/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) // August 2002 Yves Schutz: clone PHOS as closely as possible and intoduction // of new IO (à la PHOS) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include "TROOT.h" #include "TFile.h" #include "TFolder.h" #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TSystem.h" #include "TBenchmark.h" // --- Standard library --- // --- AliRoot header files --- #include "AliEMCALGetter.h" #include "AliEMCALClusterizerv1.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCAL.h" #include "AliEMCALGeometry.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer() { // default ctor (to be used mainly by Streamer) InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const TString alirunFileName, const TString eventFolderName) :AliEMCALClusterizer(alirunFileName, eventFolderName) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor } //____________________________________________________________________________ const TString AliEMCALClusterizerv1::BranchName() const { return GetName(); } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp) const { //To be replased later by the method, reading individual parameters from the database return -fADCpedestalECA + amp * fADCchannelECA ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Exec(Option_t * option) { // Steering method to perform clusterization for events // in the range from fFirstEvent to fLastEvent. // This range is optionally set by SetEventRange(). // if fLastEvent=-1 (by default), then process events until the end. if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; AliEMCALGetter * gime = AliEMCALGetter::Instance(GetTitle()) ; if (fLastEvent == -1) fLastEvent = gime->MaxEvent() - 1; Int_t nEvents = fLastEvent - fFirstEvent + 1; Int_t ievent ; for (ievent = fFirstEvent; ievent <= fLastEvent; ievent++) { gime->Event(ievent,"D") ; GetCalibrationParameters() ; fNumberOfECAClusters = 0; MakeClusters() ; if(fToUnfold) MakeUnfolding() ; WriteRecPoints() ; if(strstr(option,"deb")) PrintRecPoints(option) ; //increment the total number of recpoints per run fRecPointsInRun += gime->ECARecPoints()->GetEntriesFast() ; } Unload(); if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); printf("Exec took %f seconds for Clusterizing %f seconds per event", gBenchmark->GetCpuTime("EMCALClusterizer"), gBenchmark->GetCpuTime("EMCALClusterizer")/nEvents ) ; } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALRecPoint * emcRP, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliEMCALGetter * gime = AliEMCALGetter::Instance() ; TClonesArray * digits = gime->Digits() ; gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; AliEMCALGeometry * geom = gime->EMCALGeometry() ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[2] ; Float_t x = 0.; Float_t z = 0.; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->PosInAlice(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { // Gets the parameters for the calibration from the digitizer AliEMCALGetter * gime = AliEMCALGetter::Instance() ; if ( !gime->Digitizer() ) gime->LoadDigitizer(); AliEMCALDigitizer * dig = gime->Digitizer(); fADCchannelECA = dig->GetECAchannel() ; fADCpedestalECA = dig->GetECApedestal(); } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks AliEMCALGetter * gime = AliEMCALGetter::Instance(GetTitle(), fEventFolderName.Data()); AliEMCALGeometry * geom = gime->EMCALGeometry() ; fNTowers = geom->GetNZ() * geom->GetNPhi() ; if(!gMinuit) gMinuit = new TMinuit(100) ; if ( !gime->Clusterizer() ) gime->PostClusterizer(this); } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { // Initializes the parameters for the Clusterizer fNumberOfECAClusters = 0; fECAClusteringThreshold = 0.0135; // must be adjusted according to the noise leve set by digitizer fECALocMaxCut = 0.03 ; fECAW0 = 4.5 ; fTimeGate = 1.e-8 ; fToUnfold = kFALSE ; fRecPointsInRun = 0 ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster AliEMCALGeometry * geom = AliEMCALGetter::Instance()->EMCALGeometry() ; Int_t rv = 0 ; Int_t relid1[2] ; geom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[2] ; geom->AbsToRelNumbering(d2->GetId(), relid2) ; Int_t rowdiff = TMath::Abs( relid1[0] - relid2[0] ) ; Int_t coldiff = TMath::Abs( relid1[1] - relid2[1] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ if(TMath::Abs(d1->GetTime() - d2->GetTime() ) < fTimeGate) rv = 1 ; } else { if((relid2[0] > relid1[0]) && (relid2[1] > relid1[1]+1)) rv = 2; // Difference in row numbers is too large to look further } if (gDebug == 2 ) printf("AreNeighbours: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d ", rv, d1->GetId(), relid1[0], relid1[1], d2->GetId(), relid2[0], relid2[1]) ; return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Unload() { // Unloads the Digits and RecPoints AliEMCALGetter * gime = AliEMCALGetter::Instance() ; gime->EmcalLoader()->UnloadDigits() ; gime->EmcalLoader()->UnloadRecPoints() ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::WriteRecPoints() { // Creates new branches with given title // fills and writes into TreeR. AliEMCALGetter *gime = AliEMCALGetter::Instance() ; TObjArray * aECARecPoints = gime->ECARecPoints() ; TClonesArray * digits = gime->Digits() ; TTree * treeR = gime->TreeR(); ; Int_t index ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < aECARecPoints->GetEntries(); index++) (dynamic_cast(aECARecPoints->At(index)))->EvalAll(fECAW0,digits) ; aECARecPoints->Sort() ; for(index = 0; index < aECARecPoints->GetEntries(); index++) (dynamic_cast(aECARecPoints->At(index)))->SetIndexInList(index) ; aECARecPoints->Expand(aECARecPoints->GetEntriesFast()) ; Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //EC section branch TBranch * branchECA = treeR->Branch("EMCALECARP","TObjArray",&aECARecPoints,bufferSize,splitlevel); branchECA->SetTitle(BranchName()); branchECA->Fill() ; gime->WriteRecPoints("OVERWRITE"); gime->WriteClusterizer("OVERWRITE"); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits AliEMCALGetter * gime = AliEMCALGetter::Instance() ; AliEMCALGeometry * geom = gime->EMCALGeometry() ; TObjArray * aECARecPoints = gime->ECARecPoints() ; aECARecPoints->Delete() ; TClonesArray * digits = gime->Digits() ; TIter next(digits) ; AliEMCALDigit * digit ; Int_t ndigECA=0 ; // count the number of digits in ECA section while ( (digit = dynamic_cast(next())) ) { // scan over the list of digits if (geom->IsInECA(digit->GetId())) ndigECA++ ; else { Error("MakeClusters", "id = %d is a wrong ID!", digit->GetId()) ; abort() ; } } TClonesArray * digitsC = dynamic_cast(digits->Clone()) ; // Clusterization starts TIter nextdigit(digitsC) ; while ( (digit = dynamic_cast(nextdigit())) ) { // scan over the list of digitsC AliEMCALRecPoint * clu = 0 ; TArrayI clusterECAdigitslist(5000); Bool_t inECA = kFALSE; if( geom->IsInECA(digit->GetId()) ) { inECA = kTRUE ; } if (gDebug == 2) { if (inECA) printf("MakeClusters: id = %d, ene = %f , thre = %f", digit->GetId(),Calibrate(digit->GetAmp()), fECAClusteringThreshold) ; } if (inECA && (Calibrate(digit->GetAmp()) > fECAClusteringThreshold ) ){ Int_t iDigitInECACluster = 0; // Find the seed if( geom->IsInECA(digit->GetId()) ) { // start a new Tower RecPoint if(fNumberOfECAClusters >= aECARecPoints->GetSize()) aECARecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint * rp = new AliEMCALRecPoint("") ; aECARecPoints->AddAt(rp, fNumberOfECAClusters) ; clu = dynamic_cast(aECARecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp())) ; clusterECAdigitslist[iDigitInECACluster] = digit->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digit) ; if (gDebug == 2 ) printf("MakeClusters: OK id = %d, ene = %f , thre = %f ", digit->GetId(),Calibrate(digit->GetAmp()), fECAClusteringThreshold) ; } nextdigit.Reset() ; AliEMCALDigit * digitN ; Int_t index = 0 ; // Do the Clustering while (index < iDigitInECACluster){ // scan over digits already in cluster digit = (AliEMCALDigit*)digits->At(clusterECAdigitslist[index]) ; index++ ; while ( (digitN = (AliEMCALDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp()) ) ; clusterECAdigitslist[iDigitInECACluster] = digitN->GetIndexInList() ; iDigitInECACluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop1; } // switch } // while digitN endofloop1: ; nextdigit.Reset() ; } // loop over ECA cluster } // energy theshold } // while digit delete digitsC ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeUnfolding() const { Fatal("AliEMCALClusterizerv1::MakeUnfolding", "--> Unfolding not implemented") ; } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see EMCAL TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALRecPoint * /*iniTower*/, Int_t /*nMax*/, AliEMCALDigit ** /*maxAt*/, Float_t * /*maxAtEnergy*/) const { // Performs the unfolding of a cluster with nMax overlapping showers Fatal("UnfoldCluster", "--> Unfolding not implemented") ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & /*nPar*/, Double_t * /*Grad*/, Double_t & /*fret*/, Double_t * /*x*/, Int_t /*iflag*/) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do ::Fatal("UnfoldingChiSquare","Unfolding not implemented") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * /*option*/)const { // Print clusterizer parameters TString message("\n") ; if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; printf("--------------- "); printf(taskName.Data()) ; printf(" "); printf(GetTitle()) ; printf("-----------\n"); printf("Clusterizing digits from the file: "); printf(taskName.Data()); printf("\n Branch: "); printf(GetName()); printf("\n ECA Local Maximum cut = %f", fECALocMaxCut); printf("\n ECA Logarithmic weight = %f", fECAW0); if(fToUnfold) printf("\nUnfolding on\n"); else printf("\nUnfolding off\n"); printf("------------------------------------------------------------------"); } else printf("AliEMCALClusterizerv1 not initialized ") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliEMCALClusterizer TObjArray * aECARecPoints = AliEMCALGetter::Instance()->ECARecPoints() ; printf("PrintRecPoints: Clusterization result:") ; printf("event # %d\n", gAlice->GetEvNumber() ) ; printf(" Found %d ECA Rec Points\n ", aECARecPoints->GetEntriesFast()) ; fRecPointsInRun += aECARecPoints->GetEntriesFast() ; if(strstr(option,"all")) { Int_t index =0; printf("\n-----------------------------------------------------------------------\n") ; printf("Clusters in ECAL section\n") ; printf("Index Ene(GeV) Multi Module phi r theta X Y Z Dispersion Lambda 1 Lambda 2 # of prim Primaries list\n") ; for (index = 0 ; index < aECARecPoints->GetEntries() ; index++) { AliEMCALRecPoint * rp = dynamic_cast(aECARecPoints->At(index)) ; TVector3 globalpos; rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.4f %3d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimary