/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* $Log: 1 October 2000. Yuri Kharlov: AreNeighbours() PPSD upper layer is considered if number of layers>1 18 October 2000. Yuri Kharlov: AliEMCALClusterizerv1() CPV clusterizing parameters added MakeClusters() After first PPSD digit remove EMC digits only once */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include "TROOT.h" #include "TFile.h" #include "TFolder.h" #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TSystem.h" #include "TBenchmark.h" // --- Standard library --- #include #include // --- AliRoot header files --- #include "AliEMCALClusterizerv1.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCALTowerRecPoint.h" #include "AliEMCAL.h" #include "AliEMCALGetter.h" #include "AliRun.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer() { // default ctor (to be used mainly by Streamer) InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const char* headerFile,const char* name) :AliEMCALClusterizer(headerFile, name) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; fDefaultInit = kFALSE ; Init() ; } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor // fDefaultInit = kTRUE if Clusterizer created by default ctor (to get just the parameters) if (!fDefaultInit) { AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; // remove the task from the folder list gime->RemoveTask("C",GetName()) ; // remove the RecPoints from the folder list TString name(GetName()) ; name.Remove(name.Index(":")) ; gime->RemoveObjects("D", name) ; // Digits gime->RemoveObjects("RT", name) ; // TowerRecPoints gime->RemoveObjects("RP", name) ; // PreShoRecPoints // Delete gAlice gime->CloseFile() ; } } //____________________________________________________________________________ const TString AliEMCALClusterizerv1::BranchName() const { TString branchName(GetName() ) ; branchName.Remove(branchName.Index(Version())-1) ; return branchName ; } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp, Bool_t inpresho) const { if ( inpresho ) // calibrate as pre shower return -fADCpedestalPreSho + amp * fADCchannelPreSho ; else //calibrate as tower return -fADCpedestalTower + amp * fADCchannelTower ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Exec(Option_t * option) { // Steering method if( strcmp(GetName(), "")== 0 ) Init() ; if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; gAlice->GetEvent(0) ; //check, if the branch with name of this" already exits? TObjArray * lob = (TObjArray*)gAlice->TreeR()->GetListOfBranches() ; TIter next(lob) ; TBranch * branch = 0 ; Bool_t emcaltowerfound = kFALSE, emcalpreshofound = kFALSE, clusterizerfound = kFALSE ; TString branchname = GetName() ; branchname.Remove(branchname.Index(Version())-1) ; while ( (branch = (TBranch*)next()) && (!emcaltowerfound || !emcalpreshofound || !clusterizerfound) ) { if ( (strcmp(branch->GetName(), "EMCALTowerRP")==0) && (strcmp(branch->GetTitle(), branchname.Data())==0) ) emcaltowerfound = kTRUE ; else if ( (strcmp(branch->GetName(), "EMCALPreShoRP")==0) && (strcmp(branch->GetTitle(), branchname.Data())==0) ) emcalpreshofound = kTRUE ; else if ((strcmp(branch->GetName(), "AliEMCALClusterizer")==0) && (strcmp(branch->GetTitle(), GetName())==0) ) clusterizerfound = kTRUE ; } if ( emcalpreshofound || emcaltowerfound || clusterizerfound ) { cerr << "WARNING: AliEMCALClusterizer::Exec -> Tower(PreSho)RecPoints and/or Clusterizer branch with name " << branchname.Data() << " already exits" << endl ; return ; } AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; Int_t nevents = (Int_t) gAlice->TreeE()->GetEntries() ; Int_t ievent ; for(ievent = 0; ievent < nevents; ievent++){ if(ievent == 0) GetCalibrationParameters() ; fNumberOfTowerClusters = fNumberOfPreShoClusters = 0 ; gime->Event(ievent,"D") ; MakeClusters() ; if(fToUnfold) MakeUnfolding() ; WriteRecPoints(ievent) ; if(strstr(option,"deb")) PrintRecPoints(option) ; //increment the total number of digits per run fRecPointsInRun += gime->TowerRecPoints()->GetEntriesFast() ; fRecPointsInRun += gime->PreShowerRecPoints()->GetEntriesFast() ; } if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); cout << "AliEMCALClusterizer:" << endl ; cout << " took " << gBenchmark->GetCpuTime("EMCALClusterizer") << " seconds for Clusterizing " << gBenchmark->GetCpuTime("EMCALClusterizer")/nevents << " seconds per event " << endl ; cout << endl ; } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALTowerRecPoint * emcRP, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; TClonesArray * digits = gime->Digits() ; gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; AliEMCALGeometry * geom = gime->EMCALGeometry() ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[4] ; Float_t x = 0.; Float_t z = 0.; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->PosInAlice(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ cout << "EMCAL Unfolding> Unable to set initial value for fit procedure : x = " << x << endl ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ cout << "EMCAL Unfolding> Unable to set initial value for fit procedure : z = " << z << endl ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ cout << "EMCAL Unfolding> Unable to set initial value for fit procedure : energy = " << energy << endl ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found cout << "EMCAL Unfolding> Fit not converged, cluster abandoned "<< endl ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; TString branchname = GetName() ; branchname.Remove(branchname.Index(Version())-1) ; AliEMCALDigitizer * dig = gime->Digitizer(branchname) ; fADCchannelTower = dig->GetTowerchannel() ; fADCpedestalTower = dig->GetTowerpedestal(); fADCchannelPreSho = dig->GetPreShochannel() ; fADCpedestalPreSho = dig->GetPreShopedestal() ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks if ( strcmp(GetTitle(), "") == 0 ) SetTitle("galice.root") ; TString branchname = GetName() ; branchname.Remove(branchname.Index(Version())-1) ; AliEMCALGetter * gime = AliEMCALGetter::GetInstance(GetTitle(), branchname, "update") ; if ( gime == 0 ) { cerr << "ERROR: AliEMCALClusterizerv1::Init -> Could not obtain the Getter object !" << endl ; return ; } const AliEMCALGeometry * geom = gime->EMCALGeometry() ; fNTowers = geom->GetNZ() * geom->GetNPhi() ; if(!gMinuit) gMinuit = new TMinuit(100) ; gime->PostClusterizer(this) ; // create a folder on the white board gime->PostRecPoints(branchname ) ; gime->PostDigits(branchname) ; gime->PostDigitizer(branchname) ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { fNumberOfPreShoClusters = fNumberOfTowerClusters = 0 ; fPreShoClusteringThreshold = 0.0001; fTowerClusteringThreshold = 0.2; fTowerLocMaxCut = 0.03 ; fPreShoLocMaxCut = 0.03 ; fW0 = 4.5 ; fW0CPV = 4.0 ; fTimeGate = 1.e-8 ; fToUnfold = kFALSE ; fHeaderFileName = GetTitle() ; fDigitsBranchTitle = GetName() ; TString clusterizerName( GetName()) ; if (clusterizerName.IsNull() ) clusterizerName = "Default" ; clusterizerName.Append(":") ; clusterizerName.Append(Version()) ; SetName(clusterizerName) ; fRecPointsInRun = 0 ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster AliEMCALGeometry * geom = AliEMCALGetter::GetInstance()->EMCALGeometry() ; Int_t rv = 0 ; Int_t relid1[4] ; geom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[4] ; geom->AbsToRelNumbering(d2->GetId(), relid2) ; if ( (relid1[0] == relid2[0]) && (relid1[1]==relid2[1]) ) { // inside the same EMCAL Arm Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ if((relid1[1] != 0) || (TMath::Abs(d1->GetTime() - d2->GetTime() ) < fTimeGate)) rv = 1 ; } else { if((relid2[2] > relid1[2]) && (relid2[3] > relid1[3]+1)) rv = 2; // Difference in row numbers is too large to look further } } else { if( (relid1[0] < relid2[0]) || (relid1[1] != relid2[1]) ) rv=2 ; } return rv ; } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::IsInTower(AliEMCALDigit * digit) const { // Tells if (true) or not (false) the digit is in a EMCAL-Tower Bool_t rv = kFALSE ; if (!digit->IsInPreShower()) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::IsInPreShower(AliEMCALDigit * digit) const { // Tells if (true) or not (false) the digit is in a EMCAL-PreShower Bool_t rv = kFALSE ; if (digit->IsInPreShower()) rv = kTRUE; return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::WriteRecPoints(Int_t event) { // Creates new branches with given title // fills and writes into TreeR. AliEMCALGetter *gime = AliEMCALGetter::GetInstance() ; TObjArray * towerRecPoints = gime->TowerRecPoints(BranchName()) ; TObjArray * preshoRecPoints = gime->PreShowerRecPoints(BranchName()) ; TClonesArray * digits = gime->Digits(BranchName()) ; TTree * treeR ; if (!gAlice->TreeR() ) gAlice->MakeTree("R", fSplitFile); treeR = gAlice->TreeR() ; Int_t index ; //Evaluate position, dispersion and other RecPoint properties... for(index = 0; index < towerRecPoints->GetEntries(); index++) (dynamic_cast(towerRecPoints->At(index)))->EvalAll(fW0,digits) ; towerRecPoints->Sort() ; for(index = 0; index < towerRecPoints->GetEntries(); index++) (dynamic_cast(towerRecPoints->At(index)))->SetIndexInList(index) ; towerRecPoints->Expand(towerRecPoints->GetEntriesFast()) ; //Now the same for pre shower for(index = 0; index < preshoRecPoints->GetEntries(); index++) (dynamic_cast(preshoRecPoints->At(index)))->EvalAll(fW0CPV,digits) ; preshoRecPoints->Sort() ; for(index = 0; index < preshoRecPoints->GetEntries(); index++) (dynamic_cast(preshoRecPoints->At(index)))->SetIndexInList(index) ; preshoRecPoints->Expand(preshoRecPoints->GetEntriesFast()) ; //Make branches in TreeR for RecPoints and Clusterizer Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //First Tower branch TBranch * emcBranch = treeR->Branch("EMCALTowerRP","TObjArray",&towerRecPoints,bufferSize,splitlevel); emcBranch->SetTitle(BranchName()); //Now Pre Shower branch TBranch * cpvBranch = treeR->Branch("EMCALPreShoRP","TObjArray",&preshoRecPoints,bufferSize,splitlevel); cpvBranch->SetTitle(BranchName()); //And Finally clusterizer branch AliEMCALClusterizerv1 * cl = (AliEMCALClusterizerv1*)gime->Clusterizer(BranchName()) ; TBranch * clusterizerBranch = treeR->Branch("AliEMCALClusterizer","AliEMCALClusterizerv1", &cl,bufferSize,splitlevel); clusterizerBranch->SetTitle(BranchName()); emcBranch ->Fill() ; cpvBranch ->Fill() ; clusterizerBranch->Fill() ; treeR->AutoSave() ; //Write(0,kOverwrite) ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits TString branchName(GetName()) ; branchName.Remove(branchName.Index(Version())-1) ; AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; TObjArray * towerRecPoints = gime->TowerRecPoints(branchName) ; TObjArray * preshoRecPoints = gime->PreShowerRecPoints(branchName) ; towerRecPoints->Delete() ; preshoRecPoints->Delete() ; TClonesArray * digits = gime->Digits(branchName) ; TClonesArray * digitsC = dynamic_cast(digits->Clone()) ; // Clusterization starts TIter nextdigit(digitsC) ; AliEMCALDigit * digit ; Bool_t notremoved = kTRUE ; while ( (digit = dynamic_cast(nextdigit())) ) { // scan over the list of digitsC AliEMCALRecPoint * clu = 0 ; TArrayI clusterdigitslist(1500) ; Int_t index ; if (( IsInTower (digit) && Calibrate(digit->GetAmp(),digit->IsInPreShower()) > fTowerClusteringThreshold ) || ( IsInPreShower (digit) && Calibrate(digit->GetAmp(),digit->IsInPreShower()) > fPreShoClusteringThreshold ) ) { Int_t iDigitInCluster = 0 ; if ( IsInTower(digit) ) { // start a new Tower RecPoint if(fNumberOfTowerClusters >= towerRecPoints->GetSize()) towerRecPoints->Expand(2*fNumberOfTowerClusters+1) ; towerRecPoints->AddAt(new AliEMCALTowerRecPoint(""), fNumberOfTowerClusters) ; clu = dynamic_cast(towerRecPoints->At(fNumberOfTowerClusters)) ; fNumberOfTowerClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(),digit->IsInPreShower())) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digit) ; } else { // start a new Pre Shower cluster if(fNumberOfPreShoClusters >= preshoRecPoints->GetSize()) preshoRecPoints->Expand(2*fNumberOfPreShoClusters+1); preshoRecPoints->AddAt(new AliEMCALTowerRecPoint(""), fNumberOfPreShoClusters) ; clu = dynamic_cast(preshoRecPoints->At(fNumberOfPreShoClusters)) ; fNumberOfPreShoClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(),digit->IsInPreShower() ) ); clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digit) ; nextdigit.Reset() ; // Here we remove remaining Tower digits, which cannot make a cluster if( notremoved ) { while( ( digit = dynamic_cast(nextdigit()) ) ) { if( IsInTower(digit) ) digitsC->Remove(digit) ; else break ; } notremoved = kFALSE ; } } // else nextdigit.Reset() ; AliEMCALDigit * digitN ; index = 0 ; while (index < iDigitInCluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterdigitslist[index]) ; index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp(), digitN->IsInPreShower() ) ) ; clusterdigitslist[iDigitInCluster] = digitN->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop; } // switch } // while digitN endofloop: ; nextdigit.Reset() ; } // loop over cluster } // energy theshold } // while digit delete digitsC ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() { Fatal("AliEMCALClusterizerv1::MakeUnfolding", "--> Unfolding not implemented") ; // // Unfolds clusters using the shape of an ElectroMagnetic shower // // Performs unfolding of all EMC/CPV clusters // AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; // const AliEMCALGeometry * geom = gime->EMCALGeometry() ; // TObjArray * emcRecPoints = gime->TowerRecPoints() ; // TObjArray * cpvRecPoints = gime->PreShoRecPoints() ; // TClonesArray * digits = gime->Digits() ; // // Unfold first EMC clusters // if(fNumberOfTowerClusters > 0){ // Int_t nModulesToUnfold = geom->GetNModules() ; // Int_t numberofNotUnfolded = fNumberOfTowerClusters ; // Int_t index ; // for(index = 0 ; index < numberofNotUnfolded ; index++){ // AliEMCALTowerRecPoint * emcRecPoint = (AliEMCALTowerRecPoint *) emcRecPoints->At(index) ; // if(emcRecPoint->GetEMCALMod()> nModulesToUnfold) // break ; // Int_t nMultipl = emcRecPoint->GetMultiplicity() ; // Int_t * maxAt = new Int_t[nMultipl] ; // Float_t * maxAtEnergy = new Float_t[nMultipl] ; // Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fTowerLocMaxCut,digits) ; // if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 // UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; // emcRecPoints->Remove(emcRecPoint); // emcRecPoints->Compress() ; // index-- ; // fNumberOfTowerClusters -- ; // numberofNotUnfolded-- ; // } // delete[] maxAt ; // delete[] maxAtEnergy ; // } // } // // Unfolding of EMC clusters finished // // Unfold now CPV clusters // if(fNumberOfPreShoClusters > 0){ // Int_t nModulesToUnfold = geom->GetNModules() ; // Int_t numberofPreShoNotUnfolded = fNumberOfPreShoClusters ; // Int_t index ; // for(index = 0 ; index < numberofPreShoNotUnfolded ; index++){ // AliEMCALRecPoint * recPoint = (AliEMCALRecPoint *) cpvRecPoints->At(index) ; // if(recPoint->GetEMCALMod()> nModulesToUnfold) // break ; // AliEMCALTowerRecPoint * emcRecPoint = (AliEMCALTowerRecPoint*) recPoint ; // Int_t nMultipl = emcRecPoint->GetMultiplicity() ; // Int_t * maxAt = new Int_t[nMultipl] ; // Float_t * maxAtEnergy = new Float_t[nMultipl] ; // Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fPreShoLocMaxCut,digits) ; // if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 // UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; // cpvRecPoints->Remove(emcRecPoint); // cpvRecPoints->Compress() ; // index-- ; // numberofPreShoNotUnfolded-- ; // fNumberOfPreShoClusters-- ; // } // delete[] maxAt ; // delete[] maxAtEnergy ; // } // } // //Unfolding of PreSho clusters finished } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see EMCAL TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALTowerRecPoint * iniTower, Int_t nMax, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Fatal("AliEMCALClusterizerv1::UnfoldCluster", "--> Unfolding not implemented") ; // AliEMCALGetter * gime = AliEMCALGetter::GetInstance() ; // const AliEMCALGeometry * geom = gime->EMCALGeometry() ; // const TClonesArray * digits = gime->Digits() ; // TObjArray * emcRecPoints = gime->TowerRecPoints() ; // TObjArray * cpvRecPoints = gime->PreShoRecPoints() ; // Int_t nPar = 3 * nMax ; // Float_t * fitparameters = new Float_t[nPar] ; // Bool_t rv = FindFit(iniTower, maxAt, maxAtEnergy, nPar, fitparameters) ; // if( !rv ) { // // Fit failed, return and remove cluster // delete[] fitparameters ; // return ; // } // // create ufolded rec points and fill them with new energy lists // // First calculate energy deposited in each sell in accordance with fit (without fluctuations): efit[] // // and later correct this number in acordance with actual energy deposition // Int_t nDigits = iniTower->GetMultiplicity() ; // Float_t * efit = new Float_t[nDigits] ; // Float_t xDigit=0.,zDigit=0.,distance=0. ; // Float_t xpar=0.,zpar=0.,epar=0. ; // Int_t relid[4] ; // AliEMCALDigit * digit = 0 ; // Int_t * emcDigits = iniTower->GetDigitsList() ; // Int_t iparam ; // Int_t iDigit ; // for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ // digit = (AliEMCALDigit*) digits->At(emcDigits[iDigit] ) ; // geom->AbsToRelNumbering(digit->GetId(), relid) ; // geom->RelPosInModule(relid, xDigit, zDigit) ; // efit[iDigit] = 0; // iparam = 0 ; // while(iparam < nPar ){ // xpar = fitparameters[iparam] ; // zpar = fitparameters[iparam+1] ; // epar = fitparameters[iparam+2] ; // iparam += 3 ; // distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; // distance = TMath::Sqrt(distance) ; // efit[iDigit] += epar * ShowerShape(distance) ; // } // } // // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // // so that energy deposited in each cell is distributed betwin new clusters proportionally // // to its contribution to efit // Float_t * emcEnergies = iniTower->GetEnergiesList() ; // Float_t ratio ; // iparam = 0 ; // while(iparam < nPar ){ // xpar = fitparameters[iparam] ; // zpar = fitparameters[iparam+1] ; // epar = fitparameters[iparam+2] ; // iparam += 3 ; // AliEMCALTowerRecPoint * emcRP = 0 ; // if(iniTower->IsTower()){ //create new entries in fTowerRecPoints... // if(fNumberOfTowerClusters >= emcRecPoints->GetSize()) // emcRecPoints->Expand(2*fNumberOfTowerClusters) ; // (*emcRecPoints)[fNumberOfTowerClusters] = new AliEMCALTowerRecPoint("") ; // emcRP = (AliEMCALTowerRecPoint *) emcRecPoints->At(fNumberOfTowerClusters); // fNumberOfTowerClusters++ ; // } // else{//create new entries in fPreShoRecPoints // if(fNumberOfPreShoClusters >= cpvRecPoints->GetSize()) // cpvRecPoints->Expand(2*fNumberOfPreShoClusters) ; // (*cpvRecPoints)[fNumberOfPreShoClusters] = new AliEMCALPreShoRecPoint("") ; // emcRP = (AliEMCALTowerRecPoint *) cpvRecPoints->At(fNumberOfPreShoClusters); // fNumberOfPreShoClusters++ ; // } // Float_t eDigit ; // for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ // digit = (AliEMCALDigit*) digits->At( emcDigits[iDigit] ) ; // geom->AbsToRelNumbering(digit->GetId(), relid) ; // geom->RelPosInModule(relid, xDigit, zDigit) ; // distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; // distance = TMath::Sqrt(distance) ; // ratio = epar * ShowerShape(distance) / efit[iDigit] ; // eDigit = emcEnergies[iDigit] * ratio ; // emcRP->AddDigit( *digit, eDigit ) ; // } // } // delete[] fitparameters ; // delete[] efit ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do abort() ; // Fatal("AliEMCALClusterizerv1::UnfoldingChiSquare","-->Unfolding not implemented") ; // TList * toMinuit = (TList*) gMinuit->GetObjectFit() ; // AliEMCALTowerRecPoint * emcRP = (AliEMCALTowerRecPoint*) toMinuit->At(0) ; // TClonesArray * digits = (TClonesArray*)toMinuit->At(1) ; // // AliEMCALTowerRecPoint * emcRP = (AliEMCALTowerRecPoint *) gMinuit->GetObjectFit() ; // TowerRecPoint to fit // Int_t * emcDigits = emcRP->GetDigitsList() ; // Int_t nOdigits = emcRP->GetDigitsMultiplicity() ; // Float_t * emcEnergies = emcRP->GetEnergiesList() ; // const AliEMCALGeometry * geom = AliEMCALGetter::GetInstance()->EMCALGeometry() ; // fret = 0. ; // Int_t iparam ; // if(iflag == 2) // for(iparam = 0 ; iparam < nPar ; iparam++) // Grad[iparam] = 0 ; // Will evaluate gradient // Double_t efit ; // AliEMCALDigit * digit ; // Int_t iDigit ; // for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { // digit = (AliEMCALDigit*) digits->At( emcDigits[iDigit] ) ; // Int_t relid[4] ; // Float_t xDigit ; // Float_t zDigit ; // geom->AbsToRelNumbering(digit->GetId(), relid) ; // geom->RelPosInModule(relid, xDigit, zDigit) ; // if(iflag == 2){ // calculate gradient // Int_t iParam = 0 ; // efit = 0 ; // while(iParam < nPar ){ // Double_t distance = (xDigit - x[iParam]) * (xDigit - x[iParam]) ; // iParam++ ; // distance += (zDigit - x[iParam]) * (zDigit - x[iParam]) ; // distance = TMath::Sqrt( distance ) ; // iParam++ ; // efit += x[iParam] * ShowerShape(distance) ; // iParam++ ; // } // Double_t sum = 2. * (efit - emcEnergies[iDigit]) / emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) // iParam = 0 ; // while(iParam < nPar ){ // Double_t xpar = x[iParam] ; // Double_t zpar = x[iParam+1] ; // Double_t epar = x[iParam+2] ; // Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); // Double_t shape = sum * ShowerShape(dr) ; // Double_t r4 = dr*dr*dr*dr ; // Double_t r295 = TMath::Power(dr,2.95) ; // Double_t deriv =-4. * dr*dr * ( 2.32 / ( (2.32 + 0.26 * r4) * (2.32 + 0.26 * r4) ) + // 0.0316 * (1. + 0.0171 * r295) / ( ( 1. + 0.0652 * r295) * (1. + 0.0652 * r295) ) ) ; // Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x // iParam++ ; // Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z // iParam++ ; // Grad[iParam] += shape ; // Derivative over energy // iParam++ ; // } // } // efit = 0; // iparam = 0 ; // while(iparam < nPar ){ // Double_t xpar = x[iparam] ; // Double_t zpar = x[iparam+1] ; // Double_t epar = x[iparam+2] ; // iparam += 3 ; // Double_t distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; // distance = TMath::Sqrt(distance) ; // efit += epar * ShowerShape(distance) ; // } // fret += (efit-emcEnergies[iDigit])*(efit-emcEnergies[iDigit])/emcEnergies[iDigit] ; // // Here we assume, that sigma = sqrt(E) // } } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * option)const { // Print clusterizer parameters if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; cout << "---------------"<< taskName.Data() << " " << GetTitle()<< "-----------" << endl << "Clusterizing digits from the file: " << fHeaderFileName.Data() << endl << " Branch: " << fDigitsBranchTitle.Data() << endl << endl << " EMC Clustering threshold = " << fTowerClusteringThreshold << endl << " EMC Local Maximum cut = " << fTowerLocMaxCut << endl << " EMC Logarothmic weight = " << fW0 << endl << endl << " CPV Clustering threshold = " << fPreShoClusteringThreshold << endl << " CPV Local Maximum cut = " << fPreShoLocMaxCut << endl << " CPV Logarothmic weight = " << fW0CPV << endl << endl ; if(fToUnfold) cout << " Unfolding on " << endl ; else cout << " Unfolding off " << endl ; cout << "------------------------------------------------------------------" <TowerRecPoints() ; TObjArray * preshoRecPoints = AliEMCALGetter::GetInstance()->PreShowerRecPoints() ; cout << "AliEMCALClusterizerv1: : event "<GetEvNumber() << endl ; cout << " Found "<< towerRecPoints->GetEntriesFast() << " TOWER Rec Points and " << preshoRecPoints->GetEntriesFast() << " PRE SHOWER RecPoints" << endl ; fRecPointsInRun += towerRecPoints->GetEntriesFast() ; fRecPointsInRun += preshoRecPoints->GetEntriesFast() ; if(strstr(option,"all")) { cout << "Tower clusters " << endl ; cout << " Index Ene(MeV) Multi Module phi r theta Lambda 1 Lambda 2 # of prim Primaries list " << endl; Int_t index ; for (index = 0 ; index < towerRecPoints->GetEntries() ; index++) { AliEMCALTowerRecPoint * rp = dynamic_cast(towerRecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); cout << setw(4) << rp->GetIndexInList() << " " << setw(7) << setprecision(3) << rp->GetEnergy() << " " << setw(3) << rp->GetMultiplicity() << " " << setw(1) << rp->GetEMCALArm() << " " << setw(5) << setprecision(4) << globalpos.X() << " " << setw(5) << setprecision(4) << globalpos.Y() << " " << setw(5) << setprecision(4) << globalpos.Z() << " " << setw(4) << setprecision(2) << lambda[0] << " " << setw(4) << setprecision(2) << lambda[1] << " " << setw(2) << nprimaries << " " ; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliEMCALTowerRecPoint * rp = dynamic_cast(preshoRecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); cout << setw(4) << rp->GetIndexInList() << " " << setw(7) << setprecision(3) << rp->GetEnergy() << " " << setw(3) << rp->GetMultiplicity() << " " << setw(1) << rp->GetEMCALArm() << " " << setw(5) << setprecision(4) << globalpos.X() << " " << setw(5) << setprecision(4) << globalpos.Y() << " " << setw(5) << setprecision(4) << globalpos.Z() << " " << setw(4) << setprecision(2) << lambda[0] << " " << setw(4) << setprecision(2) << lambda[1] << " " << setw(2) << nprimaries << " " ; for (Int_t iprimary=0; iprimary