/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) // August 2002 Yves Schutz: clone PHOS as closely as possible and intoduction // of new IO (à la PHOS) // Mar 2007, Aleksei Pavlinov - new algoritmh of pseudo clusters ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches EMCALTowerRP (EMC recPoints), // EMCALPreShoRP (CPV RecPoints) and AliEMCALClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliEMCALClusterizerv1 * cl = new AliEMCALClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetTowerLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include class TROOT; #include #include class TFolder; #include #include #include class TSystem; #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliRunLoader.h" #include "AliRun.h" #include "AliESD.h" #include "AliEMCALLoader.h" #include "AliEMCALClusterizerv1.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALDigitizer.h" #include "AliEMCAL.h" #include "AliEMCALGeometry.h" #include "AliEMCALRawUtils.h" #include "AliEMCALHistoUtilities.h" #include "AliCDBManager.h" class AliCDBStorage; #include "AliCDBEntry.h" ClassImp(AliEMCALClusterizerv1) //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1() : AliEMCALClusterizer(), fHists(0),fPointE(0),fPointL1(0),fPointL2(0), fPointDis(0),fPointMult(0),fDigitAmp(0),fMaxE(0), fMaxL1(0),fMaxL2(0),fMaxDis(0),fGeom(0), fDefaultInit(kTRUE), fToUnfold(kFALSE), fNumberOfECAClusters(0),fNTowerInGroup(0),fCalibData(0), fADCchannelECA(0.),fADCpedestalECA(0.),fECAClusteringThreshold(0.),fECALocMaxCut(0.), fECAW0(0.),fRecPointsInRun(0),fTimeCut(0.),fMinECut(0.) { // default ctor (to be used mainly by Streamer) InitParameters() ; fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaulGeometryName()); fGeom->GetTransformationForSM(); // Global <-> Local } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const TString alirunFileName, const TString eventFolderName) : AliEMCALClusterizer(alirunFileName, eventFolderName), fHists(0),fPointE(0),fPointL1(0),fPointL2(0), fPointDis(0),fPointMult(0),fDigitAmp(0),fMaxE(0), fMaxL1(0),fMaxL2(0),fMaxDis(0),fGeom(0), fDefaultInit(kFALSE), fToUnfold(kFALSE), fNumberOfECAClusters(0),fNTowerInGroup(0),fCalibData(0), fADCchannelECA(0.),fADCpedestalECA(0.),fECAClusteringThreshold(0.),fECALocMaxCut(0.), fECAW0(0.),fRecPointsInRun(0),fTimeCut(0.),fMinECut(0.) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; } //____________________________________________________________________________ AliEMCALClusterizerv1::AliEMCALClusterizerv1(const AliEMCALClusterizerv1& clus) : AliEMCALClusterizer(clus), fHists(clus.fHists), fPointE(clus.fPointE), fPointL1(clus.fPointL1), fPointL2(clus.fPointL2), fPointDis(clus.fPointDis), fPointMult(clus.fPointMult), fDigitAmp(clus.fDigitAmp), fMaxE(clus.fMaxE), fMaxL1(clus.fMaxL1), fMaxL2(clus.fMaxL2), fMaxDis(clus.fMaxDis), fGeom(clus.fGeom), fDefaultInit(clus.fDefaultInit), fToUnfold(clus.fToUnfold), fNumberOfECAClusters(clus.fNumberOfECAClusters), fNTowerInGroup(clus.fNTowerInGroup), fCalibData(clus.fCalibData), fADCchannelECA(clus.fADCchannelECA), fADCpedestalECA(clus.fADCpedestalECA), fECAClusteringThreshold(clus.fECAClusteringThreshold), fECALocMaxCut(clus.fECALocMaxCut), fECAW0(clus.fECAW0), fRecPointsInRun(clus.fRecPointsInRun), fTimeCut(clus.fTimeCut), fMinECut(clus.fMinECut) { //copy ctor } //____________________________________________________________________________ AliEMCALClusterizerv1::~AliEMCALClusterizerv1() { // dtor } //____________________________________________________________________________ const TString AliEMCALClusterizerv1::BranchName() const { return GetName(); } //____________________________________________________________________________ Float_t AliEMCALClusterizerv1::Calibrate(Int_t amp, Int_t AbsId) { // Convert digitized amplitude into energy. // Calibration parameters are taken from calibration data base for raw data, // or from digitizer parameters for simulated data. if(fCalibData){ if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; Int_t iSupMod = -1; Int_t nModule = -1; Int_t nIphi = -1; Int_t nIeta = -1; Int_t iphi = -1; Int_t ieta = -1; Bool_t bCell = fGeom->GetCellIndex(AbsId, iSupMod, nModule, nIphi, nIeta) ; if(!bCell) { fGeom->PrintGeometry(); Error("Calibrate()"," Wrong cell id number : %i", AbsId); assert(0); } fGeom->GetCellPhiEtaIndexInSModule(iSupMod,nModule,nIphi, nIeta,iphi,ieta); fADCchannelECA = fCalibData->GetADCchannel (iSupMod,ieta,iphi); fADCpedestalECA = fCalibData->GetADCpedestal(iSupMod,ieta,iphi); return -fADCpedestalECA + amp * fADCchannelECA ; } else //Return energy with default parameters if calibration is not available return -fADCpedestalECA + amp * fADCchannelECA ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Exec(Option_t * option) { // Steering method to perform clusterization for the current event // in AliEMCALLoader if(strstr(option,"tim")) gBenchmark->Start("EMCALClusterizer"); if(strstr(option,"print")) Print("") ; AliRunLoader *rl = AliRunLoader::GetRunLoader(); AliEMCALLoader *emcalLoader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); //Get calibration parameters from file or digitizer default values. GetCalibrationParameters() ; fNumberOfECAClusters = 0; if(strstr(option,"pseudo")) MakeClusters("pseudo") ; //both types else MakeClusters("") ; //only the real clusters if(fToUnfold) MakeUnfolding() ; WriteRecPoints() ; if(strstr(option,"deb") || strstr(option,"all")) PrintRecPoints(option) ; AliDebug(1,Form("EMCAL Clusterizer found %d Rec Points",emcalLoader->RecPoints()->GetEntriesFast())); //increment the total number of recpoints per run fRecPointsInRun += emcalLoader->RecPoints()->GetEntriesFast() ; if(strstr(option,"tim")){ gBenchmark->Stop("EMCALClusterizer"); printf("Exec took %f seconds for Clusterizing", gBenchmark->GetCpuTime("EMCALClusterizer")); } } //____________________________________________________________________________ Bool_t AliEMCALClusterizerv1::FindFit(AliEMCALRecPoint * emcRP, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TClonesArray *digits = emcalLoader->Digits(); gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Float_t x = 0.; Float_t z = 0.; // have to be tune for TRD1; May 31,06 // Int_t relid[2] ; // fGeom->AbsToRelNumbering(digit->GetId(), relid) ; // obsolete method // fGeom->PosInAlice(relid, x, z) ; // obsolete method Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %f", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %f", z) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliEMCALClusterizerv1::GetCalibrationParameters() { // Set calibration parameters: // if calibration database exists, they are read from database, // otherwise, they are taken from digitizer. // // It is a user responsilibity to open CDB before reconstruction, // for example: // AliCDBStorage* storage = AliCDBManager::Instance()->GetStorage("local://CalibDB"); //Check if calibration is stored in data base AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); fCalibData =emcalLoader->CalibData(); if(!fCalibData) { //If calibration is not available use default parameters //Loader if ( !emcalLoader->Digitizer() ) emcalLoader->LoadDigitizer(); AliEMCALDigitizer * dig = dynamic_cast(emcalLoader->Digitizer()); fADCchannelECA = dig->GetECAchannel() ; fADCpedestalECA = dig->GetECApedestal(); } } //____________________________________________________________________________ void AliEMCALClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks AliRunLoader *rl = AliRunLoader::GetRunLoader(); if (rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); else fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaulGeometryName()); fGeom->GetTransformationForSM(); // Global <-> Local AliInfo(Form("geom 0x%x",fGeom)); if(!gMinuit) gMinuit = new TMinuit(100) ; fHists = BookHists(); } //____________________________________________________________________________ void AliEMCALClusterizerv1::InitParameters() { // Initializes the parameters for the Clusterizer fNumberOfECAClusters = 0; fNTowerInGroup = 36; //Produces maximum of 80 pseudoclusters per event fECAClusteringThreshold = 0.5; // Best value for 2 GeV gamma merged with Ideal HIJING. Retune later? fECALocMaxCut = 0.03; // ?? fECAW0 = 4.5; fTimeCut = 300e-9 ; // 300 ns time cut (to be tuned) fToUnfold = kFALSE ; fRecPointsInRun = 0 ; fMinECut = 0.45; // Best value for 2 GeV gamma merged with Ideal HIJING. Retune later? fCalibData = 0 ; // If reconstruction parameters are found in OCDB, take them from it AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); AliEMCALRecParam *recParamDB = emcalLoader->RecParam(); if (recParamDB != 0) { fECAClusteringThreshold = recParamDB->GetClusteringThreshold(); fECAW0 = recParamDB->GetW0(); fMinECut = recParamDB->GetMinECut(); AliDebug(1,Form("Reconstruction parameters were taken from OCDB: fECAClusteringThreshold=%.3f, fECAW=%.3f, fMinECut=%.3f", fECAClusteringThreshold,fECAW0,fMinECut)); } } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreNeighbours(AliEMCALDigit * d1, AliEMCALDigit * d2) const { // Gives the neighbourness of two digits = 0 are not neighbour ; continue searching // = 1 are neighbour // = 2 is in different SM; continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster static Int_t rv; static Int_t nSupMod1=0, nModule1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nModule2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; static Int_t rowdiff, coldiff; rv = 0 ; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nModule1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nModule2,nIphi2,nIeta2); if(nSupMod1 != nSupMod2) return 2; // different SM fGeom->GetCellPhiEtaIndexInSModule(nSupMod1,nModule1,nIphi1,nIeta1, iphi1,ieta1); fGeom->GetCellPhiEtaIndexInSModule(nSupMod2,nModule2,nIphi2,nIeta2, iphi2,ieta2); rowdiff = TMath::Abs(iphi1 - iphi2); coldiff = TMath::Abs(ieta1 - ieta2) ; // neighbours with at least commom side; May 11, 2007 if ((coldiff==0 && abs(rowdiff)==1) || (rowdiff==0 && abs(coldiff)==1)) rv = 1; if (gDebug == 2 && rv==1) printf("AreNeighbours: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d \n", rv, d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2); return rv ; } //____________________________________________________________________________ Int_t AliEMCALClusterizerv1::AreInGroup(AliEMCALDigit * d1, AliEMCALDigit * d2) const { // Tells whether two digits fall within the same supermodule and // tower grouping. The number of towers in a group is controlled by // the parameter nTowersInGroup // = 0 are not in same group but continue searching // = 1 same group // = 2 is in different SM, quit from searching // = 3 different tower group, quit from searching // // The order of d1 and d2 is important: first (d1) should be a digit // already in a cluster which is compared to a digit (d2) not yet in a cluster //JLK Question: does the quit from searching assume that the digits //are ordered, so that once you are in a different SM, you'll not //find another in the list that will match? How about my TowerGroup search? static Int_t rv; static Int_t nSupMod1=0, nModule1=0, nIphi1=0, nIeta1=0, iphi1=0, ieta1=0; static Int_t nSupMod2=0, nModule2=0, nIphi2=0, nIeta2=0, iphi2=0, ieta2=0; static Int_t towerGroup1 = -1, towerGroup2 = -1; rv = 0 ; fGeom->GetCellIndex(d1->GetId(), nSupMod1,nModule1,nIphi1,nIeta1); fGeom->GetCellIndex(d2->GetId(), nSupMod2,nModule2,nIphi2,nIeta2); if(nSupMod1 != nSupMod2) return 2; // different SM static Int_t nTowerInSM = fGeom->GetNCellsInSupMod()/fGeom->GetNCellsInModule(); //figure out which tower grouping each digit belongs to for(int it = 0; it < nTowerInSM/fNTowerInGroup; it++) { if(nModule1 <= nTowerInSM - it*fNTowerInGroup) towerGroup1 = it; if(nModule2 <= nTowerInSM - it*fNTowerInGroup) towerGroup2 = it; } if(towerGroup1 != towerGroup2) return 3; //different Towergroup //same SM, same towergroup, we're happy if(towerGroup1 == towerGroup2 && towerGroup2 >= 0) rv = 1; if (gDebug == 2 && rv==1) printf("AreInGroup: neighbours=%d, id1=%d, relid1=%d,%d \n id2=%d, relid2=%d,%d \n", rv, d1->GetId(), iphi1,ieta1, d2->GetId(), iphi2,ieta2); return rv ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::WriteRecPoints() { // Creates new branches with given title // fills and writes into TreeR. AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; TClonesArray * digits = emcalLoader->Digits() ; TTree * treeR = emcalLoader->TreeR(); if ( treeR==0 ) { emcalLoader->MakeRecPointsContainer(); treeR = emcalLoader->TreeR(); } else if (treeR->GetEntries() > 0) { Warning("WriteRecPoints","RecPoints already exist in output file. New Recpoitns will not be visible."); } Int_t index ; //Evaluate position, dispersion and other RecPoint properties for EC section for(index = 0; index < aECARecPoints->GetEntries(); index++) { if (dynamic_cast(aECARecPoints->At(index))->GetClusterType() != AliESDCaloCluster::kPseudoCluster) dynamic_cast(aECARecPoints->At(index))->EvalAll(fECAW0,digits) ; } aECARecPoints->Sort() ; for(index = 0; index < aECARecPoints->GetEntries(); index++) { (dynamic_cast(aECARecPoints->At(index)))->SetIndexInList(index) ; (dynamic_cast(aECARecPoints->At(index)))->Print(); } Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //EC section branch TBranch * branchECA = 0; if ((branchECA = treeR->GetBranch("EMCALECARP"))) branchECA->SetAddress(&aECARecPoints); else treeR->Branch("EMCALECARP","TObjArray",&aECARecPoints,bufferSize,splitlevel); treeR->Fill() ; emcalLoader->WriteRecPoints("OVERWRITE"); } //____________________________________________________________________________ void AliEMCALClusterizerv1::MakeClusters(char* option) { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits // Mar 03, 2007 by PAI if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; aECARecPoints->Clear(); TClonesArray *digits = emcalLoader->Digits(); // Set up TObjArray with pointers to digits to work on TObjArray *digitsC = new TObjArray(); TIter nextdigit(digits); AliEMCALDigit *digit; while ( (digit = dynamic_cast(nextdigit())) ) { digitsC->AddLast(digit); } //Start with pseudoclusters, if option if(strstr(option,"pseudo")) { // // New algorithm : will be created one pseudo cluster per module // AliDebug(1,Form("Pseudo clustering #digits : %i ",digits->GetEntries())); AliEMCALRecPoint *recPoints[12]; // max size is 12 : see fGeom->GetNumberOfSuperModules(); for(int i=0; i<12; i++) recPoints[i] = 0; TIter nextdigitC(digitsC) ; // PseudoClusterization starts int nSM = 0; // # of SM while ( (digit = dynamic_cast(nextdigitC())) ) { // scan over the list of digitsC if(fGeom->CheckAbsCellId(digit->GetId()) ) { //Is this an EMCAL digit? Just maing sure... nSM = fGeom->GetSuperModuleNumber(digit->GetId()); if(recPoints[nSM] == 0) { recPoints[nSM] = new AliEMCALRecPoint(Form("PC%2.2i", nSM)); recPoints[nSM]->SetClusterType(AliESDCaloCluster::kPseudoCluster); } recPoints[nSM]->AddDigit(*digit, Calibrate(digit->GetAmp(), digit->GetId())); } } fNumberOfECAClusters = 0; for(int i=0; iGetNumberOfSuperModules(); i++) { // put non empty rec.points to container if(recPoints[i]) aECARecPoints->AddAt(recPoints[i], fNumberOfECAClusters++); } AliDebug(1,Form(" Number of PC %d ", fNumberOfECAClusters)); } // // Now do real clusters // double e = 0.0, ehs = 0.0; TIter nextdigitC(digitsC); while ( (digit = dynamic_cast(nextdigitC())) ) { // clean up digits e = Calibrate(digit->GetAmp(), digit->GetId()); AliEMCALHistoUtilities::FillH1(fHists, 10, digit->GetAmp()); AliEMCALHistoUtilities::FillH1(fHists, 11, e); if ( e < fMinECut || digit->GetTimeR() > fTimeCut ) digitsC->Remove(digit); else ehs += e; } AliDebug(1,Form("MakeClusters: Number of digits %d -> (e %f), ehs %d\n", digits->GetEntries(),fMinECut,ehs)); nextdigitC.Reset(); while ( (digit = dynamic_cast(nextdigitC())) ) { // scan over the list of digitsC TArrayI clusterECAdigitslist(digits->GetEntries()); if(fGeom->CheckAbsCellId(digit->GetId()) && (Calibrate(digit->GetAmp(), digit->GetId()) > fECAClusteringThreshold ) ){ // start a new Tower RecPoint if(fNumberOfECAClusters >= aECARecPoints->GetSize()) aECARecPoints->Expand(2*fNumberOfECAClusters+1) ; AliEMCALRecPoint *recPoint = new AliEMCALRecPoint("") ; aECARecPoints->AddAt(recPoint, fNumberOfECAClusters) ; recPoint = dynamic_cast(aECARecPoints->At(fNumberOfECAClusters)) ; fNumberOfECAClusters++ ; recPoint->SetClusterType(AliESDCaloCluster::kClusterv1); recPoint->AddDigit(*digit, Calibrate(digit->GetAmp(), digit->GetId())) ; TObjArray clusterDigits; clusterDigits.AddLast(digit); digitsC->Remove(digit) ; AliDebug(1,Form("MakeClusters: OK id = %d, ene = %f , cell.th. = %f \n", digit->GetId(), Calibrate(digit->GetAmp(),digit->GetId()), fECAClusteringThreshold)); // Grow cluster by finding neighbours TIter nextClusterDigit(&clusterDigits); while ( (digit = dynamic_cast(nextClusterDigit())) ) { // scan over digits in cluster TIter nextdigitN(digitsC); AliEMCALDigit *digitN = 0; // digi neighbor while ( (digitN = (AliEMCALDigit *)nextdigitN()) ) { // scan over all digits to look for neighbours if (AreNeighbours(digit, digitN)==1) { // call (digit,digitN) in THAT oder !!!!! recPoint->AddDigit(*digitN, Calibrate(digitN->GetAmp(),digitN->GetId()) ) ; clusterDigits.AddLast(digitN) ; digitsC->Remove(digitN) ; } // if(ineb==1) } // scan over digits } // scan over digits already in cluster if(recPoint) AliDebug(2,Form("MakeClusters: %d digitd, energy %f \n", clusterDigits.GetEntries(), recPoint->GetEnergy())); } // If seed found } // while digit delete digitsC ; AliDebug(1,Form("total no of clusters %d from %d digits",fNumberOfECAClusters,digits->GetEntriesFast())); } void AliEMCALClusterizerv1::MakeUnfolding() const { Fatal("AliEMCALClusterizerv1::MakeUnfolding", "--> Unfolding not implemented") ; } //____________________________________________________________________________ Double_t AliEMCALClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see EMCAL TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldCluster(AliEMCALRecPoint * /*iniTower*/, Int_t /*nMax*/, AliEMCALDigit ** /*maxAt*/, Float_t * /*maxAtEnergy*/) const { // Performs the unfolding of a cluster with nMax overlapping showers Fatal("UnfoldCluster", "--> Unfolding not implemented") ; } //_____________________________________________________________________________ void AliEMCALClusterizerv1::UnfoldingChiSquare(Int_t & /*nPar*/, Double_t * /*Grad*/, Double_t & /*fret*/, Double_t * /*x*/, Int_t /*iflag*/) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do ::Fatal("UnfoldingChiSquare","Unfolding not implemented") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::Print(Option_t * /*option*/)const { // Print clusterizer parameters TString message("\n") ; if( strcmp(GetName(), "") !=0 ){ // Print parameters TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; printf("--------------- "); printf(taskName.Data()) ; printf(" "); printf(GetTitle()) ; printf("-----------\n"); printf("Clusterizing digits from the file: "); printf(taskName.Data()); printf("\n Branch: "); printf(GetName()); printf("\n ECA Local Maximum cut = %f", fECALocMaxCut); printf("\n ECA Logarithmic weight = %f", fECAW0); if(fToUnfold) printf("\nUnfolding on\n"); else printf("\nUnfolding off\n"); printf("------------------------------------------------------------------"); } else printf("AliEMCALClusterizerv1 not initialized ") ; } //____________________________________________________________________________ void AliEMCALClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliEMCALClusterizer AliEMCALLoader *emcalLoader = dynamic_cast(AliRunLoader::GetRunLoader()->GetDetectorLoader("EMCAL")); TObjArray * aECARecPoints = emcalLoader->RecPoints() ; if(strstr(option,"deb")) { printf("PrintRecPoints: Clusterization result:") ; printf("event # %d\n", emcalLoader->GetRunLoader()->GetEventNumber() ) ; printf(" Found %d ECA Rec Points\n ", aECARecPoints->GetEntriesFast()) ; } fRecPointsInRun += aECARecPoints->GetEntriesFast() ; if(strstr(option,"all")) { if(strstr(option,"deb")) { printf("\n-----------------------------------------------------------------------\n") ; printf("Clusters in ECAL section\n") ; printf("Index Ene(GeV) Multi Module GX GY GZ lX lY lZ Dispersion Lambda 1 Lambda 2 # of prim Primaries list\n") ; } Int_t index =0; Float_t maxE=0; Float_t maxL1=0; Float_t maxL2=0; Float_t maxDis=0; AliEMCALHistoUtilities::FillH1(fHists, 12, double(aECARecPoints->GetEntries())); for (index = 0 ; index < aECARecPoints->GetEntries() ; index++) { AliEMCALRecPoint * rp = dynamic_cast(aECARecPoints->At(index)) ; TVector3 globalpos; //rp->GetGlobalPosition(globalpos); TVector3 localpos; rp->GetLocalPosition(localpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); if(strstr(option,"deb")) printf("\n%6d %8.4f %3d %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), globalpos.X(), globalpos.Y(), globalpos.Z(), localpos.X(), localpos.Y(), localpos.Z(), rp->GetDispersion(), lambda[0], lambda[1], nprimaries) ; ///////////// if(rp->GetEnergy()>maxE){ maxE=rp->GetEnergy(); maxL1=lambda[0]; maxL2=lambda[1]; maxDis=rp->GetDispersion(); } fPointE->Fill(rp->GetEnergy()); fPointL1->Fill(lambda[0]); fPointL2->Fill(lambda[1]); fPointDis->Fill(rp->GetDispersion()); fPointMult->Fill(rp->GetMultiplicity()); ///////////// if(strstr(option,"deb")){ for (Int_t iprimary=0; iprimaryFill(maxE); fMaxL1->Fill(maxL1); fMaxL2->Fill(maxL2); fMaxDis->Fill(maxDis); if(strstr(option,"deb")) printf("\n-----------------------------------------------------------------------\n"); } } TList* AliEMCALClusterizerv1::BookHists() { //set up histograms for monitoring clusterizer performance gROOT->cd(); fPointE = new TH1F("00_pointE","point energy", 2000, 0.0, 150.); fPointL1 = new TH1F("01_pointL1","point L1", 1000, 0.0, 3.); fPointL2 = new TH1F("02_pointL2","point L2", 1000, 0.0, 3.); fPointDis = new TH1F("03_pointDisp","point dispersion", 1000, 0.0, 10.); fPointMult = new TH1F("04_pointMult","#cell in point(cluster)", 101, -0.5, 100.5); fDigitAmp = new TH1F("05_digitAmp","Digit Amplitude", 2000, 0.0, 5000.); fMaxE = new TH1F("06_maxE","Max point energy", 2000, 0.0, 150.); fMaxL1 = new TH1F("07_maxL1","Largest (first) of eigenvalue of covariance matrix", 1000, 0.0, 3.); fMaxL2 = new TH1F("08_maxL2","Smalest (second) of eigenvalue of covariace matrix", 1000, 0.0, 3.); fMaxDis = new TH1F("09_maxDis","Point dispersion", 1000, 0.0, 10.); // 9 // new TH1F("10_adcOfDigits","adc of digits(threshold control)", 1001, -0.5, 1000.5); // 10 new TH1F("11_energyOfDigits","energy of digits(threshold control)", 1000, 0.0, 1.); // 11 new TH1F("12_numberOfPoints","number of points(clusters)", 101, -0.5, 100.5); // 12 return AliEMCALHistoUtilities::MoveHistsToList("EmcalClusterizerv1ControlHists", kFALSE); } void AliEMCALClusterizerv1::SaveHists(const char *fn) { AliEMCALHistoUtilities::SaveListOfHists(fHists, fn, kTRUE); } void AliEMCALClusterizerv1::PrintRecoInfo() { printf(" AliEMCALClusterizerv1::PrintRecoInfo() : version %s \n", Version() ); TH1F *h = (TH1F*)fHists->At(12); if(h) { printf(" ## Multiplicity of RecPoints ## \n"); for(int i=1; i<=h->GetNbinsX(); i++) { int nbin = int((*h)[i]); int mult = int(h->GetBinCenter(i)); if(nbin > 0) printf(" %i : %5.5i %6.3f %% \n", mult, nbin, 100.*nbin/h->GetEntries()); } } } void AliEMCALClusterizerv1::DrawLambdasHists() { if(fMaxL1) { fMaxL1->Draw(); if(fMaxL2) fMaxL2->Draw("same"); if(fMaxDis) { fMaxDis->Draw("same"); } } } void AliEMCALClusterizerv1::Browse(TBrowser* b) { if(fHists) b->Add(fHists); if(fGeom) b->Add(fGeom); TTask::Browse(b); }