPMDv0.cxx for STEEL definition -> idtmed[1603] AliMedium(4, "S steel$", 4, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.001, 0.001, 0, 0) ; // --- Set decent energy thresholds for gamma and electron tracking // Tracking threshold for photons and electrons in Lead Float_t cutgam=10.e-5; // 100 kev; Float_t cutele=10.e-5; // 100 kev; TString ntmp(GetTitle()); ntmp.ToUpper(); if(ntmp.Contains("10KEV")) { cutele = cutgam = 1.e-5; } else if(ntmp.Contains("50KEV")) { cutele = cutgam = 5.e-5; } else if(ntmp.Contains("100KEV")) { cutele = cutgam = 1.e-4; } else if(ntmp.Contains("200KEV")) { cutele = cutgam = 2.e-4; } else if(ntmp.Contains("500KEV")) { cutele = cutgam = 5.e-4; } gMC->Gstpar(idtmed[1600],"CUTGAM", cutgam); gMC->Gstpar(idtmed[1600],"CUTELE", cutele); // 1MEV -> 0.1MEV; 15-aug-05 gMC->Gstpar(idtmed[1600],"BCUTE", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1600],"BCUTM", cutgam); // BCUTE and BCUTM start from GUTGUM // --- Generate explicitly delta rays in Lead --- gMC->Gstpar(idtmed[1600], "LOSS",3.) ; gMC->Gstpar(idtmed[1600], "DRAY",1.) ; gMC->Gstpar(idtmed[1600], "DCUTE", cutele) ; gMC->Gstpar(idtmed[1600], "DCUTM", cutele) ; // --- in aluminium parts --- gMC->Gstpar(idtmed[1602],"CUTGAM", cutgam) ; gMC->Gstpar(idtmed[1602],"CUTELE", cutele) ; gMC->Gstpar(idtmed[1602],"BCUTE", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1602],"BCUTM", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1602], "LOSS",3.) ; gMC->Gstpar(idtmed[1602], "DRAY",1.) ; gMC->Gstpar(idtmed[1602], "DCUTE", cutele) ; gMC->Gstpar(idtmed[1602], "DCUTM", cutele) ; // --- and finally thresholds for photons and electrons in the scintillator --- gMC->Gstpar(idtmed[1601],"CUTGAM", cutgam) ; gMC->Gstpar(idtmed[1601],"CUTELE", cutele) ;// 1MEV -> 0.1MEV; 15-aug-05 gMC->Gstpar(idtmed[1601],"BCUTE", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1601],"BCUTM", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1601], "LOSS",3.) ; // generate delta rays gMC->Gstpar(idtmed[1601], "DRAY",1.) ; gMC->Gstpar(idtmed[1601], "DCUTE", cutele) ; gMC->Gstpar(idtmed[1601], "DCUTM", cutele) ; // S steel - gMC->Gstpar(idtmed[1603],"CUTGAM", cutgam); gMC->Gstpar(idtmed[1603],"CUTELE", cutele); gMC->Gstpar(idtmed[1603],"BCUTE", cutgam); // BCUTE and BCUTM start from GUTGUM gMC->Gstpar(idtmed[1603],"BCUTM", cutgam); // BCUTE and BCUTM start from GUTGUM // --- Generate explicitly delta rays gMC->Gstpar(idtmed[1603], "LOSS",3.); gMC->Gstpar(idtmed[1603], "DRAY",1.); gMC->Gstpar(idtmed[1603], "DCUTE", cutele) ; gMC->Gstpar(idtmed[1603], "DCUTM", cutele) ; //set constants for Birk's Law implentation fBirkC0 = 1; fBirkC1 = 0.013/dP; fBirkC2 = 9.6e-6/(dP * dP); } //____________________________________________________________________________ void AliEMCAL::Digits2Raw() { // convert digits of the current event to raw data AliEMCALLoader * loader = dynamic_cast(fLoader) ; // get the digits loader->LoadDigits(); TClonesArray* digits = loader->Digits() ; if (!digits) { Error("Digits2Raw", "no digits found !"); return; } // get the digitizer loader->LoadDigitizer(); AliEMCALDigitizer * digitizer = dynamic_cast(loader->Digitizer()) ; // get the geometry AliEMCALGeometry* geom = GetGeometry(); if (!geom) { Error("Digits2Raw", "no geometry found !"); return; } // some digitization constants const Int_t kDDLOffset = 0x800; const Int_t kThreshold = 1; const Int_t kChannelsperDDL = 897 ; AliAltroBuffer* buffer = NULL; Int_t prevDDL = -1; Int_t adcValuesLow[fkTimeBins]; Int_t adcValuesHigh[fkTimeBins]; // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = dynamic_cast(digits->At(iDigit)) ; if (digit->GetAmp() < kThreshold) continue; Int_t iDDL = digit->GetId() / kChannelsperDDL ; // for each DDL id is numbered from 1 to kChannelsperDDL -1 Int_t idDDL = digit->GetId() - iDDL * ( kChannelsperDDL - 1 ) ; // new DDL if (iDDL != prevDDL) { // write real header and close previous file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } // open new file and write dummy header TString fileName("EMCAL_") ; fileName += (iDDL + kDDLOffset) ; fileName += ".ddl" ; buffer = new AliAltroBuffer(fileName.Data(), 1); buffer->WriteDataHeader(kTRUE, kFALSE); //Dummy; prevDDL = iDDL; } // out of time range signal (?) if (digit->GetTimeR() > GetRawFormatTimeMax() ) { buffer->FillBuffer(digit->GetAmp()); buffer->FillBuffer(GetRawFormatTimeBins() ); // time bin buffer->FillBuffer(3); // bunch length buffer->WriteTrailer(3, idDDL, 0, 0); // trailer // calculate the time response function } else { Double_t energy = 0 ; energy = digit->GetAmp() * digitizer->GetECAchannel() + digitizer->GetECApedestal() ; Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), energy, adcValuesHigh, adcValuesLow) ; if (lowgain) buffer->WriteChannel(iDDL, 0, fLowGainOffset, GetRawFormatTimeBins(), adcValuesLow, kThreshold); else buffer->WriteChannel(iDDL, 0, 0, GetRawFormatTimeBins(), adcValuesHigh, kThreshold); } } // write real header and close last file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } loader->UnloadDigits(); } //____________________________________________________________________________ void AliEMCAL::Hits2SDigits() { // create summable digits AliEMCALSDigitizer emcalDigitizer(fLoader->GetRunLoader()->GetFileName().Data()) ; emcalDigitizer.SetEventRange(0, -1) ; // do all the events emcalDigitizer.ExecuteTask() ; } //____________________________________________________________________________ AliLoader* AliEMCAL::MakeLoader(const char* topfoldername) { //different behaviour than standard (singleton getter) // --> to be discussed and made eventually coherent fLoader = new AliEMCALLoader(GetName(),topfoldername); return fLoader; } //__________________________________________________________________ Double_t AliEMCAL::RawResponseFunction(Double_t *x, Double_t *par) { // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // v(t) = n**n * Q * A**n / C *(t/tp)**n * exp(-n * t/tp) with // tp : peaking time par[0] // n : order of the function // C : integrating capacitor in the preamplifier // A : open loop gain of the preamplifier // Q : the total APD charge to be measured Q = C * energy Double_t signal ; Double_t xx = x[0] - ( fgTimeTrigger + par[3] ) ; if (xx < 0 || xx > fgTimeMax) signal = 0. ; else { Double_t fac = par[0] * TMath::Power(fgOrder, fgOrder) * TMath::Power(par[1], fgOrder) / fgCapa ; signal = fac * par[2] * TMath::Power(xx / fgTimePeak, fgOrder) * TMath::Exp(-fgOrder * (xx / fgTimePeak)) ; } return signal ; } //__________________________________________________________________ Double_t AliEMCAL::RawResponseFunctionMax(Double_t charge, Double_t gain) { return ( charge * TMath::Power(fgOrder, fgOrder) * TMath::Power(gain, fgOrder) / ( fgCapa * TMath::Exp(fgOrder) ) ); } //__________________________________________________________________ Bool_t AliEMCAL::RawSampledResponse( const Double_t dtime, const Double_t damp, Int_t * adcH, Int_t * adcL) const { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliEMCAL::RawResponseFunction const Int_t kRawSignalOverflow = 0x3FF ; Bool_t lowGain = kFALSE ; TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeMax(), 4); for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { signalF.SetParameter(0, GetRawFormatHighCharge() ) ; signalF.SetParameter(1, GetRawFormatHighGain() ) ; signalF.SetParameter(2, damp) ; signalF.SetParameter(3, dtime) ; Double_t time = iTime * GetRawFormatTimeMax() / GetRawFormatTimeBins() ; Double_t signal = signalF.Eval(time) ; if ( static_cast(signal+0.5) > kRawSignalOverflow ){ // larger than 10 bits signal = kRawSignalOverflow ; lowGain = kTRUE ; } adcH[iTime] = static_cast(signal + 0.5) ; signalF.SetParameter(0, GetRawFormatLowCharge() ) ; signalF.SetParameter(1, GetRawFormatLowGain() ) ; signal = signalF.Eval(time) ; if ( static_cast(signal+0.5) > kRawSignalOverflow) // larger than 10 bits signal = kRawSignalOverflow ; adcL[iTime] = static_cast(0.5 + signal ) ; } return lowGain ; } //____________________________________________________________________________ void AliEMCAL::SetTreeAddress() { // Linking Hits in Tree to Hits array TBranch *branch; // char branchname[20]; // sprintf(branchname,"%s",GetName()); // Branch address for hit tree TTree *treeH = TreeH(); if (treeH) { // treeH->Print(); branch = treeH->GetBranch(GetName()); if (branch) { if (fHits == 0x0) fHits= new TClonesArray("AliEMCALHit",1000); branch->SetAddress(&fHits); } else { Warning("SetTreeAddress","<%s> Failed",GetName()); } } else { // Warning("SetTreeAddress"," no treeH "); } }