/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) // August 2002 Yves Schutz: clone PHOS as closely as possible and intoduction // of new IO (à la PHOS) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include #include #include #include #include #include #include #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliRunLoader.h" #include "AliRun.h" #include "AliEMCALLoader.h" #include "AliEMCALClusterizerv1.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCAL.h" #include "AliEMCALGeometry.h" #include "AliEMCALHistoUtilities.h" #include "AliCDBManager.h" #include "AliCDBStorage.h" #include "AliCDBEntry.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer() { // default ctor (to be used mainly by Streamer) InitParameters() ; fDefaultInit = kTRUE ; fGeom = AliEMCALGeometry::GetInstance(); fGeom->GetTransformationForSM(); // Global <-> Local } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const TString alirunFileName, const TString eventFolderName) :AliEMCALClusterizer(alirunFileName, eventFolderName) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor } //____________________________________________________________________________ const TString AliEMCALClusterizerv1::BranchName() const { return GetName(); } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp, Int_t AbsId) { // Convert digitized amplitude into energy. // Calibration parameters are taken from calibration data base for raw data, // or from digitizer parameters for simulated data. if(fCalibData){ //JLK 13-Mar-2006 //We now get geometry at a higher level // // Loader // AliRunLoader *rl = AliRunLoader::GetRunLoader(); // Load EMCAL Geomtry // rl->LoadgAlice(); //AliRun * gAlice = rl->GetAliRun(); //AliEMCAL * emcal = (AliEMCAL*)gAlice->GetDetector("EMCAL"); //AliEMCALGeometry * geom = emcal->GetGeometry(); if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Int_t iSupMod = -1; Int_t nTower = -1; Int_t nIphi = -1; Int_t nIeta = -1; Int_t iphi = -1; Int_t ieta = -1; Bool_t bCell = fGeom->GetCellIndex(AbsId, iSupMod, nTower, nIphi, nIeta) ; if(!bCell) Error("DigitizeEnergy","Wrong cell id number") ; fGeom->GetCellPhiEtaIndexInSModule(iSupMod,nTower,nIphi, nIeta,iphi,ieta); fADCchannelECA = fCalibData->GetADCchannel (iSupMod,ieta,iphi); fADCpedestalECA = fCalibData->GetADCpedestal(iSupMod,ieta,iphi); return -fADCpedestalECA + amp * fADCchannelECA ; } else //Return energy with default parameters if calibration is not available return -fADCpedestalECA + amp * fADCchannelECA ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Exec(Option_t * option) { // Steering method to perform clusterization for events // in the range from fFirstEvent to fLastEvent. // This range is optionally set by SetEventRange(). // if fLastEvent=-1 (by default), then process events until the end. if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; AliRunLoader *rl = AliRunLoader::GetRunLoader(); AliEMCALLoader *emcalLoader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); //Get calibration parameters from file or digitizer default values. GetCalibrationParameters() ; if (fLastEvent == -1) fLastEvent = rl->GetNumberOfEvents() - 1; Int_t nEvents = fLastEvent - fFirstEvent + 1; Int_t ievent ; rl->LoadDigits("EMCAL"); for (ievent = fFirstEvent; ievent <= fLastEvent; ievent++) { rl->GetEvent(ievent); fNumberOfECAClusters = 0; if(strstr(option,"pseudo")) MakeClusters("pseudo") ; //both types else MakeClusters("") ; //only the real clusters if(fToUnfold) MakeUnfolding() ; WriteRecPoints() ; if(strstr(option,"deb")) PrintRecPoints(option) ; //increment the total number of recpoints per run fRecPointsInRun += emcalLoader->RecPoints()->GetEntriesFast() ; } Unload(); if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); printf("Exec took %f seconds for Clusterizing %f seconds per event", gBenchmark->GetCpuTime("EMCALClusterizer"), gBenchmark->GetCpuTime("EMCALClusterizer")/nEvents ); } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALRecPoint * emcRP, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TClonesArray *digits = emcalLoader->Digits(); gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[2] ; Float_t x = 0.; Float_t z = 0.; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->PosInAlice(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { // Set calibration parameters: // if calibration database exists, they are read from database, // otherwise, they are taken from digitizer. // // It is a user responsilibity to open CDB before reconstruction, // for example: // AliCDBStorage* storage = AliCDBManager::Instance()->GetStorage("local://CalibDB"); //Check if calibration is stored in data base if(AliCDBManager::Instance()->IsDefaultStorageSet()){ AliCDBEntry *entry = (AliCDBEntry*) AliCDBManager::Instance() ->GetDefaultStorage() ->Get("EMCAL/GainFactors_and_Pedestals/Calibration", gAlice->GetRunNumber()); if (entry) fCalibData = (AliEMCALCalibData*) entry->GetObject(); } if(!fCalibData) { //If calibration is not available use default parameters //Loader AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); if ( !emcalLoader->Digitizer() ) emcalLoader->LoadDigitizer(); AliEMCALDigitizer * dig = dynamic_cast(emcalLoader->Digitizer()); fADCchannelECA = dig->GetECAchannel() ; fADCpedestalECA = dig->GetECApedestal(); } } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks AliRunLoader *rl = AliRunLoader::GetRunLoader(); fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); fGeom->GetTransformationForSM(); // Global <-> Local AliInfo(Form("geom 0x%x",fGeom)); if(!gMinuit) gMinuit = new TMinuit(100) ; fHists = BookHists(); } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { // Initializes the parameters for the Clusterizer fNumberOfECAClusters = 0; fNTowerInGroup = 36; //Produces maximum of 80 pseudoclusters per event fECAClusteringThreshold = 0.5; // value obtained from Alexei fECALocMaxCut = 0.03; // ?? fECAW0 = 4.5 ; fTimeGate = 1.e-8 ; fToUnfold = kFALSE ; fRecPointsInRun = 0 ; fMinECut = 0.01; // have to be tune fCalibData = 0 ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2) const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 is in different SM, quit from searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster static Int_t rv; static Int_t nSupMod1=0, nTower1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nTower2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; static Int_t rowdiff, coldiff; rv = 0 ; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nTower1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nTower2,nIphi2,nIeta2); if(nSupMod1 != nSupMod2) return 2; // different SM fGeom->GetCellPhiEtaIndexInSModule(nSupMod1,nTower1,nIphi1,nIeta1, iphi1,ieta1); fGeom->GetCellPhiEtaIndexInSModule(nSupMod2,nTower2,nIphi2,nIeta2, iphi2,ieta2); rowdiff = TMath::Abs(iphi1 - iphi2); coldiff = TMath::Abs(ieta1 - ieta2) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )) rv = 1; // neighbours with at least commom vertex if (gDebug == 2 && rv==1) printf("AreNeighbours: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d \n", rv, d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2); return rv ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreInGroup(AliEMCALDigit * d1, AliEMCALDigit * d2) const { // Tells whether two digits fall within the same supermodule and // tower grouping. The number of towers in a group is controlled by // the parameter nTowersInGroup // = 0 are not in same group but continue searching // = 1 same group // = 2 is in different SM, quit from searching // = 3 different tower group, quit from searching // // The order of d1 and d2 is important: first (d1) should be a digit // already in a cluster which is compared to a digit (d2) not yet in a cluster //JLK Question: does the quit from searching assume that the digits //are ordered, so that once you are in a different SM, you'll not //find another in the list that will match? How about my TowerGroup search? static Int_t rv; static Int_t nSupMod1=0, nTower1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nTower2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; static Int_t towerGroup1 = -1, towerGroup2 = -1; rv = 0 ; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nTower1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nTower2,nIphi2,nIeta2); if(nSupMod1 != nSupMod2) return 2; // different SM static Int_t nTowerInSM = fGeom->GetNCellsInSupMod()/fGeom->GetNCellsInTower(); //figure out which tower grouping each digit belongs to for(int it = 0; it < nTowerInSM/fNTowerInGroup; it++) { if(nTower1 <= nTowerInSM - it*fNTowerInGroup) towerGroup1 = it; if(nTower2 <= nTowerInSM - it*fNTowerInGroup) towerGroup2 = it; } if(towerGroup1 != towerGroup2) return 3; //different Towergroup //same SM, same towergroup, we're happy if(towerGroup1 == towerGroup2 && towerGroup2 >= 0) rv = 1; if (gDebug == 2 && rv==1) printf("AreInGroup: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d \n", rv, d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2); return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Unload() { // Unloads the Digits and RecPoints AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); emcalLoader->UnloadDigits() ; emcalLoader->UnloadRecPoints() ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::WriteRecPoints() { // Creates new branches with given title // fills and writes into TreeR. AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; TClonesArray * digits = emcalLoader->Digits() ; TTree * treeR = emcalLoader->TreeR(); if ( treeR==0 ) { emcalLoader->MakeRecPointsContainer(); treeR = emcalLoader->TreeR(); } Int_t index ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < aECARecPoints->GetEntries(); index++) (dynamic_cast(aECARecPoints->At(index)))->EvalAll(fECAW0,digits) ; aECARecPoints->Sort() ; for(index = 0; index < aECARecPoints->GetEntries(); index++) { (dynamic_cast(aECARecPoints->At(index)))->SetIndexInList(index) ; (dynamic_cast(aECARecPoints->At(index)))->Print(); } Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //EC section branch TBranch * branchECA = 0; if ((branchECA = treeR->GetBranch("EMCALECARP"))) branchECA->SetAddress(&aECARecPoints); else treeR->Branch("EMCALECARP","TObjArray",&aECARecPoints,bufferSize,splitlevel); treeR->Fill() ; emcalLoader->WriteRecPoints("OVERWRITE"); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters(char* option) { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); aECARecPoints->Clear(); //Start with pseudoclusters, if option if(strstr(option,"pseudo")) { TClonesArray * digits = emcalLoader->Digits() ; TClonesArray * digitsC = dynamic_cast(digits->Clone()); TIter nextdigit(digitsC) ; AliEMCALDigit * digit; AliEMCALRecPoint * recPoint = 0 ; int ineb=0; nextdigit.Reset(); // PseudoClusterization starts while ( (digit = dynamic_cast(nextdigit())) ) { // scan over the list of digitsC recPoint = 0 ; TArrayI clusterECAdigitslist(1000); // what is this if(fGeom->CheckAbsCellId(digit->GetId()) ) { //Is this an EMCAL digit? Just maing sure... Int_t iDigitInECACluster = 0; // start a new Tower RecPoint if(fNumberOfECAClusters >= aECARecPoints->GetSize()) aECARecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint * rp = new AliEMCALRecPoint("") ; aECARecPoints->AddAt(rp, fNumberOfECAClusters) ; recPoint = dynamic_cast(aECARecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; recPoint->SetClusterType(AliEMCALRecPoint::kPseudoCluster); recPoint->AddDigit(*digit, digit->GetAmp()) ; clusterECAdigitslist[iDigitInECACluster] = digit->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digit) ; AliDebug(1,Form("MakePseudoClusters: OK id = %d, adc = %f \n", digit->GetId(), digit->GetAmp())); nextdigit.Reset(); // will start from beggining AliEMCALDigit * digitN = 0; // digi neighbor Int_t index = 0 ; // Find the neighbours while (index < iDigitInECACluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterECAdigitslist[index]); index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit())) { // scan over the reduced list of digits ineb = AreInGroup(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours recPoint->AddDigit(*digitN, digitN->GetAmp() ) ; clusterECAdigitslist[iDigitInECACluster] = digitN->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // different SM break ; case 3 : // different Tower group break ; } // switch } // scan over the reduced list of digits } // scan over digits already in cluster nextdigit.Reset() ; // will start from beggining } } if(recPoint) cout << "cl.e " << recPoint->GetEnergy() << endl; delete digitsC ; } //Now do real clusters TClonesArray * digits = emcalLoader->Digits() ; TClonesArray * digitsC = dynamic_cast(digits->Clone()); TIter nextdigit(digitsC) ; AliEMCALDigit * digit; AliEMCALRecPoint * recPoint = 0 ; int ineb=0; nextdigit.Reset(); double e=0.0, ehs = 0.0; while ( (digit = dynamic_cast(nextdigit())) ) { // clean up digits e = Calibrate(digit->GetAmp(), digit->GetId()); AliEMCALHistoUtilities::FillH1(fHists, 10, digit->GetAmp()); AliEMCALHistoUtilities::FillH1(fHists, 11, e); if(e < fMinECut ) digitsC->Remove(digit); else ehs += e; } cout << " Number of digits " << digits->GetEntries() << " -> (e>" <GetEntries()<< " ehs "<(nextdigit())) ) { // scan over the list of digitsC recPoint = 0 ; TArrayI clusterECAdigitslist(1000); // what is this if(fGeom->CheckAbsCellId(digit->GetId()) && (Calibrate(digit->GetAmp(), digit->GetId()) > fECAClusteringThreshold ) ){ Int_t iDigitInECACluster = 0; // start a new Tower RecPoint if(fNumberOfECAClusters >= aECARecPoints->GetSize()) aECARecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint * rp = new AliEMCALRecPoint("") ; aECARecPoints->AddAt(rp, fNumberOfECAClusters) ; recPoint = dynamic_cast(aECARecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; recPoint->SetClusterType(AliEMCALRecPoint::kClusterv1); recPoint->AddDigit(*digit, Calibrate(digit->GetAmp(), digit->GetId())) ; clusterECAdigitslist[iDigitInECACluster] = digit->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digit) ; AliDebug(1,Form("MakeClusters: OK id = %d, ene = %f , thre = %f \n", digit->GetId(), Calibrate(digit->GetAmp(),digit->GetId()), fECAClusteringThreshold)); nextdigit.Reset(); // will start from beggining AliEMCALDigit * digitN = 0; // digi neighbor Int_t index = 0 ; // Find the neighbours while (index < iDigitInECACluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterECAdigitslist[index]); index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit())) { // scan over the reduced list of digits ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours recPoint->AddDigit(*digitN, Calibrate(digitN->GetAmp(),digitN->GetId()) ) ; clusterECAdigitslist[iDigitInECACluster] = digitN->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // different SM break ; } // switch } // scan over the reduced list of digits } // scan over digits already in cluster nextdigit.Reset() ; // will start from beggining } } // while digit if(recPoint) cout << "cl.e " << recPoint->GetEnergy() << endl; delete digitsC ; AliDebug(1,Form("total no of clusters %d from %d digits",fNumberOfECAClusters,digits->GetEntriesFast())); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() const { Fatal("AliEMCALClusterizerv1::MakeUnfolding", "--> Unfolding not implemented") ; } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see EMCAL TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALRecPoint * /*iniTower*/, Int_t /*nMax*/, AliEMCALDigit ** /*maxAt*/, Float_t * /*maxAtEnergy*/) const { // Performs the unfolding of a cluster with nMax overlapping showers Fatal("UnfoldCluster", "--> Unfolding not implemented") ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & /*nPar*/, Double_t * /*Grad*/, Double_t & /*fret*/, Double_t * /*x*/, Int_t /*iflag*/) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do ::Fatal("UnfoldingChiSquare","Unfolding not implemented") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * /*option*/)const { // Print clusterizer parameters TString message("\n") ; if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; printf("--------------- "); printf(taskName.Data()) ; printf(" "); printf(GetTitle()) ; printf("-----------\n"); printf("Clusterizing digits from the file: "); printf(taskName.Data()); printf("\n Branch: "); printf(GetName()); printf("\n ECA Local Maximum cut = %f", fECALocMaxCut); printf("\n ECA Logarithmic weight = %f", fECAW0); if(fToUnfold) printf("\nUnfolding on\n"); else printf("\nUnfolding off\n"); printf("------------------------------------------------------------------"); } else printf("AliEMCALClusterizerv1 not initialized ") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliEMCALClusterizer AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; printf("PrintRecPoints: Clusterization result:") ; printf("event # %d\n", emcalLoader->GetRunLoader()->GetEventNumber() ) ; printf(" Found %d ECA Rec Points\n ", aECARecPoints->GetEntriesFast()) ; fRecPointsInRun += aECARecPoints->GetEntriesFast() ; if(strstr(option,"all")) { Int_t index =0; printf("\n-----------------------------------------------------------------------\n") ; printf("Clusters in ECAL section\n") ; printf("Index Ene(GeV) Multi Module phi r theta X Y Z Dispersion Lambda 1 Lambda 2 # of prim Primaries list\n") ; Float_t maxE=0; Float_t maxL1=0; Float_t maxL2=0; Float_t maxDis=0; for (index = 0 ; index < aECARecPoints->GetEntries() ; index++) { AliEMCALRecPoint * rp = dynamic_cast(aECARecPoints->At(index)) ; TVector3 globalpos; //rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.4f %3d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; ///////////// if(rp->GetEnergy()>maxE){ maxE=rp->GetEnergy(); maxL1=lambda[0]; maxL2=lambda[1]; maxDis=rp->GetDispersion(); } fPointE->Fill(rp->GetEnergy()); fPointL1->Fill(lambda[0]); fPointL2->Fill(lambda[1]); fPointDis->Fill(rp->GetDispersion()); fPointMult->Fill(rp->GetMultiplicity()); ///////////// for (Int_t iprimary=0; iprimaryFill(maxE); fMaxL1->Fill(maxL1); fMaxL2->Fill(maxL2); fMaxDis->Fill(maxDis); printf("\n-----------------------------------------------------------------------\n"); } } TList* AliEMCALClusterizerv1::BookHists() { gROOT->cd(); fPointE = new TH1F("pointE","point energy", 2000, 0.0, 150.); fPointL1 = new TH1F("pointL1","point L1", 1000, 0.0, 3.); fPointL2 = new TH1F("pointL2","point L2", 1000, 0.0, 3.); fPointDis = new TH1F("pointDis","point Dis", 1000, 0.0, 3.); fPointMult = new TH1F("pointMult","point Mult", 100, 0.0, 100.); fDigitAmp = new TH1F("digitAmp","Digit Amplitude", 2000, 0.0, 5000.); fMaxE = new TH1F("maxE","Max point energy", 2000, 0.0, 150.); fMaxL1 = new TH1F("maxL1","Max point L1", 1000, 0.0, 3.); fMaxL2 = new TH1F("maxL2","Max point L2", 1000, 0.0, 3.); fMaxDis = new TH1F("maxDis","Max point Dis", 1000, 0.0, 3.); // 9 // new TH1F("adcOfDigits","adc of digits(threshold control)", 1001, -0.5, 1000.5); // 10 new TH1F("energyOfDigits","energy of digits(threshold control)", 1000, 0.0, 1.); // 11 return AliEMCALHistoUtilities::MoveHistsToList("EmcalClusterizerv1ControlHists", kFALSE); } void AliEMCALClusterizerv1::SaveHists(const char *fn) { AliEMCALHistoUtilities::SaveListOfHists(fHists, fn, kTRUE); } void AliEMCALClusterizerv1::Browse(TBrowser* b) { if(fHists) b->Add(fHists); TTask::Browse(b); }