/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* $Log: 1 October 2000. Yuri Kharlov: AreNeighbours() PPSD upper layer is considered if number of layers>1 18 October 2000. Yuri Kharlov: AliEMCALClusterizerv1() CPV clusterizing parameters added MakeClusters() After first PPSD digit remove EMC digits only once */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) // August 2002 Yves Schutz: clone PHOS as closely as possible and intoduction // of new IO (à la PHOS) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include "TROOT.h" #include "TFile.h" #include "TFolder.h" #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TSystem.h" #include "TBenchmark.h" // --- Standard library --- // --- AliRoot header files --- #include "AliEMCALClusterizerv1.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCALTowerRecPoint.h" #include "AliEMCAL.h" #include "AliEMCALGetter.h" #include "AliEMCALGeometry.h" #include "AliRun.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer() { // default ctor (to be used mainly by Streamer) InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const char* headerFile, const char* name, const Bool_t toSplit) :AliEMCALClusterizer(headerFile, name, toSplit) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor fSplitFile = 0 ; } //____________________________________________________________________________ const TString AliEMCALClusterizerv1::BranchName() const { TString branchName(GetName() ) ; branchName.Remove(branchName.Index(Version())-1) ; return branchName ; } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp, Int_t where) const { //To be replased later by the method, reading individual parameters from the database // where = 0 == PRE ; where = 1 == ECAL ; where = 2 == HCAL if ( where == 0 ) // calibrate as PRE section return -fADCpedestalPRE + amp * fADCchannelPRE ; else if (where == 1) //calibrate as EC section return -fADCpedestalEC + amp * fADCchannelEC ; else if (where == 2) //calibrate as HC section return -fADCpedestalHC + amp * fADCchannelHC ; else Fatal("Calibrate", "Something went wrong!") ; return -9999999. ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Exec(Option_t * option) { // Steering method if( strcmp(GetName(), "")== 0 ) Init() ; if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; if(gime->BranchExists("RecPoints")) return ; Int_t nevents = gime->MaxEvent() ; Int_t ievent ; for(ievent = 0; ievent < nevents; ievent++){ gime->Event(ievent,"D") ; if(ievent == 0) GetCalibrationParameters() ; fNumberOfPREClusters = fNumberOfECClusters = fNumberOfHCClusters = 0 ; MakeClusters() ; if(fToUnfold) MakeUnfolding() ; WriteRecPoints(ievent) ; if(strstr(option,"deb")) PrintRecPoints(option) ; //increment the total number of digits per run fRecPointsInRun += gime->PRERecPoints()->GetEntriesFast() ; fRecPointsInRun += gime->ECALRecPoints()->GetEntriesFast() ; fRecPointsInRun += gime->HCALRecPoints()->GetEntriesFast() ; } if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); Info("Exec", "took %f seconds for Clusterizing %f seconds per event", gBenchmark->GetCpuTime("EMCALClusterizer"), gBenchmark->GetCpuTime("EMCALClusterizer")/nevents ) ; } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALTowerRecPoint * emcRP, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; TClonesArray * digits = gime->Digits() ; gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; AliEMCALGeometry * geom = gime->EMCALGeometry() ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[4] ; Float_t x = 0.; Float_t z = 0.; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->PosInAlice(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; const AliEMCALDigitizer * dig = gime->Digitizer(BranchName()) ; fADCchannelPRE = dig->GetPREchannel() ; fADCpedestalPRE = dig->GetPREpedestal() ; fADCchannelEC = dig->GetECchannel() ; fADCpedestalEC = dig->GetECpedestal(); fADCchannelHC = dig->GetHCchannel() ; fADCpedestalHC = dig->GetHCpedestal(); } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks if ( strcmp(GetTitle(), "") == 0 ) SetTitle("galice.root") ; TString branchname = GetName() ; branchname.Remove(branchname.Index(Version())-1) ; AliEMCALGetter * gime = AliEMCALGetter::GetInstance(GetTitle(), branchname.Data(), fToSplit ) ; if ( gime == 0 ) { Error("Init", "Could not obtain the Getter object !" ) ; return ; } fSplitFile = 0 ; if(fToSplit){ // construct the name of the file as /path/EMCAL.SDigits.root //First - extract full path if necessary TString fileName(GetTitle()) ; Ssiz_t islash = fileName.Last('/') ; if(islash(gROOT->GetFile(fileName.Data())); if(!fSplitFile) fSplitFile = TFile::Open(fileName.Data(),"update") ; } const AliEMCALGeometry * geom = gime->EMCALGeometry() ; fNTowers = geom->GetNZ() * geom->GetNPhi() ; if(!gMinuit) gMinuit = new TMinuit(100) ; gime->PostClusterizer(this) ; gime->PostRecPoints(branchname ) ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { fNumberOfPREClusters = fNumberOfECClusters = fNumberOfHCClusters = 0 ; fPREClusteringThreshold = 0.0001; // must be adjusted according to the noise leve set by digitizer fECClusteringThreshold = 0.0045; // must be adjusted according to the noise leve set by digitizer fHCClusteringThreshold = 0.001; // must be adjusted according to the noise leve set by digitizer fPRELocMaxCut = 0.03 ; fECLocMaxCut = 0.03 ; fHCLocMaxCut = 0.03 ; fPREW0 = 4.0 ; fECW0 = 4.5 ; fHCW0 = 4.5 ; fTimeGate = 1.e-8 ; fToUnfold = kFALSE ; TString clusterizerName( GetName()) ; if (clusterizerName.IsNull() ) clusterizerName = "Default" ; clusterizerName.Append(":") ; clusterizerName.Append(Version()) ; SetName(clusterizerName) ; fRecPointsInRun = 0 ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster AliEMCALGeometry * geom = AliEMCALGetter::GetInstance()->EMCALGeometry() ; Int_t rv = 0 ; Int_t relid1[4] ; geom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[4] ; geom->AbsToRelNumbering(d2->GetId(), relid2) ; if ( (relid1[0] == relid2[0]) && // inside the same EMCAL Arm (relid1[1]==relid2[1]) ) { // and same tower section Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ if((relid1[1] != 0) || (TMath::Abs(d1->GetTime() - d2->GetTime() ) < fTimeGate)) rv = 1 ; } else { if((relid2[2] > relid1[2]) && (relid2[3] > relid1[3]+1)) rv = 2; // Difference in row numbers is too large to look further } } else { if( (relid1[0] < relid2[0]) || (relid1[1] != relid2[1]) ) rv=0 ; } if (gDebug == 2 ) Info("AreNeighbours", "neighbours=%d, id1=%d, relid1=%d,%d,%d,%d \n id2=%d, relid2=%d,%d,%d,%d", rv, d1->GetId(), relid1[0], relid1[1], relid1[2], relid1[3], d2->GetId(), relid2[0], relid2[1], relid2[2], relid2[3]) ; return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::WriteRecPoints(Int_t event) { // Creates new branches with given title // fills and writes into TreeR. AliEMCALGetter *gime = AliEMCALGetter::GetInstance() ; TObjArray * aPRERecPoints = gime->PRERecPoints() ; TObjArray * aECRecPoints = gime->ECALRecPoints() ; TObjArray * aHCRecPoints = gime->HCALRecPoints() ; TClonesArray * digits = gime->Digits() ; TTree * treeR ; if(fToSplit){ if(!fSplitFile) return ; fSplitFile->cd() ; TString name("TreeR") ; name += event ; treeR = dynamic_cast(fSplitFile->Get(name)); } else{ treeR = gAlice->TreeR(); } if(!treeR){ gAlice->MakeTree("R", fSplitFile); treeR = gAlice->TreeR() ; } Int_t index ; //Evaluate position, dispersion and other RecPoint properties for PRE section for(index = 0; index < aPRERecPoints->GetEntries(); index++) (dynamic_cast(aPRERecPoints->At(index)))->EvalAll(fPREW0,digits) ; aPRERecPoints->Sort() ; for(index = 0; index < aPRERecPoints->GetEntries(); index++) (dynamic_cast(aPRERecPoints->At(index)))->SetIndexInList(index) ; aPRERecPoints->Expand(aPRERecPoints->GetEntriesFast()) ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < aECRecPoints->GetEntries(); index++) (dynamic_cast(aECRecPoints->At(index)))->EvalAll(fECW0,digits) ; aECRecPoints->Sort() ; for(index = 0; index < aECRecPoints->GetEntries(); index++) (dynamic_cast(aECRecPoints->At(index)))->SetIndexInList(index) ; aECRecPoints->Expand(aECRecPoints->GetEntriesFast()) ; //Evaluate position, dispersion and other RecPoint properties for HC section for(index = 0; index < aHCRecPoints->GetEntries(); index++) (dynamic_cast(aHCRecPoints->At(index)))->EvalAll(fHCW0,digits) ; aHCRecPoints->Sort() ; for(index = 0; index < aHCRecPoints->GetEntries(); index++) (dynamic_cast(aHCRecPoints->At(index)))->SetIndexInList(index) ; aHCRecPoints->Expand(aHCRecPoints->GetEntriesFast()) ; Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //PRE section branch TBranch * branchPRE = treeR->Branch("EMCALPRERP","TObjArray",&aPRERecPoints,bufferSize,splitlevel); branchPRE->SetTitle(BranchName()); //EC section branch TBranch * branchEC = treeR->Branch("EMCALECRP","TObjArray",&aECRecPoints,bufferSize,splitlevel); branchEC->SetTitle(BranchName()); //HC section branch TBranch * branchHC = treeR->Branch("EMCALHCRP","TObjArray",&aHCRecPoints,bufferSize,splitlevel); branchHC->SetTitle(BranchName()); //And Finally clusterizer branch AliEMCALClusterizerv1 * cl = (AliEMCALClusterizerv1*)gime->Clusterizer(BranchName()) ; TBranch * clusterizerBranch = treeR->Branch("AliEMCALClusterizer","AliEMCALClusterizerv1", &cl,bufferSize,splitlevel); clusterizerBranch->SetTitle(BranchName()); branchPRE->Fill() ; branchEC->Fill() ; branchHC->Fill() ; clusterizerBranch->Fill() ; treeR->AutoSave() ; //Write(0,kOverwrite) ; if(gAlice->TreeR()!=treeR) treeR->Delete(); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; AliEMCALGeometry * geom = gime->EMCALGeometry() ; TObjArray * aPRERecPoints = gime->PRERecPoints(BranchName()) ; TObjArray * aECRecPoints = gime->ECALRecPoints(BranchName()) ; TObjArray * aHCRecPoints = gime->HCALRecPoints(BranchName()) ; aPRERecPoints->Delete() ; aECRecPoints->Delete() ; aHCRecPoints->Delete() ; TClonesArray * digits = gime->Digits() ; if ( !digits ) { Fatal("MakeClusters -> Digits with name %s not found", GetName() ) ; } TIter next(digits) ; AliEMCALDigit * digit ; Int_t ndigEC=0, ndigPRE=0, ndigHC=0 ; // count the number of digits in EC section while ( (digit = dynamic_cast(next())) ) { // scan over the list of digits if (geom->IsInECAL(digit->GetId())) ndigEC++ ; else if (geom->IsInPRE(digit->GetId())) ndigPRE++; else if (geom->IsInHCAL(digit->GetId())) ndigHC++; else { Error("MakeClusters", "id = %d is a wrong ID!", digit->GetId()) ; abort() ; } } // add amplitude of PRE and EC sections Int_t digEC ; for (digEC = 0 ; digEC < ndigEC ; digEC++) { digit = dynamic_cast(digits->At(digEC)) ; Int_t digPRE ; for (digPRE = ndigEC ; digPRE < ndigEC+ndigPRE ; digPRE++) { AliEMCALDigit * digitPRE = dynamic_cast(digits->At(digPRE)) ; if ( geom->AreInSameTower(digit->GetId(), digitPRE->GetId()) ){ Float_t amp = static_cast(digit->GetAmp()) + geom->GetSummationFraction() * static_cast(digitPRE->GetAmp()) + 0.5 ; digit->SetAmp(static_cast(amp)) ; break ; } } if (gDebug) Info("MakeClusters","id = %d amp = %d", digit->GetId(), digit->GetAmp()) ; } TClonesArray * digitsC = dynamic_cast(digits->Clone()) ; // Clusterization starts TIter nextdigit(digitsC) ; Bool_t notremovedEC = kTRUE, notremovedPRE = kTRUE ; while ( (digit = dynamic_cast(nextdigit())) ) { // scan over the list of digitsC AliEMCALRecPoint * clu = 0 ; TArrayI clusterPREdigitslist(50), clusterECdigitslist(50), clusterHCdigitslist(50); Bool_t inPRE = kFALSE, inECAL = kFALSE, inHCAL = kFALSE ; if( geom->IsInPRE(digit->GetId()) ) { inPRE = kTRUE ; } else if( geom->IsInECAL(digit->GetId()) ) { inECAL = kTRUE ; } else if( geom->IsInHCAL(digit->GetId()) ) { inHCAL = kTRUE ; } if (gDebug == 2) { if (inPRE) Info("MakeClusters","id = %d, ene = %f , thre = %f ", digit->GetId(),Calibrate(digit->GetAmp(), 0), fPREClusteringThreshold) ; if (inECAL) Info("MakeClusters","id = %d, ene = %f , thre = %f", digit->GetId(),Calibrate(digit->GetAmp(), 1), fECClusteringThreshold) ; if (inHCAL) Info("MakeClusters","id = %d, ene = %f , thre = %f", digit->GetId(),Calibrate(digit->GetAmp(), 2), fHCClusteringThreshold ) ; } if ( (inPRE && (Calibrate(digit->GetAmp(), 0) > fPREClusteringThreshold )) || (inECAL && (Calibrate(digit->GetAmp(), 1) > fECClusteringThreshold )) || (inHCAL && (Calibrate(digit->GetAmp(), 2) > fHCClusteringThreshold )) ) { Int_t iDigitInPRECluster = 0, iDigitInECCluster = 0, iDigitInHCCluster = 0; Int_t where ; // PRE = 0, ECAl = 1, HCAL = 2 // Find the seed in each of the section ECAL/PRE/HCAL if( geom->IsInECAL(digit->GetId()) ) { where = 1 ; // to tell we are in ECAL // start a new Tower RecPoint if(fNumberOfECClusters >= aECRecPoints->GetSize()) aECRecPoints->Expand(2*fNumberOfECClusters+1) ; AliEMCALTowerRecPoint * rp = new AliEMCALTowerRecPoint("") ; rp->SetECAL() ; aECRecPoints->AddAt(rp, fNumberOfECClusters) ; clu = dynamic_cast(aECRecPoints->At(fNumberOfECClusters)) ; fNumberOfECClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(), where)) ; clusterECdigitslist[iDigitInECCluster] = digit->GetIndexInList() ; iDigitInECCluster++ ; digitsC->Remove(digit) ; if (gDebug == 2 ) Info("MakeClusters","OK id = %d, ene = %f , thre = %f ", digit->GetId(),Calibrate(digit->GetAmp(), 1), fECClusteringThreshold) ; } else if( geom->IsInPRE(digit->GetId()) ) { where = 0 ; // to tell we are in PRE // start a new Pre Shower cluster if(fNumberOfPREClusters >= aPRERecPoints->GetSize()) aPRERecPoints->Expand(2*fNumberOfPREClusters+1); AliEMCALTowerRecPoint * rp = new AliEMCALTowerRecPoint("") ; rp->SetPRE() ; aPRERecPoints->AddAt(rp, fNumberOfPREClusters) ; clu = dynamic_cast(aPRERecPoints->At(fNumberOfPREClusters)) ; fNumberOfPREClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(), where)); clusterPREdigitslist[iDigitInPRECluster] = digit->GetIndexInList() ; iDigitInPRECluster++ ; digitsC->Remove(digit) ; if (gDebug == 2 ) Info("MakeClusters","OK id = %d, ene = %f , thre = %f ", digit->GetId(),Calibrate(digit->GetAmp(), 0), fPREClusteringThreshold) ; nextdigit.Reset() ; // Here we remove remaining EC digits, which cannot make a cluster if( notremovedEC ) { while( ( digit = dynamic_cast(nextdigit()) ) ) { if( geom->IsInECAL(digit->GetId()) ) digitsC->Remove(digit) ; else break ; } notremovedEC = kFALSE ; } } else if( geom->IsInHCAL(digit->GetId()) ) { where = 2 ; // to tell we are in HCAL // start a new HCAL cluster if(fNumberOfHCClusters >= aHCRecPoints->GetSize()) aHCRecPoints->Expand(2*fNumberOfHCClusters+1); AliEMCALTowerRecPoint * rp = new AliEMCALTowerRecPoint("") ; rp->SetHCAL() ; aHCRecPoints->AddAt(rp, fNumberOfHCClusters) ; clu = dynamic_cast(aHCRecPoints->At(fNumberOfHCClusters)) ; fNumberOfHCClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(), where)); clusterHCdigitslist[iDigitInHCCluster] = digit->GetIndexInList() ; iDigitInHCCluster++ ; digitsC->Remove(digit) ; if (gDebug == 2 ) Info("MakeClusters","OK id = %d, ene = %f , thre = %f ", digit->GetId(),Calibrate(digit->GetAmp(), 2), fHCClusteringThreshold) ; nextdigit.Reset() ; // Here we remove remaining PRE digits, which cannot make a cluster if( notremovedPRE ) { while( ( digit = dynamic_cast(nextdigit()) ) ) { if( geom->IsInPRE(digit->GetId()) ) digitsC->Remove(digit) ; else break ; } notremovedPRE = kFALSE ; } } nextdigit.Reset() ; AliEMCALDigit * digitN ; Int_t index = 0 ; // Do the Clustering in each of the three section ECAL/PRE/HCAL while (index < iDigitInECCluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterECdigitslist[index]) ; index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! // Info("MakeClusters","id1 = %d, id2 = %d , neighbours = %d", digit->GetId(), digitN->GetId(), ineb) ; switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp(), 1) ) ; clusterECdigitslist[iDigitInECCluster] = digitN->GetIndexInList() ; iDigitInECCluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop1; } // switch } // while digitN endofloop1: ; nextdigit.Reset() ; } // loop over EC cluster index = 0 ; while (index < iDigitInPRECluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterPREdigitslist[index]) ; index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! // Info("MakeClusters","id1 = %d, id2 = %d , neighbours = %d", digit->GetId(), digitN->GetId(), ineb) ; switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp(), 0) ) ; clusterPREdigitslist[iDigitInPRECluster] = digitN->GetIndexInList() ; iDigitInPRECluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop2; } // switch } // while digitN endofloop2: ; nextdigit.Reset() ; } // loop over PRE cluster index = 0 ; while (index < iDigitInHCCluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterHCdigitslist[index]) ; index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! //Info("MakeClusters","id1 = %d, id2 = %d , neighbours = %d", digit->GetId(), digitN->GetId(), ineb) ; switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp(), 2) ) ; clusterHCdigitslist[iDigitInHCCluster] = digitN->GetIndexInList() ; iDigitInHCCluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop3; } // switch } // while digitN endofloop3: ; nextdigit.Reset() ; } // loop over HC cluster } // energy theshold } // while digit delete digitsC ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() { Fatal("AliEMCALClusterizerv1::MakeUnfolding", "--> Unfolding not implemented") ; } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see EMCAL TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALTowerRecPoint * iniTower, Int_t nMax, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Fatal("UnfoldCluster", "--> Unfolding not implemented") ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do ::Fatal("UnfoldingChiSquare","Unfolding not implemented") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * option)const { // Print clusterizer parameters TString message("\n") ; if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; message += "--------------- " ; message += taskName.Data() ; message += " " ; message += GetTitle() ; message += "-----------\n" ; message += "Clusterizing digits from the file: " ; message += taskName.Data() ; message += "\n Branch: " ; message += GetName() ; message += "\n Pre Shower Clustering threshold = " ; message += fPREClusteringThreshold ; message += "\n Pre Shower Local Maximum cut = " ; message += fPRELocMaxCut ; message += "\n Pre Shower Logarothmic weight = " ; message += fPREW0 ; message += "\n EC Clustering threshold = " ; message += fECClusteringThreshold ; message += "\n EC Local Maximum cut = " ; message += fECLocMaxCut ; message += "\n EC Logarothmic weight = " ; message += fECW0 ; message += "\n Pre Shower Clustering threshold = " ; message += fHCClusteringThreshold ; message += "\n HC Local Maximum cut = " ; message += fHCLocMaxCut ; message += "\n HC Logarothmic weight = " ; message += fHCW0 ; if(fToUnfold) message +="\nUnfolding on\n" ; else message += "\nUnfolding off\n"; message += "------------------------------------------------------------------" ; } else message += "AliEMCALClusterizerv1 not initialized " ; Info("Print", message.Data() ) ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliEMCALClusterizer TObjArray * aPRERecPoints = AliEMCALGetter::GetInstance()->PRERecPoints() ; TObjArray * aECRecPoints = AliEMCALGetter::GetInstance()->ECALRecPoints() ; TObjArray * aHCRecPoints = AliEMCALGetter::GetInstance()->HCALRecPoints() ; Info("PrintRecPoints", "Clusterization result:") ; printf("event # %d\n", gAlice->GetEvNumber() ) ; printf(" Found %d PRE SHOWER RecPoints, %d EC Rec Points and %d HC Rec Points\n ", aPRERecPoints->GetEntriesFast(), aECRecPoints->GetEntriesFast(), aHCRecPoints->GetEntriesFast() ) ; fRecPointsInRun += aPRERecPoints->GetEntriesFast() ; fRecPointsInRun += aECRecPoints->GetEntriesFast() ; fRecPointsInRun += aHCRecPoints->GetEntriesFast() ; if(strstr(option,"all")) { //Pre shower recPoints printf("-----------------------------------------------------------------------\n") ; printf("Clusters in PRE section\n") ; printf("Index Ene(GeV) Multi Module phi r theta X Y Z Dispersion Lambda 1 Lambda 2 # of prim Primaries list\n") ; Int_t index ; for (index = 0 ; index < aPRERecPoints->GetEntries() ; index++) { AliEMCALTowerRecPoint * rp = dynamic_cast(aPRERecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.4f %3d %2d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), rp->GetEMCALArm(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliEMCALTowerRecPoint * rp = dynamic_cast(aECRecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.4f %3d %2d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), rp->GetEMCALArm(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliEMCALTowerRecPoint * rp = dynamic_cast(aHCRecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.4f %3d %2d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), rp->GetEMCALArm(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimary