/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) // August 2002 Yves Schutz: clone PHOS as closely as possible and intoduction // of new IO (à la PHOS) // Mar 2007, Aleksei Pavlinov - new algoritmh of pseudo clusters ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include class TROOT; #include #include class TFolder; #include #include #include class TSystem; #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliRunLoader.h" #include "AliRun.h" #include "AliESD.h" #include "AliEMCALClusterizerv1.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCAL.h" #include "AliEMCALGeometry.h" #include "AliEMCALRecParam.h" #include "AliEMCALReconstructor.h" #include "AliCDBManager.h" class AliCDBStorage; #include "AliCDBEntry.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer(), fGeom(0), fDefaultInit(kFALSE), fToUnfold(kFALSE), fNumberOfECAClusters(0),fCalibData(0), fADCchannelECA(0.),fADCpedestalECA(0.),fECAClusteringThreshold(0.),fECALocMaxCut(0.), fECAW0(0.),fTimeCut(0.),fMinECut(0.) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(AliEMCALGeometry* geometry) : AliEMCALClusterizer(), fGeom(geometry), fDefaultInit(kFALSE), fToUnfold(kFALSE), fNumberOfECAClusters(0),fCalibData(0), fADCchannelECA(0.),fADCpedestalECA(0.),fECAClusteringThreshold(0.),fECALocMaxCut(0.), fECAW0(0.),fTimeCut(0.),fMinECut(0.) { // ctor with the indication of the file where header Tree and digits Tree are stored // use this contructor to avoid usage of Init() which uses runloader // change needed by HLT - MP InitParameters() ; // Note for the future: the use on runloader should be avoided or optional at least // another way is to make Init virtual and protected at least such that the deriving classes can overload // Init() ; // if (!fGeom) { AliFatal("Geometry not initialized."); } if(!gMinuit) gMinuit = new TMinuit(100) ; } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp, Int_t AbsId) { // Convert digitized amplitude into energy. // Calibration parameters are taken from calibration data base for raw data, // or from digitizer parameters for simulated data. if(fCalibData){ if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Int_t iSupMod = -1; Int_t nModule = -1; Int_t nIphi = -1; Int_t nIeta = -1; Int_t iphi = -1; Int_t ieta = -1; Bool_t bCell = fGeom->GetCellIndex(AbsId, iSupMod, nModule, nIphi, nIeta) ; if(!bCell) { fGeom->PrintGeometry(); Error("Calibrate()"," Wrong cell id number : %i", AbsId); assert(0); } fGeom->GetCellPhiEtaIndexInSModule(iSupMod,nModule,nIphi, nIeta,iphi,ieta); fADCchannelECA = fCalibData->GetADCchannel (iSupMod,ieta,iphi); fADCpedestalECA = fCalibData->GetADCpedestal(iSupMod,ieta,iphi); return -fADCpedestalECA + amp * fADCchannelECA ; } else //Return energy with default parameters if calibration is not available return -fADCpedestalECA + amp * fADCchannelECA ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Digits2Clusters(Option_t * option) { // Steering method to perform clusterization for the current event // in AliEMCALLoader if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; //Get calibration parameters from file or digitizer default values. GetCalibrationParameters() ; fNumberOfECAClusters = 0; MakeClusters() ; //only the real clusters if(fToUnfold) MakeUnfolding() ; Int_t index ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < fRecPoints->GetEntries(); index++) { dynamic_cast(fRecPoints->At(index))->EvalAll(fECAW0,fDigitsArr) ; } fRecPoints->Sort() ; for(index = 0; index < fRecPoints->GetEntries(); index++) { (dynamic_cast(fRecPoints->At(index)))->SetIndexInList(index) ; (dynamic_cast(fRecPoints->At(index)))->Print(); } fTreeR->Fill(); if(strstr(option,"deb") || strstr(option,"all")) PrintRecPoints(option) ; AliDebug(1,Form("EMCAL Clusterizer found %d Rec Points",fRecPoints->GetEntriesFast())); if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); printf("Exec took %f seconds for Clusterizing", gBenchmark->GetCpuTime("EMCALClusterizer")); } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALRecPoint * RecPoint, AliEMCALDigit ** maxAt, Float_t* maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the // positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 // electromagnetic showers if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(RecPoint,0) ; toMinuit->AddAt(fDigitsArr,1) ; toMinuit->AddAt(fGeom,2) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Double_t x = 0.; Double_t y = 0.; Double_t z = 0.; fGeom->RelPosCellInSModule(digit->GetId(), y, x, z); Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; // The number of function call slightly depends on it. //Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls // gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { // Set calibration parameters: // if calibration database exists, they are read from database, // otherwise, they are taken from digitizer. // // It is a user responsilibity to open CDB before reconstruction, // for example: // AliCDBStorage* storage = AliCDBManager::Instance()->GetStorage("local://CalibDB"); //Check if calibration is stored in data base if(!fCalibData && (AliCDBManager::Instance()->IsDefaultStorageSet())) { AliCDBEntry *entry = (AliCDBEntry*) AliCDBManager::Instance()->Get("EMCAL/Calib/Data"); if (entry) fCalibData = (AliEMCALCalibData*) entry->GetObject(); } if(!fCalibData) AliFatal("Calibration parameters not found in CDB!"); } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks AliRunLoader *rl = AliRunLoader::GetRunLoader(); if (rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); else fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); AliDebug(1,Form("geom 0x%x",fGeom)); if(!gMinuit) gMinuit = new TMinuit(100) ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { // Initializes the parameters for the Clusterizer fNumberOfECAClusters = 0; fTimeCut = 300e-9 ; // 300 ns time cut (to be tuned) fCalibData = 0 ; const AliEMCALRecParam* recParam = AliEMCALReconstructor::GetRecParam(); if(!recParam) { AliFatal("Reconstruction parameters for EMCAL not set!"); } else { fECAClusteringThreshold = recParam->GetClusteringThreshold(); fECAW0 = recParam->GetW0(); fMinECut = recParam->GetMinECut(); fToUnfold = recParam->GetUnfold(); if(fToUnfold) AliWarning("Cluster Unfolding ON. Implementing only for eta=0 case!!!"); fECALocMaxCut = recParam->GetLocMaxCut(); AliDebug(1,Form("Reconstruction parameters: fECAClusteringThreshold=%.3f, fECAW=%.3f, fMinECut=%.3f, fToUnfold=%d, fECALocMaxCut=%.3f", fECAClusteringThreshold,fECAW0,fMinECut,fToUnfold,fECALocMaxCut)); } } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2) const { // Gives the neighbourness of two digits = 0 are not neighbour ; continue searching // = 1 are neighbour // = 2 is in different SM; continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster static Int_t rv; static Int_t nSupMod1=0, nModule1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nModule2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; static Int_t rowdiff, coldiff; rv = 0 ; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nModule1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nModule2,nIphi2,nIeta2); if(nSupMod1 != nSupMod2) return 2; // different SM fGeom->GetCellPhiEtaIndexInSModule(nSupMod1,nModule1,nIphi1,nIeta1, iphi1,ieta1); fGeom->GetCellPhiEtaIndexInSModule(nSupMod2,nModule2,nIphi2,nIeta2, iphi2,ieta2); rowdiff = TMath::Abs(iphi1 - iphi2); coldiff = TMath::Abs(ieta1 - ieta2) ; // neighbours with at least commom side; May 11, 2007 if ((coldiff==0 && abs(rowdiff)==1) || (rowdiff==0 && abs(coldiff)==1)) rv = 1; if (gDebug == 2 && rv==1) printf("AreNeighbours: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d \n", rv, d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2); return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits // Mar 03, 2007 by PAI if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); fRecPoints->Clear(); // Set up TObjArray with pointers to digits to work on TObjArray *digitsC = new TObjArray(); TIter nextdigit(fDigitsArr); AliEMCALDigit *digit; while ( (digit = dynamic_cast(nextdigit())) ) { digitsC->AddLast(digit); } double e = 0.0, ehs = 0.0; TIter nextdigitC(digitsC); while ( (digit = dynamic_cast(nextdigitC())) ) { // clean up digits e = Calibrate(digit->GetAmp(), digit->GetId()); if ( e < fMinECut || digit->GetTimeR() > fTimeCut ) digitsC->Remove(digit); else ehs += e; } AliDebug(1,Form("MakeClusters: Number of digits %d -> (e %f), ehs %d\n", fDigitsArr->GetEntries(),fMinECut,ehs)); nextdigitC.Reset(); while ( (digit = dynamic_cast(nextdigitC())) ) { // scan over the list of digitsC TArrayI clusterECAdigitslist(fDigitsArr->GetEntries()); if(fGeom->CheckAbsCellId(digit->GetId()) && (Calibrate(digit->GetAmp(), digit->GetId()) > fECAClusteringThreshold ) ){ // start a new Tower RecPoint if(fNumberOfECAClusters >= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint *recPoint = new AliEMCALRecPoint("") ; fRecPoints->AddAt(recPoint, fNumberOfECAClusters) ; recPoint = dynamic_cast(fRecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; recPoint->SetClusterType(AliESDCaloCluster::kEMCALClusterv1); recPoint->AddDigit(*digit, Calibrate(digit->GetAmp(), digit->GetId())) ; TObjArray clusterDigits; clusterDigits.AddLast(digit); digitsC->Remove(digit) ; AliDebug(1,Form("MakeClusters: OK id = %d, ene = %f , cell.th. = %f \n", digit->GetId(), Calibrate(digit->GetAmp(),digit->GetId()), fECAClusteringThreshold)); // Grow cluster by finding neighbours TIter nextClusterDigit(&clusterDigits); while ( (digit = dynamic_cast(nextClusterDigit())) ) { // scan over digits in cluster TIter nextdigitN(digitsC); AliEMCALDigit *digitN = 0; // digi neighbor while ( (digitN = (AliEMCALDigit *)nextdigitN()) ) { // scan over all digits to look for neighbours if (AreNeighbours(digit, digitN)==1) { // call (digit,digitN) in THAT oder !!!!! recPoint->AddDigit(*digitN, Calibrate(digitN->GetAmp(),digitN->GetId()) ) ; clusterDigits.AddLast(digitN) ; digitsC->Remove(digitN) ; } // if(ineb==1) } // scan over digits } // scan over digits already in cluster if(recPoint) AliDebug(2,Form("MakeClusters: %d digitd, energy %f \n", clusterDigits.GetEntries(), recPoint->GetEnergy())); } // If seed found } // while digit delete digitsC ; AliDebug(1,Form("total no of clusters %d from %d digits",fNumberOfECAClusters,fDigitsArr->GetEntriesFast())); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() { // Unfolds clusters using the shape of an ElectroMagnetic shower // Performs unfolding of all clusters if(fNumberOfECAClusters > 0){ if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Int_t nModulesToUnfold = fGeom->GetNCells(); Int_t numberofNotUnfolded = fNumberOfECAClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliEMCALRecPoint * RecPoint = dynamic_cast( fRecPoints->At(index) ) ; TVector3 gpos; Int_t absId; RecPoint->GetGlobalPosition(gpos); fGeom->GetAbsCellIdFromEtaPhi(gpos.Eta(),gpos.Phi(),absId); if(absId > nModulesToUnfold) break ; Int_t nMultipl = RecPoint->GetMultiplicity() ; AliEMCALDigit ** maxAt = new AliEMCALDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = RecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fECALocMaxCut,fDigitsArr) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(RecPoint, nMax, maxAt, maxAtEnergy) ; fRecPoints->Remove(RecPoint); fRecPoints->Compress() ; index-- ; fNumberOfECAClusters-- ; numberofNotUnfolded-- ; } else{ RecPoint->SetNExMax(1) ; //Only one local maximum } delete[] maxAt ; delete[] maxAtEnergy ; } } // End of Unfolding of clusters } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t x, Double_t y) { // Shape of the shower // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r = sqrt(x*x+y*y); Double_t r133 = TMath::Power(r, 1.33) ; Double_t r669 = TMath::Power(r, 6.69) ; Double_t shape = TMath::Exp( -r133 * (1. / (1.57 + 0.0860 * r133) - 0.55 / (1 + 0.000563 * r669) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALRecPoint * iniTower, Int_t nMax, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Bool_t rv = FindFit(iniTower, maxAt, maxAtEnergy, nPar, fitparameters) ; if( !rv ) { // Fit failed, return and remove cluster iniTower->SetNExMax(-1) ; delete[] fitparameters ; return ; } // create unfolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with // fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy // deposition Int_t nDigits = iniTower->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ; Double_t xDigit=0.,yDigit=0.,zDigit=0. ; Float_t xpar=0.,zpar=0.,epar=0. ; AliEMCALDigit * digit = 0 ; Int_t * Digits = iniTower->GetDigitsList() ; Int_t iparam ; Int_t iDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At(Digits[iDigit] ) ) ; fGeom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); efit[iDigit] = 0; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; efit[iDigit] += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } } // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed between new clusters proportionally // to its contribution to efit Float_t * Energies = iniTower->GetEnergiesList() ; Float_t ratio ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; AliEMCALRecPoint * RecPoint = 0 ; if(fNumberOfECAClusters >= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters) ; (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ; RecPoint = dynamic_cast( fRecPoints->At(fNumberOfECAClusters) ) ; fNumberOfECAClusters++ ; RecPoint->SetNExMax((Int_t)nPar/3) ; Float_t eDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At( Digits[iDigit] ) ) ; fGeom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); ratio = epar * ShowerShape(xDigit - xpar,zDigit - zpar) / efit[iDigit] ; eDigit = Energies[iDigit] * ratio ; RecPoint->AddDigit( *digit, eDigit ) ; } } delete[] fitparameters ; delete[] efit ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = dynamic_cast( gMinuit->GetObjectFit() ) ; AliEMCALRecPoint * RecPoint = dynamic_cast( toMinuit->At(0) ) ; TClonesArray * digits = dynamic_cast( toMinuit->At(1) ) ; // A bit buggy way to get an access to the geometry // To be revised! AliEMCALGeometry *geom = dynamic_cast(toMinuit->At(2)); Int_t * Digits = RecPoint->GetDigitsList() ; Int_t nOdigits = RecPoint->GetDigitsMultiplicity() ; Float_t * Energies = RecPoint->GetEnergiesList() ; fret = 0. ; Int_t iparam ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit ; AliEMCALDigit * digit ; Int_t iDigit ; for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { digit = dynamic_cast( digits->At( Digits[iDigit] ) ); Double_t xDigit=0 ; Double_t zDigit=0 ; Double_t yDigit=0 ;//not used yet, assumed to be 0 geom->RelPosCellInSModule(digit->GetId(), yDigit, xDigit, zDigit); if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0 ; while(iParam < nPar ){ Double_t dx = (xDigit - x[iParam]) ; iParam++ ; Double_t dz = (zDigit - x[iParam]) ; iParam++ ; efit += x[iParam] * ShowerShape(dx,dz) ; iParam++ ; } Double_t sum = 2. * (efit - Energies[iDigit]) / Energies[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); Double_t shape = sum * ShowerShape(xDigit - xpar,zDigit - zpar) ; Double_t r133 = TMath::Power(dr, 1.33); Double_t r669 = TMath::Power(dr,6.69); Double_t deriv =-1.33 * TMath::Power(dr,0.33)*dr * ( 1.57 / ( (1.57 + 0.0860 * r133) * (1.57 + 0.0860 * r133) ) - 0.55 / (1 + 0.000563 * r669) / ( (1 + 0.000563 * r669) * (1 + 0.000563 * r669) ) ) ; Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; efit += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } fret += (efit-Energies[iDigit])*(efit-Energies[iDigit])/Energies[iDigit] ; // Here we assume, that sigma = sqrt(E) } } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * /*option*/)const { // Print clusterizer parameters TString message("\n") ; if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(Version()) ; printf("--------------- "); printf(taskName.Data()) ; printf(" "); printf("Clusterizing digits: "); printf("\n ECA Local Maximum cut = %f", fECALocMaxCut); printf("\n ECA Logarithmic weight = %f", fECAW0); if(fToUnfold) printf("\nUnfolding on\n"); else printf("\nUnfolding off\n"); printf("------------------------------------------------------------------"); } else printf("AliEMCALClusterizerv1 not initialized ") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliEMCALClusterizer if(strstr(option,"deb")) { printf("PrintRecPoints: Clusterization result:") ; printf(" Found %d ECA Rec Points\n ", fRecPoints->GetEntriesFast()) ; } if(strstr(option,"all")) { if(strstr(option,"deb")) { printf("\n-----------------------------------------------------------------------\n") ; printf("Clusters in ECAL section\n") ; printf("Index Ene(GeV) Multi Module GX GY GZ lX lY lZ Dispersion Lambda 1 Lambda 2 # of prim Primaries list\n") ; } Int_t index =0; for (index = 0 ; index < fRecPoints->GetEntries() ; index++) { AliEMCALRecPoint * rp = dynamic_cast(fRecPoints->At(index)) ; TVector3 globalpos; //rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); if(strstr(option,"deb")) printf("\n%6d %8.4f %3d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; if(strstr(option,"deb")){ for (Int_t iprimary=0; iprimary