/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) //-- Gustavo Conesa (LPSC-Grenoble), move common clusterizer functionalities to mother class ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // // --- ROOT system --- #include #include #include #include #include #include #include #include #include // --- Standard library --- #include // --- AliRoot header files --- #include "AliLog.h" #include "AliEMCALClusterizerv1.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALGeometry.h" #include "AliCaloCalibPedestal.h" #include "AliEMCALCalibData.h" #include "AliESDCaloCluster.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(): AliEMCALClusterizer() { // ctor with the indication of the file where header Tree and digits Tree are stored Init() ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(AliEMCALGeometry* geometry) : AliEMCALClusterizer(geometry) { // ctor with the indication of the file where header Tree and digits Tree are stored // use this contructor to avoid usage of Init() which uses runloader // change needed by HLT - MP } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(AliEMCALGeometry* geometry, AliEMCALCalibData * calib, AliCaloCalibPedestal * caloped) : AliEMCALClusterizer(geometry, calib, caloped) { // ctor, geometry and calibration are initialized elsewhere. } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor } //____________________________________________________________________________ void AliEMCALClusterizerv1::Digits2Clusters(Option_t * option) { // Steering method to perform clusterization for the current event // in AliEMCALLoader if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; //Get calibration parameters from file or digitizer default values. GetCalibrationParameters() ; //Get dead channel map from file or digitizer default values. GetCaloCalibPedestal() ; fNumberOfECAClusters = 0; MakeClusters() ; //only the real clusters if(fToUnfold) MakeUnfolding() ; Int_t index ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < fRecPoints->GetEntries(); index++) { dynamic_cast(fRecPoints->At(index))->EvalAll(fECAW0,fDigitsArr) ; //For each rec.point set the distance to the nearest bad crystal dynamic_cast(fRecPoints->At(index))->EvalDistanceToBadChannels(fCaloPed); } fRecPoints->Sort() ; for(index = 0; index < fRecPoints->GetEntries(); index++) { (dynamic_cast(fRecPoints->At(index)))->SetIndexInList(index) ; (dynamic_cast(fRecPoints->At(index)))->Print(); } fTreeR->Fill(); if(strstr(option,"deb") || strstr(option,"all")) PrintRecPoints(option) ; AliDebug(1,Form("EMCAL Clusterizer found %d Rec Points",fRecPoints->GetEntriesFast())); fRecPoints->Delete(); if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); printf("Exec took %f seconds for Clusterizing", gBenchmark->GetCpuTime("EMCALClusterizer")); } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALRecPoint * recPoint, AliEMCALDigit ** maxAt, const Float_t* maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the // positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 // electromagnetic showers if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); if(!gMinuit) gMinuit = new TMinuit(100) ; gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(recPoint,0) ; toMinuit->AddAt(fDigitsArr,1) ; toMinuit->AddAt(fGeom,2) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Double_t x = 0.; Double_t y = 0.; Double_t z = 0.; fGeom->RelPosCellInSModule(digit->GetId(), y, x, z); Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; // The number of function call slightly depends on it. //Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls // gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err = 0. ; Double_t val = 0. ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2, Bool_t & shared) const { // Gives the neighbourness of two digits = 0 are not neighbour ; continue searching // = 1 are neighbour // = 2 is in different SM; continue searching // In case it is in different SM, but same phi rack, check if neigbours at eta=0 // neighbours are defined as digits having at least a common side // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster static Int_t nSupMod1=0, nModule1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nModule2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; shared = kFALSE; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nModule1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nModule2,nIphi2,nIeta2); fGeom->GetCellPhiEtaIndexInSModule(nSupMod1,nModule1,nIphi1,nIeta1, iphi1,ieta1); fGeom->GetCellPhiEtaIndexInSModule(nSupMod2,nModule2,nIphi2,nIeta2, iphi2,ieta2); //If different SM, check if they are in the same phi, then consider cells close to eta=0 as neighbours; May 2010 if(nSupMod1 != nSupMod2 ) { //Check if the 2 SM are in the same PHI position (0,1), (2,3), ... Float_t smPhi1 = fGeom->GetEMCGeometry()->GetPhiCenterOfSM(nSupMod1); Float_t smPhi2 = fGeom->GetEMCGeometry()->GetPhiCenterOfSM(nSupMod2); if(!TMath::AreEqualAbs(smPhi1, smPhi2, 1e-3)) return 2; //Not phi rack equal, not neighbours // In case of a shared cluster, index of SM in C side, columns start at 48 and ends at 48*2 // C Side impair SM, nSupMod%2=1; A side pair SM nSupMod%2=0 if(nSupMod1%2) ieta1+=AliEMCALGeoParams::fgkEMCALCols; else ieta2+=AliEMCALGeoParams::fgkEMCALCols; shared = kTRUE; // maybe a shared cluster, we know this later, set it for the moment. }//Different SM, same phi Int_t rowdiff = TMath::Abs(iphi1 - iphi2); Int_t coldiff = TMath::Abs(ieta1 - ieta2) ; // neighbours with at least common side; May 11, 2007 if ((coldiff==0 && TMath::Abs(rowdiff)==1) || (rowdiff==0 && TMath::Abs(coldiff)==1)) { //Diagonal? //if ((coldiff==0 && TMath::Abs(rowdiff==1)) || (rowdiff==0 && TMath::Abs(coldiff==1)) || (TMath::Abs(rowdiff)==1 && TMath::Abs(coldiff==1))) rv = 1; if (gDebug == 2) printf("AliEMCALClusterizerv1::AreNeighbours(): id1=%d, (row %d, col %d) ; id2=%d, (row %d, col %d), shared %d \n", d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2, shared); return 1; }//Neighbours else { shared = kFALSE; return 2 ; }//Not neighbours } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits // Mar 03, 2007 by PAI if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); fRecPoints->Clear(); // Set up TObjArray with pointers to digits to work on TObjArray *digitsC = new TObjArray(); TIter nextdigit(fDigitsArr); AliEMCALDigit *digit; while ( (digit = dynamic_cast(nextdigit())) ) { digitsC->AddLast(digit); } double e = 0.0, ehs = 0.0; TIter nextdigitC(digitsC); while ( (digit = dynamic_cast(nextdigitC())) ) { // clean up digits e = Calibrate(digit->GetAmplitude(), digit->GetTime(),digit->GetId());//Time or TimeR? if ( e < fMinECut) //|| digit->GetTimeR() > fTimeCut ) // time window of cell checked in calibrate digitsC->Remove(digit); else ehs += e; } AliDebug(1,Form("MakeClusters: Number of digits %d -> (e %f), ehs %f\n", fDigitsArr->GetEntries(),fMinECut,ehs)); nextdigitC.Reset(); while ( (digit = dynamic_cast(nextdigitC())) ) { // scan over the list of digitsC TArrayI clusterECAdigitslist(fDigitsArr->GetEntries()); if(fGeom->CheckAbsCellId(digit->GetId()) && (Calibrate(digit->GetAmplitude(), digit->GetTime(),digit->GetId()) > fECAClusteringThreshold ) ){ // start a new Tower RecPoint if(fNumberOfECAClusters >= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint *recPoint = new AliEMCALRecPoint("") ; fRecPoints->AddAt(recPoint, fNumberOfECAClusters) ; recPoint = dynamic_cast(fRecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; recPoint->SetClusterType(AliVCluster::kEMCALClusterv1); recPoint->AddDigit(*digit, Calibrate(digit->GetAmplitude(), digit->GetTime(),digit->GetId()),kFALSE) ; //Time or TimeR? TObjArray clusterDigits; clusterDigits.AddLast(digit); digitsC->Remove(digit) ; AliDebug(1,Form("MakeClusters: OK id = %d, ene = %f , cell.th. = %f \n", digit->GetId(), Calibrate(digit->GetAmplitude(),digit->GetTime(),digit->GetId()), fECAClusteringThreshold)); //Time or TimeR? Float_t time = digit->GetTime();//Time or TimeR? // Grow cluster by finding neighbours TIter nextClusterDigit(&clusterDigits); while ( (digit = dynamic_cast(nextClusterDigit())) ) { // scan over digits in cluster TIter nextdigitN(digitsC); AliEMCALDigit *digitN = 0; // digi neighbor while ( (digitN = (AliEMCALDigit *)nextdigitN()) ) { // scan over all digits to look for neighbours //Do not add digits with too different time Bool_t shared = kFALSE;//cluster shared by 2 SuperModules? if(TMath::Abs(time - digitN->GetTime()) > fTimeCut ) continue; //Time or TimeR? if (AreNeighbours(digit, digitN, shared)==1) { // call (digit,digitN) in THAT order !!!!! recPoint->AddDigit(*digitN, Calibrate(digitN->GetAmplitude(), digitN->GetTime(), digitN->GetId()),shared) ;//Time or TimeR? clusterDigits.AddLast(digitN) ; digitsC->Remove(digitN) ; } // if(ineb==1) } // scan over digits } // scan over digits already in cluster if(recPoint) AliDebug(2,Form("MakeClusters: %d digitd, energy %f \n", clusterDigits.GetEntries(), recPoint->GetEnergy())); } // If seed found } // while digit delete digitsC ; AliDebug(1,Form("total no of clusters %d from %d digits",fNumberOfECAClusters,fDigitsArr->GetEntriesFast())); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() { // Unfolds clusters using the shape of an ElectroMagnetic shower // Performs unfolding of all clusters if(fNumberOfECAClusters > 0){ if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Int_t nModulesToUnfold = fGeom->GetNCells(); Int_t numberofNotUnfolded = fNumberOfECAClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliEMCALRecPoint * recPoint = dynamic_cast( fRecPoints->At(index) ) ; TVector3 gpos; Int_t absId = -1; recPoint->GetGlobalPosition(gpos); fGeom->GetAbsCellIdFromEtaPhi(gpos.Eta(),gpos.Phi(),absId); if(absId > nModulesToUnfold) break ; Int_t nMultipl = recPoint->GetMultiplicity() ; AliEMCALDigit ** maxAt = new AliEMCALDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = recPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fECALocMaxCut,fDigitsArr) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(recPoint, nMax, maxAt, maxAtEnergy) ; fRecPoints->Remove(recPoint); fRecPoints->Compress() ; index-- ; fNumberOfECAClusters-- ; numberofNotUnfolded-- ; } else{ recPoint->SetNExMax(1) ; //Only one local maximum } delete[] maxAt ; delete[] maxAtEnergy ; } } // End of Unfolding of clusters } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t x, Double_t y) { // Shape of the shower // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r = sqrt(x*x+y*y); Double_t r133 = TMath::Power(r, 1.33) ; Double_t r669 = TMath::Power(r, 6.69) ; Double_t shape = TMath::Exp( -r133 * (1. / (1.57 + 0.0860 * r133) - 0.55 / (1 + 0.000563 * r669) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALRecPoint * iniTower, Int_t nMax, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Bool_t rv = FindFit(iniTower, maxAt, maxAtEnergy, nPar, fitparameters) ; if( !rv ) { // Fit failed, return and remove cluster iniTower->SetNExMax(-1) ; delete[] fitparameters ; return ; } // create unfolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with // fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy // deposition Int_t nDigits = iniTower->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ; Double_t xDigit=0.,yDigit=0.,zDigit=0. ; Float_t xpar=0.,zpar=0.,epar=0. ; AliEMCALDigit * digit = 0 ; Int_t * digitsList = iniTower->GetDigitsList() ; Int_t iparam = 0 ; Int_t iDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At(digitsList[iDigit] ) ) ; fGeom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); efit[iDigit] = 0; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; efit[iDigit] += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } } // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed between new clusters proportionally // to its contribution to efit Float_t * energiesList = iniTower->GetEnergiesList() ; Float_t ratio = 0 ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; AliEMCALRecPoint * recPoint = 0 ; if(fNumberOfECAClusters >= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters) ; (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ; recPoint = dynamic_cast( fRecPoints->At(fNumberOfECAClusters) ) ; fNumberOfECAClusters++ ; recPoint->SetNExMax((Int_t)nPar/3) ; Float_t eDigit = 0. ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At( digitsList[iDigit] ) ) ; fGeom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); ratio = epar * ShowerShape(xDigit - xpar,zDigit - zpar) / efit[iDigit] ; eDigit = energiesList[iDigit] * ratio ; recPoint->AddDigit( *digit, eDigit, kFALSE ) ; //FIXME, need to study the shared case } } delete[] fitparameters ; delete[] efit ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = dynamic_cast( gMinuit->GetObjectFit() ) ; AliEMCALRecPoint * recPoint = dynamic_cast( toMinuit->At(0) ) ; TClonesArray * digits = dynamic_cast( toMinuit->At(1) ) ; // A bit buggy way to get an access to the geometry // To be revised! AliEMCALGeometry *geom = dynamic_cast(toMinuit->At(2)); Int_t * digitsList = recPoint->GetDigitsList() ; Int_t nOdigits = recPoint->GetDigitsMultiplicity() ; Float_t * energiesList = recPoint->GetEnergiesList() ; fret = 0. ; Int_t iparam ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit = 0. ; AliEMCALDigit * digit ; Int_t iDigit ; for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { digit = dynamic_cast( digits->At( digitsList[iDigit] ) ); Double_t xDigit=0 ; Double_t zDigit=0 ; Double_t yDigit=0 ;//not used yet, assumed to be 0 geom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0. ; while(iParam < nPar ){ Double_t dx = (xDigit - x[iParam]) ; iParam++ ; Double_t dz = (zDigit - x[iParam]) ; iParam++ ; efit += x[iParam] * ShowerShape(dx,dz) ; iParam++ ; } Double_t sum = 2. * (efit - energiesList[iDigit]) / energiesList[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); Double_t shape = sum * ShowerShape(xDigit - xpar,zDigit - zpar) ; Double_t r133 = TMath::Power(dr, 1.33); Double_t r669 = TMath::Power(dr,6.69); Double_t deriv =-1.33 * TMath::Power(dr,0.33)*dr * ( 1.57 / ( (1.57 + 0.0860 * r133) * (1.57 + 0.0860 * r133) ) - 0.55 / (1 + 0.000563 * r669) / ( (1 + 0.000563 * r669) * (1 + 0.000563 * r669) ) ) ; Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; efit += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } fret += (efit-energiesList[iDigit])*(efit-energiesList[iDigit])/energiesList[iDigit] ; // Here we assume, that sigma = sqrt(E) } }