/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Base Class for EMCAL description: // This class contains material definitions // for the EMCAL - It does not place the detector in Alice //*-- Author: Yves Schutz (SUBATECH) // //*-- Additional Contributions: Sahal Yacoob (LBNL/UCT) // ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- class TFile; #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliMagF.h" #include "AliEMCAL.h" #include "AliEMCALGetter.h" #include "AliRun.h" #include "AliEMCALSDigitizer.h" #include "AliEMCALDigitizer.h" #include "AliAltroBuffer.h" ClassImp(AliEMCAL) //____________________________________________________________________________ AliEMCAL::AliEMCAL():AliDetector() { // Default ctor fName="EMCAL"; // fGeom = 0 ; fRan = new TRandom(123456) ; } //____________________________________________________________________________ AliEMCAL::AliEMCAL(const char* name, const char* title): AliDetector(name,title) { // ctor : title is used to identify the layout // fGeom = 0; fRan = new TRandom(123456) ; } //____________________________________________________________________________ AliEMCAL::~AliEMCAL() { } //____________________________________________________________________________ void AliEMCAL::Copy(AliEMCAL & emcal) { TObject::Copy(emcal) ; } //____________________________________________________________________________ AliDigitizer* AliEMCAL::CreateDigitizer(AliRunDigitizer* manager) const { return new AliEMCALDigitizer(manager); } //____________________________________________________________________________ void AliEMCAL::CreateMaterials() { // Definitions of materials to build EMCAL and associated tracking media. // media number in idtmed are 1599 to 1698. // --- Air --- Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; AliMixture(0, "Air$", aAir, zAir, dAir, 4, wAir) ; // --- Lead --- AliMaterial(1, "Pb$", 207.2, 82, 11.35, 0.56, 0., 0, 0) ; // --- The polysterene scintillator (CH) --- Float_t aP[2] = {12.011, 1.00794} ; Float_t zP[2] = {6.0, 1.0} ; Float_t wP[2] = {1.0, 1.0} ; Float_t dP = 1.032 ; AliMixture(2, "Polystyrene$", aP, zP, dP, -2, wP) ; // --- Aluminium --- AliMaterial(3, "Al$", 26.98, 13., 2.7, 8.9, 999., 0, 0) ; // --- Absorption length is ignored ^ // DEFINITION OF THE TRACKING MEDIA // for EMCAL: idtmed[1599->1698] equivalent to fIdtmed[0->100] Int_t * idtmed = fIdtmed->GetArray() - 1599 ; Int_t isxfld = gAlice->Field()->Integ() ; Float_t sxmgmx = gAlice->Field()->Max() ; // Air -> idtmed[1599] AliMedium(0, "Air $", 0, 0, isxfld, sxmgmx, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; // The Lead -> idtmed[1600] AliMedium(1, "Lead $", 1, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The scintillator of the CPV made of Polystyrene scintillator -> idtmed[1601] AliMedium(2, "CPV scint. $", 2, 1, isxfld, sxmgmx, 10.0, 0.001, 0.1, 0.001, 0.001, 0, 0) ; // Various Aluminium parts made of Al -> idtmed[1602] AliMedium(3, "Al parts $", 3, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.001, 0.001, 0, 0) ; // --- Set decent energy thresholds for gamma and electron tracking // Tracking threshold for photons and electrons in Lead gMC->Gstpar(idtmed[1600],"CUTGAM",0.00008) ; gMC->Gstpar(idtmed[1600],"CUTELE",0.001) ; gMC->Gstpar(idtmed[1600],"BCUTE",0.0001) ; // --- Generate explicitly delta rays in Lead --- gMC->Gstpar(idtmed[1600], "LOSS",3.) ; gMC->Gstpar(idtmed[1600], "DRAY",1.) ; gMC->Gstpar(idtmed[1600], "DCUTE",0.00001) ; gMC->Gstpar(idtmed[1600], "DCUTM",0.00001) ; // --- in aluminium parts --- gMC->Gstpar(idtmed[1602], "LOSS",3.) ; gMC->Gstpar(idtmed[1602], "DRAY",1.) ; gMC->Gstpar(idtmed[1602], "DCUTE",0.00001) ; gMC->Gstpar(idtmed[1602], "DCUTM",0.00001) ; // --- and finally thresholds for photons and electrons in the scintillator --- gMC->Gstpar(idtmed[1601],"CUTGAM",0.00008) ; gMC->Gstpar(idtmed[1601],"CUTELE",0.001) ; gMC->Gstpar(idtmed[1601],"BCUTE",0.0001) ; //set constants for Birk's Law implentation fBirkC0 = 1; fBirkC1 = 0.013/dP; fBirkC2 = 9.6e-6/(dP * dP); } //____________________________________________________________________________ void AliEMCAL::Digits2Raw() { // convert digits of the current event to raw data // get the digits AliEMCALGetter * gime = AliEMCALGetter::Instance(AliRunLoader::GetGAliceName()) ; if (!gime) { Error("Digits2Raw", "EMCAL Getter not instantiated") ; return ; } gime->Event(gime->EventNumber(), "D") ; TClonesArray* digits = gime->Digits() ; if (!digits) { Error("Digits2Raw", "no digits found !"); return; } // get the geometry AliEMCALGeometry* geom = gime->EMCALGeometry(); if (!geom) { Error("Digits2Raw", "no geometry found !"); return; } // some digitization constants const Int_t kDDLOffset = 0x800; const Double_t kTimeMax = 1.28E-5; const Int_t kTimeBins = 256; const Double_t kTimePeak = 2.0E-6; const Double_t kTimeRes = 1.5E-6; const Int_t kThreshold = 3; const Int_t kHighGainFactor = 40; const Int_t kHighGainOffset = 0x200; // PHOS has 4 DDL per module; I assume therefore that kChannelsperDDL=896+1 EMCAL channel go to one DDL const Int_t kChannelsperDDL = 897 ; AliAltroBuffer* buffer = NULL; Int_t prevDDL = -1; Int_t adcValuesLow[kTimeBins]; Int_t adcValuesHigh[kTimeBins]; // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = gime->Digit(iDigit); if (digit->GetAmp() < kThreshold) continue; Int_t iDDL = digit->GetId() / kChannelsperDDL ; // for each DDL id is numbered from 1 to kChannelsperDDL -1 Int_t idDDL = digit->GetId() - iDDL * ( kChannelsperDDL - 1 ) ; // new DDL if (iDDL != prevDDL) { // write real header and close previous file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } // open new file and write dummy header TString fileName("EMCAL_") ; fileName += (iDDL + kDDLOffset) ; fileName += ".ddl" ; buffer = new AliAltroBuffer(fileName.Data(), 1); buffer->WriteDataHeader(kTRUE, kFALSE); //Dummy; prevDDL = iDDL; } // out of time range signal (?) if (digit->GetTime() > kTimeMax) { buffer->FillBuffer(digit->GetAmp()); buffer->FillBuffer(kTimeBins); // time bin buffer->FillBuffer(3); // bunch length buffer->WriteTrailer(3, idDDL, 0, 0); // trailer // simulate linear rise and gaussian decay of signal } else { Bool_t highGain = kFALSE; // fill time bin values : // 1. the signal starts at the time given by the digit // 2. the rise is linear and the maximum is reached kTimePeak after start // 3. the decay is gaussian with a sigma of kTimeRes // 4. the signal is binned into kTimeBins bins for (Int_t iTime = 0; iTime < kTimeBins; iTime++) { Double_t time = iTime * kTimeMax/kTimeBins; Int_t signal = 0; if (time < digit->GetTime() + kTimePeak) { // signal is rising signal = static_cast(fRan->Rndm() + digit->GetAmp() * (time - digit->GetTime()) / kTimePeak); } else { // signal is decaying signal = static_cast(fRan->Rndm() + digit->GetAmp() * TMath::Gaus(time, digit->GetTime() + kTimePeak, kTimeRes)); } if (signal < 0) signal = 0; adcValuesLow[iTime] = signal; if (signal > 0x3FF) // larger than 10 bits adcValuesLow[iTime] = 0x3FF; adcValuesHigh[iTime] = signal / kHighGainFactor; if (adcValuesHigh[iTime] > 0) highGain = kTRUE; } // write low and eventually high gain channel buffer->WriteChannel(idDDL, 0, 0, kTimeBins, adcValuesLow, kThreshold); if (highGain) { buffer->WriteChannel(idDDL, 0, kHighGainOffset, kTimeBins, adcValuesHigh, 1); } } } // write real header and close last file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } gime->EmcalLoader()->UnloadDigits(); } //____________________________________________________________________________ void AliEMCAL::Hits2SDigits() { // create summable digits AliEMCALSDigitizer* emcalDigitizer = new AliEMCALSDigitizer(fLoader->GetRunLoader()->GetFileName().Data()) ; emcalDigitizer->SetEventRange(0, -1) ; // do all the events emcalDigitizer->ExecuteTask() ; } //____________________________________________________________________________ AliLoader* AliEMCAL::MakeLoader(const char* topfoldername) { //different behaviour than standard (singleton getter) // --> to be discussed and made eventually coherent fLoader = new AliEMCALLoader(GetName(),topfoldername); return fLoader; } //____________________________________________________________________________ void AliEMCAL::SetTreeAddress() { // Linking Hits in Tree to Hits array TBranch *branch; char branchname[20]; sprintf(branchname,"%s",GetName()); // Branch address for hit tree TTree *treeH = TreeH(); if (treeH) { branch = treeH->GetBranch(branchname); if (branch) { if (fHits == 0x0) fHits= new TClonesArray("AliEMCALHit",1000); branch->SetAddress(&fHits); } else { Warning("SetTreeAddress","<%s> Failed",GetName()); } } }