/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$*/ //_________________________________________________________________________ // Geometry class for EMCAL : singleton // EMCAL consists of layers of scintillator and lead // with scintillator fiber arranged as "shish-kebab" skewers // Places the the Barrel Geometry of The EMCAL at Midrapidity // between 80 and 180(or 190) degrees of Phi and // -0.7 to 0.7 in eta // // EMCAL geometry tree: // EMCAL -> superModule -> module -> tower(cell) // Indexes // absId -> nSupMod -> nModule -> (nIphi,nIeta) // // Name choices: // EMCAL_PDC06 (geometry used for PDC06 simulations, kept for backward compatibility) // = equivalent to SHISH_77_TRD1_2X2_FINAL_110DEG in old notation // EMCAL_COMPLETE (geometry for expected complete detector) // = equivalent to SHISH_77_TRD1_2X2_FINAL_110DEG scTh=0.176 pbTh=0.144 // in old notation // EMCAL_FIRSTYEARV1 - geometry for December 2009 to December 2010 run period; // fixed bug for positions of modules inside SM // (first module has tilt 0.75 degree); // the sizes updated with last information from production // drawing (end of October 2010). // // EMCAL_COMPLETEV1: Same fixes as FIRSTYEAR and 10 SM instead of 10+2 half SM // // EMCAL_WSUC (Wayne State test stand) // = no definite equivalent in old notation, was only used by // Aleksei, but kept for testing purposes // // etc. // // Usage: // You can create the AliEMCALGeometry object independently from anything. // You have to use just the correct name of geometry. If name is empty string the // default name of geometry will be used. // // AliEMCALGeometry* g = AliEMCALGeometry::GetInstance(name,title); // first time // .. // g = AliEMCALGeometry::GetInstance(); // after first time // // MC: If you work with MC data you have to get geometry the next way: // == ============================= // AliRunLoader *rl = AliRunLoader::Instance(); // AliEMCALGeometry *geom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); // TGeoManager::Import("geometry.root"); // //*-- Author: Sahal Yacoob (LBL / UCT) // and : Yves Schutz (SUBATECH) // and : Jennifer Klay (LBL) // and : Alexei Pavlinov (WSU) // // Implementation for analysis usage, before AliEMCALGeometry now (06/2011) merged again // in AliEMCALGeometry // // -- Author: Magali Estienne (magali.estienne@subatech.in2p3.fr) // // // Usage: // You can create the AliEMCALGeometry object independently from anything. // You have to use just the correct name of geometry. If name is empty string the // default name of geometry will be used. // // AliEMCALGeometry* geom = new AliEMCALGeometry("EMCAL_COMPLETEV1","EMCAL"); // TGeoManager::Import("geometry.root"); // // MC: If you work with MC data you have to get geometry the next way: // == ============================= // !!!!!!!!! This part has to be modified // AliRunLoader *rl = AliRunLoader::GetRunLoader(); // AliEMCALEMCGeometry *geom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); // TGeoManager::Import("geometry.root"); // --- ROOT system --- #include #include #include #include #include #include // --- Standard library --- //#include // --- AliRoot header files --- #include "AliEMCALGeometry.h" #include "AliEMCALShishKebabTrd1Module.h" ClassImp(AliEMCALGeometry) // these initialisations are needed for a singleton AliEMCALGeometry *AliEMCALGeometry::fgGeom = 0; const Char_t* AliEMCALGeometry::fgkDefaultGeometryName = "EMCAL_COMPLETEV1"; //____________________________________________________________________________ AliEMCALGeometry::AliEMCALGeometry(): fEMCGeometry(0x0),fGeoName(0), fKey110DEG(0),fNCellsInSupMod(0),fNETAdiv(0),fNPHIdiv(0), fNCellsInModule(0),fPhiBoundariesOfSM(0x0),fPhiCentersOfSM(0x0), fPhiCentersOfCells(0x0),fCentersOfCellsEtaDir(0x0), fCentersOfCellsPhiDir(0x0),fEtaCentersOfCells(0x0), fNCells(0),fNPhi(0),fCentersOfCellsXDir(0x0),fArm1EtaMin(0), fArm1EtaMax(0),fArm1PhiMin(0),fArm1PhiMax(0),fEtaMaxOfTRD1(0), fShishKebabTrd1Modules(0),fPhiModuleSize(0.), fEtaModuleSize(0.),fPhiTileSize(0.),fEtaTileSize(0.),fNZ(0), fIPDistance(0.),fLongModuleSize(0.),fShellThickness(0.), fZLength(0.),fSampling(0.),fUseExternalMatrices(kFALSE) { // default ctor // must be kept public for root persistency purposes, but should never be called by the outside world fEnvelop[0] = 0.; fEnvelop[1] = 0.; fEnvelop[2] = 0.; fParSM[0] = 0.; fParSM[1] = 0.; fParSM[2] = 0.; for(Int_t i=0;i<12;i++)fkSModuleMatrix[i]=0 ; for (Int_t i = 0; i < 48; i++) for (Int_t j = 0; j < 64; j++) fFastOR2DMap[i][j] = -1; } //____________________________________________________________________________ AliEMCALGeometry::AliEMCALGeometry(const AliEMCALGeometry & geo) : TNamed(geo), fEMCGeometry(geo.fEMCGeometry),fGeoName(geo.fGeoName), fKey110DEG(geo.fKey110DEG),fNCellsInSupMod(geo.fNCellsInSupMod),fNETAdiv(geo.fNETAdiv),fNPHIdiv(geo.fNPHIdiv), fNCellsInModule(geo.fNCellsInModule),fPhiBoundariesOfSM(geo.fPhiBoundariesOfSM),fPhiCentersOfSM(geo.fPhiCentersOfSM), fPhiCentersOfCells(geo.fPhiCentersOfCells),fCentersOfCellsEtaDir(geo.fCentersOfCellsEtaDir), fCentersOfCellsPhiDir(geo.fCentersOfCellsPhiDir),fEtaCentersOfCells(geo.fEtaCentersOfCells), fNCells(geo.fNCells),fNPhi(geo.fNPhi),fCentersOfCellsXDir(geo.fCentersOfCellsXDir),fArm1EtaMin(geo.fArm1EtaMin), fArm1EtaMax(geo.fArm1EtaMax),fArm1PhiMin(geo.fArm1PhiMin),fArm1PhiMax(geo.fArm1PhiMax),fEtaMaxOfTRD1(geo.fEtaMaxOfTRD1), fShishKebabTrd1Modules(geo.fShishKebabTrd1Modules),fPhiModuleSize(geo.fPhiModuleSize), fEtaModuleSize(geo.fEtaModuleSize),fPhiTileSize(geo.fPhiTileSize),fEtaTileSize(geo.fEtaTileSize),fNZ(geo.fNZ), fIPDistance(geo.fIPDistance),fLongModuleSize(geo.fLongModuleSize),fShellThickness(geo.fShellThickness), fZLength(geo.fZLength),fSampling(geo.fSampling),fUseExternalMatrices(geo.fUseExternalMatrices) { fEnvelop[0] = geo.fEnvelop[0]; fEnvelop[1] = geo.fEnvelop[1]; fEnvelop[2] = geo.fEnvelop[2]; fParSM[0] = geo.fParSM[0]; fParSM[1] = geo.fParSM[1]; fParSM[2] = geo.fParSM[2]; for(Int_t i=0;i<12;i++)fkSModuleMatrix[i]=0 ; for (Int_t i = 0; i < 48; i++) for (Int_t j = 0; j < 64; j++) fFastOR2DMap[i][j] = geo.fFastOR2DMap[i][j]; } //____________________________________________________________________________ AliEMCALGeometry::AliEMCALGeometry(const Text_t* name, const Text_t* title) : TNamed(name, title), fEMCGeometry(0x0),fGeoName(0), fKey110DEG(0),fNCellsInSupMod(0),fNETAdiv(0),fNPHIdiv(0), fNCellsInModule(0),fPhiBoundariesOfSM(0x0),fPhiCentersOfSM(0x0), fPhiCentersOfCells(0x0),fCentersOfCellsEtaDir(0x0), fCentersOfCellsPhiDir(0x0),fEtaCentersOfCells(0x0), fNCells(0),fNPhi(0),fCentersOfCellsXDir(0x0),fArm1EtaMin(0), fArm1EtaMax(0),fArm1PhiMin(0),fArm1PhiMax(0),fEtaMaxOfTRD1(0), fShishKebabTrd1Modules(0),fPhiModuleSize(0.), fEtaModuleSize(0.),fPhiTileSize(0.),fEtaTileSize(0.),fNZ(0), fIPDistance(0.),fLongModuleSize(0.),fShellThickness(0.), fZLength(0.),fSampling(0.), fUseExternalMatrices(kFALSE) { // ctor only for normal usage fEMCGeometry = new AliEMCALEMCGeometry(name,title); fGeoName = fEMCGeometry->GetGeoName(); fKey110DEG = fEMCGeometry->GetKey110DEG(); fNCellsInSupMod = fEMCGeometry->GetNCellsInSupMod(); fNETAdiv = fEMCGeometry->GetNETAdiv(); fNPHIdiv = fEMCGeometry->GetNPHIdiv(); fNCellsInModule = fNPHIdiv*fNETAdiv; static int i=0; Int_t nSMod = fEMCGeometry->GetNumberOfSuperModules(); fPhiBoundariesOfSM.Set(nSMod); fPhiCentersOfSM.Set(nSMod/2); for(Int_t sm=0; smGetPhiBoundariesOfSM(sm,fPhiBoundariesOfSM[2*i],fPhiBoundariesOfSM[2*i+1]); } Double_t phiMin = 0.; Double_t phiMax = 0.; for(Int_t sm=0; smGetPhiBoundariesOfSM(sm,phiMin,phiMax); i=sm/2; fPhiCentersOfSM[i] = fEMCGeometry->GetPhiCenterOfSM(sm); } fNCells = fEMCGeometry->GetNCells(); fNPhi = fEMCGeometry->GetNPhi(); fEnvelop[0] = fEMCGeometry->GetEnvelop(0); fEnvelop[1] = fEMCGeometry->GetEnvelop(1); fEnvelop[2] = fEMCGeometry->GetEnvelop(2); fParSM[0] = fEMCGeometry->GetSuperModulesPar(0); fParSM[1] = fEMCGeometry->GetSuperModulesPar(1); fParSM[2] = fEMCGeometry->GetSuperModulesPar(2); fArm1EtaMin = fEMCGeometry->GetArm1EtaMin(); fArm1EtaMax = fEMCGeometry->GetArm1EtaMax(); fArm1PhiMin = fEMCGeometry->GetArm1PhiMin(); fArm1PhiMax = fEMCGeometry->GetArm1PhiMax(); fShellThickness = fEMCGeometry->GetShellThickness(); fZLength = fEMCGeometry->GetZLength(); fSampling = fEMCGeometry->GetSampling(); fEtaModuleSize = fEMCGeometry->GetEtaModuleSize(); fPhiModuleSize = fEMCGeometry->GetPhiModuleSize(); fEtaTileSize = fEMCGeometry->GetEtaTileSize(); fPhiTileSize = fEMCGeometry->GetPhiTileSize(); fNZ = fEMCGeometry->GetNZ(); fIPDistance = fEMCGeometry->GetIPDistance(); fLongModuleSize = fEMCGeometry->GetLongModuleSize(); CreateListOfTrd1Modules(); for(Int_t smod=0; smod < fEMCGeometry->GetNumberOfSuperModules(); smod++) fkSModuleMatrix[smod]=0 ; if (AliDebugLevel()>=2) { fEMCGeometry->Print(); PrintGeometryGeoUtils(); } for (Int_t ix = 0; ix < 48; ix++) for (Int_t jx = 0; jx < 64; jx++) fFastOR2DMap[ix][jx] = -1; BuildFastOR2DMap(); } //____________________________________________________________________________ AliEMCALGeometry & AliEMCALGeometry::operator = (const AliEMCALGeometry & /*rvalue*/) { //assing operator Fatal("assignment operator", "not implemented") ; return *this ; } //____________________________________________________________________________ AliEMCALGeometry::~AliEMCALGeometry(void) { // dtor if (fEMCGeometry){ for(Int_t smod = 0 ; smod < fEMCGeometry->GetNumberOfSuperModules(); smod++){ if(fkSModuleMatrix[smod]) delete fkSModuleMatrix[smod] ; fkSModuleMatrix[smod]=0 ; } delete fEMCGeometry; fEMCGeometry = 0 ; } } //______________________________________________________________________ AliEMCALGeometry * AliEMCALGeometry::GetInstance(){ // Returns the pointer of the unique instance AliEMCALGeometry * rv = static_cast( fgGeom ); return rv; } //______________________________________________________________________ AliEMCALGeometry* AliEMCALGeometry::GetInstance(const Text_t* name, const Text_t* title){ // Returns the pointer of the unique instance AliEMCALGeometry * rv = 0; if ( fgGeom == 0 ) { if ( strcmp(name,"") == 0 ) { // get default geometry fgGeom = new AliEMCALGeometry(fgkDefaultGeometryName, title); } else { fgGeom = new AliEMCALGeometry(name, title); } // end if strcmp(name,"") if ( AliEMCALEMCGeometry::fgInit ) rv = (AliEMCALGeometry * ) fgGeom; else { rv = 0; delete fgGeom; fgGeom = 0; } // end if fgInit }else{ if ( strcmp(fgGeom->GetName(), name) != 0) { printf("\ncurrent geometry is %s : ", fgGeom->GetName()); printf(" you cannot call %s ",name); }else{ rv = (AliEMCALGeometry *) fgGeom; } // end } // end if fgGeom return rv; } //________________________________________________________________________________________________ void AliEMCALGeometry::Browse(TBrowser* b) { //Browse the modules if(fShishKebabTrd1Modules) b->Add(fShishKebabTrd1Modules); } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::IsFolder() const { //Check if fShishKebabTrd1Modules is in folder if(fShishKebabTrd1Modules) return kTRUE; else return kFALSE; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetGlobal(const Double_t *loc, Double_t *glob, int ind) const { // Figure out the global numbering // of a given supermodule from the // local numbering and the transformation // matrix stored by the geometry manager (allows for misaligned // geometry) const TGeoHMatrix* m = GetMatrixForSuperModule(ind); if(m) { m->LocalToMaster(loc, glob); } else { AliFatal("Geo matrixes are not loaded \n") ; } } //________________________________________________________________________________________________ void AliEMCALGeometry::GetGlobal(const TVector3 &vloc, TVector3 &vglob, int ind) const { //Figure out the global numbering //of a given supermodule from the //local numbering given a 3-vector location static Double_t tglob[3], tloc[3]; vloc.GetXYZ(tloc); GetGlobal(tloc, tglob, ind); vglob.SetXYZ(tglob[0], tglob[1], tglob[2]); } //________________________________________________________________________________________________ void AliEMCALGeometry::GetGlobal(Int_t absId , double glob[3]) const { // Alice numbering scheme - Jun 03, 2006 static Int_t nSupMod=-1, nModule=-1, nIphi=-1, nIeta=-1; static double loc[3]; glob[0]=glob[1]=glob[2]=0.0; // bad case if(RelPosCellInSModule(absId, loc)) { GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); const TGeoHMatrix* m = GetMatrixForSuperModule(nSupMod); if(m) { m->LocalToMaster(loc, glob); } else { AliFatal("Geo matrixes are not loaded \n") ; } } } //___________________________________________________________________ void AliEMCALGeometry::GetGlobal(Int_t absId , TVector3 &vglob) const { // Alice numbering scheme - Jun 03, 2006 static Double_t glob[3]; GetGlobal(absId, glob); vglob.SetXYZ(glob[0], glob[1], glob[2]); } //______________________________________________________________________ void AliEMCALGeometry::PrintCellIndexes(Int_t absId, int pri, const char *tit) const { // Service methods Int_t nSupMod, nModule, nIphi, nIeta; Int_t iphi, ieta; TVector3 vg; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); printf(" %s | absId : %i -> nSupMod %i nModule %i nIphi %i nIeta %i \n", tit, absId, nSupMod, nModule, nIphi, nIeta); if(pri>0) { GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi,ieta); printf(" local SM index : iphi %i : ieta %i \n", iphi,ieta); GetGlobal(absId, vg); printf(" vglob : mag %7.2f : perp %7.2f : z %7.2f : eta %6.4f : phi %6.4f(%6.2f) \n", vg.Mag(), vg.Perp(), vg.Z(), vg.Eta(), vg.Phi(), vg.Phi()*TMath::RadToDeg()); } } void AliEMCALGeometry::PrintLocalTrd1(Int_t pri) const { // For comparing with numbers from drawing for(Int_t i=0; iGetSize(); i++){ printf(" %s | ", GetShishKebabModule(i)->GetName()); if(i==0 && pri<1) GetShishKebabModule(i)->PrintShish(1); else GetShishKebabModule(i)->PrintShish(pri); } } //________________________________________________________________________________________________ void AliEMCALGeometry::EtaPhiFromIndex(Int_t absId,Double_t &eta,Double_t &phi) const { // Nov 16, 2006- float to double // version for TRD1 only static TVector3 vglob; GetGlobal(absId, vglob); eta = vglob.Eta(); phi = vglob.Phi(); } //________________________________________________________________________________________________ void AliEMCALGeometry::EtaPhiFromIndex(Int_t absId,Float_t &eta,Float_t &phi) const { // Nov 16,2006 - should be discard in future static TVector3 vglob; GetGlobal(absId, vglob); eta = float(vglob.Eta()); phi = float(vglob.Phi()); } // // == Shish-kebab cases == // //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsCellId(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta) const { // 27-aug-04; // corr. 21-sep-04; // 13-oct-05; 110 degree case // May 31, 2006; ALICE numbering scheme: // 0 <= nSupMod < fNumberOfSuperModules // 0 <= nModule < fNPHI * fNZ ( fNPHI * fNZ/2 for fKey110DEG=1) // 0 <= nIphi < fNPHIdiv // 0 <= nIeta < fNETAdiv // 0 <= absid < fNCells static Int_t id=0; // have to change from 0 to fNCells-1 if(fKey110DEG == 1 && nSupMod >= 10) { // 110 degree case; last two supermodules id = fNCellsInSupMod*10 + (fNCellsInSupMod/2)*(nSupMod-10); } else { id = fNCellsInSupMod*nSupMod; } id += fNCellsInModule *nModule; id += fNPHIdiv *nIphi; id += nIeta; if(id<0 || id >= fNCells) { // printf(" wrong numerations !!\n"); // printf(" id %6i(will be force to -1)\n", id); // printf(" fNCells %6i\n", fNCells); // printf(" nSupMod %6i\n", nSupMod); // printf(" nModule %6i\n", nModule); // printf(" nIphi %6i\n", nIphi); // printf(" nIeta %6i\n", nIeta); id = -TMath::Abs(id); // if negative something wrong } return id; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetModuleIndexesFromCellIndexesInSModule(Int_t nSupMod, Int_t iphi, Int_t ieta, Int_t &iphim, Int_t &ietam, Int_t &nModule) const { // Transition from cell indexes (ieta,iphi) to module indexes (ietam,iphim, nModule) static Int_t nphi=-1; nphi = GetNumberOfModuleInPhiDirection(nSupMod); ietam = ieta/fNETAdiv; iphim = iphi/fNPHIdiv; nModule = ietam * nphi + iphim; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsCellIdFromCellIndexes(Int_t nSupMod, Int_t iphi, Int_t ieta) const { // Transition from super module number(nSupMod) and cell indexes (ieta,iphi) to absId static Int_t ietam=-1, iphim=-1, nModule=-1; static Int_t nIeta=-1, nIphi=-1; // cell indexes in module GetModuleIndexesFromCellIndexesInSModule(nSupMod, iphi, ieta, ietam, iphim, nModule); nIeta = ieta%fNETAdiv; nIeta = fNETAdiv - 1 - nIeta; nIphi = iphi%fNPHIdiv; return GetAbsCellId(nSupMod, nModule, nIphi, nIeta); } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::SuperModuleNumberFromEtaPhi(Double_t eta, Double_t phi, Int_t &nSupMod) const { // Return false if phi belongs a phi cracks between SM static Int_t i=0; if(TMath::Abs(eta) > fEtaMaxOfTRD1) return kFALSE; phi = TVector2::Phi_0_2pi(phi); // move phi to (0,2pi) boundaries for(i=0; i<6; i++) { //Check if it is not the complete geometry if (i >= fEMCGeometry->GetNumberOfSuperModules()/2) return kFALSE; if(phi>=fPhiBoundariesOfSM[2*i] && phi<=fPhiBoundariesOfSM[2*i+1]) { nSupMod = 2*i; if(eta < 0.0) nSupMod++; AliDebug(1,Form("eta %f phi %f(%5.2f) : nSupMod %i : #bound %i", eta,phi,phi*TMath::RadToDeg(), nSupMod,i)); return kTRUE; } } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsCellIdFromEtaPhi(Double_t eta, Double_t phi, Int_t &absId) const { // Nov 17,2006 // stay here - phi problem as usual static Int_t nSupMod=-1, i=0, ieta=-1, iphi=-1, etaShift=0, nphi=-1; static Double_t absEta=0.0, d=0.0, dmin=0.0, phiLoc=0; absId = nSupMod = - 1; if(SuperModuleNumberFromEtaPhi(eta, phi, nSupMod)) { // phi index first phi = TVector2::Phi_0_2pi(phi); phiLoc = phi - fPhiCentersOfSM[nSupMod/2]; nphi = fPhiCentersOfCells.GetSize(); if(nSupMod>=10) { phiLoc = phi - 190.*TMath::DegToRad(); nphi /= 2; } dmin = TMath::Abs(fPhiCentersOfCells[0]-phiLoc); iphi = 0; for(i=1; i= fNCells) return kFALSE; else return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetCellIndex(Int_t absId,Int_t &nSupMod,Int_t &nModule,Int_t &nIphi,Int_t &nIeta) const { // 21-sep-04; 19-oct-05; // May 31, 2006; ALICE numbering scheme: // // In: // absId - cell is as in Geant, 0<= absId < fNCells; // Out: // nSupMod - super module(SM) number, 0<= nSupMod < fNumberOfSuperModules; // nModule - module number in SM, 0<= nModule < fNCellsInSupMod/fNCellsInSupMod or(/2) for tow last SM (10th and 11th); // nIphi - cell number in phi driection inside module; 0<= nIphi < fNPHIdiv; // nIeta - cell number in eta driection inside module; 0<= nIeta < fNETAdiv; // static Int_t tmp=0, sm10=0; if(!CheckAbsCellId(absId)) return kFALSE; sm10 = fNCellsInSupMod*10; if(fKey110DEG == 1 && absId >= sm10) { // 110 degree case; last two supermodules nSupMod = (absId-sm10) / (fNCellsInSupMod/2) + 10; tmp = (absId-sm10) % (fNCellsInSupMod/2); } else { nSupMod = absId / fNCellsInSupMod; tmp = absId % fNCellsInSupMod; } nModule = tmp / fNCellsInModule; tmp = tmp % fNCellsInModule; nIphi = tmp / fNPHIdiv; nIeta = tmp % fNPHIdiv; return kTRUE; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetSuperModuleNumber(Int_t absId) const { // Return the number of the supermodule given the absolute // ALICE numbering id static Int_t nSupMod=-1, nModule=-1, nIphi=-1, nIeta=-1; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); return nSupMod; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetModulePhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, int &iphim, int &ietam) const { // added nSupMod; - 19-oct-05 ! // Alice numbering scheme - Jun 01,2006 // ietam, iphi - indexes of module in two dimensional grid of SM // ietam - have to change from 0 to fNZ-1 // iphim - have to change from 0 to nphi-1 (fNPhi-1 or fNPhi/2-1) static Int_t nphi=-1; if(fKey110DEG == 1 && nSupMod>=10) nphi = fNPhi/2; else nphi = fNPhi; ietam = nModule/nphi; iphim = nModule%nphi; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetCellPhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta, int &iphi, int &ieta) const { // // Added nSupMod; Nov 25, 05 // Alice numbering scheme - Jun 01,2006 // IN: // nSupMod - super module(SM) number, 0<= nSupMod < fNumberOfSuperModules; // nModule - module number in SM, 0<= nModule < fNCellsInSupMod/fNCellsInSupMod or(/2) for tow last SM (10th and 11th); // nIphi - cell number in phi driection inside module; 0<= nIphi < fNPHIdiv; // nIeta - cell number in eta driection inside module; 0<= nIeta < fNETAdiv; // // OUT: // ieta, iphi - indexes of cell(tower) in two dimensional grid of SM // ieta - have to change from 0 to (fNZ*fNETAdiv-1) // iphi - have to change from 0 to (fNPhi*fNPHIdiv-1 or fNPhi*fNPHIdiv/2-1) // static Int_t iphim=-1, ietam=-1; GetModulePhiEtaIndexInSModule(nSupMod,nModule, iphim, ietam); // ieta = ietam*fNETAdiv + (1-nIeta); // x(module) = -z(SM) ieta = ietam*fNETAdiv + (fNETAdiv - 1 - nIeta); // x(module) = -z(SM) iphi = iphim*fNPHIdiv + nIphi; // y(module) = y(SM) if(iphi<0 || ieta<0) AliDebug(1,Form(" nSupMod %i nModule %i nIphi %i nIeta %i => ieta %i iphi %i\n", nSupMod, nModule, nIphi, nIeta, ieta, iphi)); } // Methods for AliEMCALRecPoint - Feb 19, 2006 //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t &xr, Double_t &yr, Double_t &zr) const { // Look to see what the relative // position inside a given cell is // for a recpoint. // Alice numbering scheme - Jun 08, 2006 // In: // absId - cell is as in Geant, 0<= absId < fNCells; // OUT: // xr,yr,zr - x,y,z coordinates of cell with absId inside SM // Shift index taking into account the difference between standard SM // and SM of half size in phi direction const Int_t kphiIndexShift = fCentersOfCellsPhiDir.GetSize()/4; // Nov 22, 2006; was 6 for cas 2X2 static Int_t nSupMod=-1, nModule=-1, nIphi=-1, nIeta=-1, iphi=-1, ieta=-1; if(!CheckAbsCellId(absId)) return kFALSE; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi, ieta); //Get eta position. Careful with ALICE conventions (increase index decrease eta) Int_t ieta2 = ieta; if(nSupMod%2 == 0) ieta2 = (fCentersOfCellsEtaDir.GetSize()-1)-ieta;// 47-ieta, revert the ordering on A side in order to keep convention. zr = fCentersOfCellsEtaDir.At(ieta2); xr = fCentersOfCellsXDir.At(ieta2); //Get phi position. Careful with ALICE conventions (increase index increase phi) Int_t iphi2 = iphi; if(nSupMod<10) { if(nSupMod%2 != 0) iphi2 = (fCentersOfCellsPhiDir.GetSize()-1)-iphi;// 23-iphi, revert the ordering on C side in order to keep convention. yr = fCentersOfCellsPhiDir.At(iphi2); } else { if(nSupMod%2 != 0) iphi2 = (fCentersOfCellsPhiDir.GetSize()/2-1)-iphi;// 11-iphi, revert the ordering on C side in order to keep convention. yr = fCentersOfCellsPhiDir.At(iphi2 + kphiIndexShift); } AliDebug(1,Form("absId %i nSupMod %i iphi %i ieta %i xr %f yr %f zr %f ",absId,nSupMod,iphi,ieta,xr,yr,zr)); return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t loc[3]) const { // Look to see what the relative // position inside a given cell is // for a recpoint. // Alice numbering scheme - Jun 03, 2006 loc[0] = loc[1] = loc[2]=0.0; if(RelPosCellInSModule(absId, loc[0],loc[1],loc[2])) { return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, TVector3 &vloc) const { // Look to see what the relative // position inside a given cell is // for a recpoint. // Alice numbering scheme - Jun 03, 2006 static Double_t loc[3]; if(RelPosCellInSModule(absId,loc)) { vloc.SetXYZ(loc[0], loc[1], loc[2]); return kTRUE; } else { vloc.SetXYZ(0,0,0); return kFALSE; } } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t distEff, Double_t &xr, Double_t &yr, Double_t &zr) const { // Jul 30, 2007 - taking into account position of shower max // Look to see what the relative // position inside a given cell is // for a recpoint. // In: // absId - cell is as in Geant, 0<= absId < fNCells; // e - cluster energy // OUT: // xr,yr,zr - x,y,z coordinates of cell with absId inside SM // Shift index taking into account the difference between standard SM // and SM of half size in phi direction const Int_t kphiIndexShift = fCentersOfCellsPhiDir.GetSize()/4; // Nov 22, 2006; was 6 for cas 2X2 static Int_t nSupMod=0, nModule=-1, nIphi=-1, nIeta=-1, iphi=-1, ieta=-1; static Int_t iphim=-1, ietam=-1; static AliEMCALShishKebabTrd1Module *mod = 0; static TVector2 v; if(!CheckAbsCellId(absId)) return kFALSE; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); GetModulePhiEtaIndexInSModule(nSupMod, nModule, iphim, ietam); GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi, ieta); //Get eta position. Careful with ALICE conventions (increase index decrease eta) if(nSupMod%2 == 0) { ietam = (fCentersOfCellsEtaDir.GetSize()/2-1)-ietam;// 47-ietam, revert the ordering on A side in order to keep convention. if(nIeta == 0) nIeta = 1; else nIeta = 0; } mod = GetShishKebabModule(ietam); mod ->GetPositionAtCenterCellLine(nIeta, distEff, v); xr = v.Y() - fParSM[0]; zr = v.X() - fParSM[2]; //Get phi position. Careful with ALICE conventions (increase index increase phi) Int_t iphi2 = iphi; if(nSupMod<10) { if(nSupMod%2 != 0) iphi2 = (fCentersOfCellsPhiDir.GetSize()-1)-iphi;// 23-iphi, revert the ordering on C side in order to keep convention. yr = fCentersOfCellsPhiDir.At(iphi2); } else { if(nSupMod%2 != 0) iphi2 = (fCentersOfCellsPhiDir.GetSize()/2-1)-iphi;// 11-iphi, revert the ordering on C side in order to keep convention. yr = fCentersOfCellsPhiDir.At(iphi2 + kphiIndexShift); } AliDebug(1,Form("absId %i nSupMod %i iphi %i ieta %i xr %f yr %f zr %f ",absId,nSupMod,iphi,ieta,xr,yr,zr)); return kTRUE; } //________________________________________________________________________________________________ void AliEMCALGeometry::CreateListOfTrd1Modules() { // Generate the list of Trd1 modules // which will make up the EMCAL // geometry // key: look to the AliEMCALShishKebabTrd1Module:: AliDebug(2,Form(" AliEMCALGeometry::CreateListOfTrd1Modules() started ")); AliEMCALShishKebabTrd1Module *mod=0, *mTmp=0; // current module if(fShishKebabTrd1Modules == 0) { fShishKebabTrd1Modules = new TList; fShishKebabTrd1Modules->SetName("ListOfTRD1"); for(int iz=0; iz< fEMCGeometry->GetNZ(); iz++) { if(iz==0) { // mod = new AliEMCALShishKebabTrd1Module(TMath::Pi()/2.,this); mod = new AliEMCALShishKebabTrd1Module(TMath::Pi()/2.,fEMCGeometry); } else { mTmp = new AliEMCALShishKebabTrd1Module(*mod); mod = mTmp; } fShishKebabTrd1Modules->Add(mod); } } else { AliDebug(2,Form(" Already exits : ")); } mod = (AliEMCALShishKebabTrd1Module*)fShishKebabTrd1Modules->At(fShishKebabTrd1Modules->GetSize()-1); fEtaMaxOfTRD1 = mod->GetMaxEtaOfModule(0); AliDebug(2,Form(" fShishKebabTrd1Modules has %i modules : max eta %5.4f \n", fShishKebabTrd1Modules->GetSize(),fEtaMaxOfTRD1)); // Feb 20,2006; // Jun 01, 2006 - ALICE numbering scheme // define grid for cells in eta(z) and x directions in local coordinates system of SM // Works just for 2x2 case only -- ?? start here // // // Define grid for cells in phi(y) direction in local coordinates system of SM // as for 2X2 as for 3X3 - Nov 8,2006 // AliDebug(2,Form(" Cells grid in phi directions : size %i\n", fCentersOfCellsPhiDir.GetSize())); Int_t ind=0; // this is phi index Int_t ieta=0, nModule=0, iphiTemp; Double_t xr=0., zr=0., theta=0., phi=0., eta=0., r=0., x=0.,y=0.; TVector3 vglob; Double_t ytCenterModule=0.0, ytCenterCell=0.0; fCentersOfCellsPhiDir.Set(fNPhi*fNPHIdiv); fPhiCentersOfCells.Set(fNPhi*fNPHIdiv); Double_t r0 = fIPDistance + fLongModuleSize/2.; for(Int_t it=0; itGetCenterOfCellInLocalCoordinateofSM(ic, xr, zr); // case of 2X2 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } if(fNPHIdiv==3) { trd1->GetCenterOfCellInLocalCoordinateofSM3X3(ic, xr, zr); // case of 3X3 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } if(fNPHIdiv==1) { trd1->GetCenterOfCellInLocalCoordinateofSM1X1(xr, zr); // case of 1X1 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } fCentersOfCellsXDir.AddAt(float(xr) - fParSM[0],ieta); fCentersOfCellsEtaDir.AddAt(float(zr) - fParSM[2],ieta); // Define grid on eta direction for each bin in phi for(int iphi=0; iphiGetRadius(); y = fCentersOfCellsPhiDir[iphi]; r = TMath::Sqrt(x*x + y*y + zr*zr); theta = TMath::ACos(zr/r); eta = AliEMCALShishKebabTrd1Module::ThetaToEta(theta); // ind = ieta*fCentersOfCellsPhiDir.GetSize() + iphi; ind = iphi*fCentersOfCellsEtaDir.GetSize() + ieta; fEtaCentersOfCells.AddAt(eta, ind); } //printf(" ieta %i : xr + trd1->GetRadius() %f : zr %f : eta %f \n", ieta, xr + trd1->GetRadius(), zr, eta); } } for(Int_t i=0; i=0 && netaGetSize()) { trd1 = (AliEMCALShishKebabTrd1Module*)fShishKebabTrd1Modules->At(neta); } else trd1 = 0; return trd1; } //___________________________________________________________________ void AliEMCALGeometry::PrintGeometryGeoUtils() { //Print information from geometry fEMCGeometry->PrintGeometry(); printf(" fShishKebabTrd1Modules has %i modules : max eta %5.4f \n", fShishKebabTrd1Modules->GetSize(),fEtaMaxOfTRD1); printf("\n Cells grid in eta directions : size %i\n", fCentersOfCellsEtaDir.GetSize()); for(Int_t i=0; iVx(),particle->Vy(),particle->Vz()); TVector3 vimpact(0,0,0); ImpactOnEmcal(vtx,particle->Theta(),particle->Phi(),absID,vimpact); if(absID>=0) in=kTRUE; return in; } //____________________________________________________________________________ void AliEMCALGeometry::ImpactOnEmcal(TVector3 vtx, Double_t theta, Double_t phi, Int_t & absId, TVector3 & vimpact) const { // calculates the impact coordinates on EMCAL (centre of a tower/not on EMCAL surface) // of a neutral particle // emitted in the vertex vtx[3] with direction theta and phi in the ALICE global coordinate system TVector3 p(TMath::Sin(theta)*TMath::Cos(phi),TMath::Sin(theta)*TMath::Sin(phi),TMath::Cos(theta)) ; vimpact.SetXYZ(0,0,0); absId=-1; if(phi==0 || theta==0) return; TVector3 direction; Double_t factor = (fIPDistance-vtx[1])/p[1]; direction = vtx + factor*p; //from particle direction -> tower hitted GetAbsCellIdFromEtaPhi(direction.Eta(),direction.Phi(),absId); //tower absID hitted -> tower/module plane (evaluated at the center of the tower) Int_t nSupMod=-1, nModule=-1, nIphi=-1, nIeta=-1; Double_t loc[3],loc2[3],loc3[3]; Double_t glob[3]={},glob2[3]={},glob3[3]={}; if(!RelPosCellInSModule(absId,loc)) return; //loc is cell center of tower GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); //look at 2 neighbours-s cell using nIphi={0,1} and nIeta={0,1} Int_t nIphi2=-1,nIeta2=-1,absId2=-1,absId3=-1; if(nIeta==0) nIeta2=1; else nIeta2=0; absId2=GetAbsCellId(nSupMod,nModule,nIphi,nIeta2); if(nIphi==0) nIphi2=1; else nIphi2=0; absId3=GetAbsCellId(nSupMod,nModule,nIphi2,nIeta); //2nd point on emcal cell plane if(!RelPosCellInSModule(absId2,loc2)) return; //3rd point on emcal cell plane if(!RelPosCellInSModule(absId3,loc3)) return; // Get Matrix const TGeoHMatrix* m = GetMatrixForSuperModule(nSupMod); if(m) { m->LocalToMaster(loc, glob); m->LocalToMaster(loc2, glob2); m->LocalToMaster(loc3, glob3); } else { AliFatal("Geo matrixes are not loaded \n") ; } //Equation of Plane from glob,glob2,glob3 (Ax+By+Cz+D=0) Double_t a = glob[1]*(glob2[2]-glob3[2]) + glob2[1]*(glob3[2]-glob[2]) + glob3[1]*(glob[2]-glob2[2]); Double_t b = glob[2]*(glob2[0]-glob3[0]) + glob2[2]*(glob3[0]-glob[0]) + glob3[2]*(glob[0]-glob2[0]); Double_t c = glob[0]*(glob2[1]-glob3[1]) + glob2[0]*(glob3[1]-glob[1]) + glob3[0]*(glob[1]-glob2[1]); Double_t d = glob[0]*(glob2[1]*glob3[2]-glob3[1]*glob2[2]) + glob2[0]*(glob3[1]*glob[2]-glob[1]*glob3[2]) + glob3[0]*(glob[1]*glob2[2]-glob2[1]*glob[2]); d=-d; //shift equation of plane from tower/module center to surface along vector (A,B,C) normal to tower/module plane Double_t dist = fLongModuleSize/2.; Double_t norm = TMath::Sqrt(a*a+b*b+c*c); Double_t glob4[3]={}; TVector3 dir(a,b,c); TVector3 point(glob[0],glob[1],glob[2]); if(point.Dot(dir)<0) dist*=-1; glob4[0]=glob[0]-dist*a/norm; glob4[1]=glob[1]-dist*b/norm; glob4[2]=glob[2]-dist*c/norm; d = glob4[0]*a + glob4[1]*b + glob4[2]*c ; d = -d; //Line determination (2 points for equation of line : vtx and direction) //impact between line (particle) and plane (module/tower plane) Double_t den = a*(vtx(0)-direction(0)) + b*(vtx(1)-direction(1)) + c*(vtx(2)-direction(2)); if(den==0){ printf("ImpactOnEmcal() No solution :\n"); return; } Double_t length = a*vtx(0)+b*vtx(1)+c*vtx(2)+d; length /=den; vimpact.SetXYZ(vtx(0)+length*(direction(0)-vtx(0)),vtx(1)+length*(direction(1)-vtx(1)),vtx(2)+length*(direction(2)-vtx(2))); //shift vimpact from tower/module surface to center along vector (A,B,C) normal to tower/module plane vimpact.SetXYZ(vimpact(0)+dist*a/norm,vimpact(1)+dist*b/norm,vimpact(2)+dist*c/norm); return; } //_____________________________________________________________________________ Bool_t AliEMCALGeometry::IsInEMCAL(Double_t x, Double_t y, Double_t z) const { // Checks whether point is inside the EMCal volume, used in AliEMCALv*.cxx // // Code uses cylindrical approximation made of inner radius (for speed) // // Points behind EMCAl, i.e. R > outer radius, but eta, phi in acceptance // are considered to inside Double_t r=sqrt(x*x+y*y); if ( r > fEnvelop[0] ) { Double_t theta; theta = TMath::ATan2(r,z); Double_t eta; if(theta == 0) eta = 9999; else eta = -TMath::Log(TMath::Tan(theta/2.)); if (eta < fArm1EtaMin || eta > fArm1EtaMax) return 0; Double_t phi = TMath::ATan2(y,x) * 180./TMath::Pi(); if (phi < 0) phi += 360; // phi should go from 0 to 360 in this case if (phi > fArm1PhiMin && phi < fArm1PhiMax) return 1; } return 0; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsTRUNumberFromNumberInSm(const Int_t row, const Int_t col, const Int_t sm) const { // Nov 6, 2007 // Get TRU absolute number from column, row and Super Module number Int_t itru = row + col*fEMCGeometry->GetNModulesInTRUPhi() + sm*fEMCGeometry->GetNTRU(); // printf(" GetAbsTRUNumberFromNumberInSm : row %2i col %2i sm %2i -> itru %2i\n", row, col, sm, itru); return itru; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsFastORIndexFromTRU(const Int_t iTRU, const Int_t iADC, Int_t& id) const { //Trigger mapping method, get FastOr Index from TRU if (iTRU > 31 || iTRU < 0 || iADC > 95 || iADC < 0) { AliError("TRU out of range!"); return kFALSE; } id = ( iTRU % 2 ) ? iADC%4 + 4 * (23 - int(iADC/4)) : (3 - iADC%4) + 4 * int(iADC/4); id += iTRU * 96; return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetTRUFromAbsFastORIndex(const Int_t id, Int_t& iTRU, Int_t& iADC) const { //Trigger mapping method, get TRU number from FastOr Index if (id > 3071 || id < 0) { AliError("Id out of range!"); return kFALSE; } iTRU = id / 96; iADC = id % 96; iADC = ( iTRU % 2 ) ? iADC%4 + 4 * (23 - int(iADC/4)) : (3 - iADC%4) + 4 * int(iADC/4); return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetPositionInTRUFromAbsFastORIndex(const Int_t id, Int_t& iTRU, Int_t& iEta, Int_t& iPhi) const { //Trigger mapping method, get position in TRU from FasOr Index Int_t iADC=-1; if (!GetTRUFromAbsFastORIndex(id, iTRU, iADC)) return kFALSE; Int_t x = iADC / 4; Int_t y = iADC % 4; if ( iTRU % 2 ) // C side { iEta = 23 - x; iPhi = y; } else // A side { iEta = x; iPhi = 3 - y; } return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetPositionInSMFromAbsFastORIndex(const Int_t id, Int_t& iSM, Int_t& iEta, Int_t& iPhi) const { //Trigger mapping method, get position in Super Module from FasOr Index Int_t iTRU=-1; if (!GetPositionInTRUFromAbsFastORIndex(id, iTRU, iEta, iPhi)) return kFALSE; if (iTRU % 2) // C side { iSM = 2 * ( int( int(iTRU / 2) / 3 ) ) + 1; } else // A side { iSM = 2 * ( int( int(iTRU / 2) / 3 ) ); } iPhi += 4 * int((iTRU % 6) / 2); return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetPositionInEMCALFromAbsFastORIndex(const Int_t id, Int_t& iEta, Int_t& iPhi) const { //Trigger mapping method, get position in EMCAL from FastOR index Int_t iSM=-1; if (GetPositionInSMFromAbsFastORIndex(id, iSM, iEta, iPhi)) { if (iSM % 2) iEta += 24; iPhi += 12 * int(iSM / 2); return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsFastORIndexFromPositionInTRU(const Int_t iTRU, const Int_t iEta, const Int_t iPhi, Int_t& id) const { //Trigger mapping method, get Index if FastOr from Position in TRU if (iTRU < 0 || iTRU > 31 || iEta < 0 || iEta > 23 || iPhi < 0 || iPhi > 3) { AliError("Out of range!"); return kFALSE; } id = iPhi + 4 * iEta + iTRU * 96; return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsFastORIndexFromPositionInSM(const Int_t iSM, const Int_t iEta, const Int_t iPhi, Int_t& id) const { //Trigger mapping method, from position in SM Index get FastOR index if (iSM < 0 || iSM > 11 || iEta < 0 || iEta > 23 || iPhi < 0 || iPhi > 11) { AliError("Out of range!"); return kFALSE; } Int_t x = iEta; Int_t y = iPhi % 4; Int_t iOff = (iSM % 2) ? 1 : 0; Int_t iTRU = 2 * int(iPhi / 4) + 6 * int(iSM / 2) + iOff; if (GetAbsFastORIndexFromPositionInTRU(iTRU, x, y, id)) { return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsFastORIndexFromPositionInEMCAL(const Int_t iEta, const Int_t iPhi, Int_t& id) const { //Trigger mapping method, from position in EMCAL Index get FastOR index if (iEta < 0 || iEta > 47 || iPhi < 0 || iPhi > 63 ) { AliError("Out of range!"); return kFALSE; } if (fFastOR2DMap[iEta][iPhi] == -1) { AliError("Invalid index!"); return kFALSE; } id = fFastOR2DMap[iEta][iPhi]; return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetFastORIndexFromCellIndex(const Int_t id, Int_t& idx) const { //Trigger mapping method, from cell index get FastOR index Int_t iSupMod, nModule, nIphi, nIeta, iphim, ietam; Bool_t isOK = GetCellIndex( id, iSupMod, nModule, nIphi, nIeta ); GetModulePhiEtaIndexInSModule( iSupMod, nModule, iphim, ietam ); if (isOK && GetAbsFastORIndexFromPositionInSM(iSupMod, ietam, iphim, idx)) { return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetCellIndexFromFastORIndex(const Int_t id, Int_t idx[4]) const { //Trigger mapping method, from FASTOR index get cell index Int_t iSM=-1, iEta=-1, iPhi=-1; if (GetPositionInSMFromAbsFastORIndex(id, iSM, iEta, iPhi)) { Int_t ix = 2 * iEta; Int_t iy = 2 * iPhi; for (Int_t i=0; i<2; i++) { for (Int_t j=0; j<2; j++) { idx[2*i+j] = GetAbsCellIdFromCellIndexes(iSM, iy + i, ix + j); } } return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetTRUIndexFromSTUIndex(const Int_t id, Int_t& idx) const { //Trigger mapping method, from STU index get TRU index if (id > 31 || id < 0) { AliError(Form("TRU index out of range: %d",id)); return kFALSE; } idx = (id > 15) ? 2 * (31 - id) : 2 * (15 - id) + 1; return kTRUE; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetTRUIndexFromSTUIndex(const Int_t id) const { //Trigger mapping method, from STU index get TRU index if (id > 31 || id < 0) { AliError(Form("TRU index out of range: %d",id)); } Int_t idx = (id > 15) ? 2 * (31 - id) : 2 * (15 - id) + 1; return idx; } //________________________________________________________________________________________________ void AliEMCALGeometry::BuildFastOR2DMap() { // Needed by STU for (Int_t i = 0; i < 32; i++) { for (Int_t j = 0; j < 24; j++) { for (Int_t k = 0; k < 4; k++) { Int_t id; if (GetAbsFastORIndexFromPositionInTRU(i, j, k, id)) { Int_t x = j, y = k + 4 * int(i / 2); if (i % 2) x += 24; fFastOR2DMap[x][y] = id; } } } } } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetFastORIndexFromL0Index(const Int_t iTRU, const Int_t id, Int_t idx[], const Int_t size) const { //Trigger mapping method, from L0 index get FastOR index if (size <= 0 ||size > 4) { AliError("Size not supported!"); return kFALSE; } Int_t motif[4] = {0, 1, 4, 5}; switch (size) { case 1: // Cosmic trigger if (!GetAbsFastORIndexFromTRU(iTRU, id, idx[1])) return kFALSE; break; case 4: // 4 x 4 for (Int_t k = 0; k < 4; k++) { Int_t iADC = motif[k] + 4 * int(id / 3) + (id % 3); if (!GetAbsFastORIndexFromTRU(iTRU, iADC, idx[k])) return kFALSE; } break; default: break; } return kTRUE; } //____________________________________________________________________________ const TGeoHMatrix * AliEMCALGeometry::GetMatrixForSuperModule(Int_t smod) const { //Provides shift-rotation matrix for EMCAL if(smod < 0 || smod > fEMCGeometry->GetNumberOfSuperModules()) AliFatal(Form("Wrong supermodule index -> %d",smod)); //If GeoManager exists, take matrixes from it // // if(fKey110DEG && ind>=10) { // } // // if(!gGeoManager->cd(volpath.Data())) // AliFatal(Form("AliEMCALGeometry::GeoManager cannot find path %s!",volpath.Data())); // // TGeoHMatrix* m = gGeoManager->GetCurrentMatrix(); //Use matrices set externally if(!gGeoManager || (gGeoManager && fUseExternalMatrices)){ if(fkSModuleMatrix[smod]){ return fkSModuleMatrix[smod] ; } else{ AliInfo("Stop:"); printf("\t Can not find EMCAL misalignment matrixes\n") ; printf("\t Either import TGeoManager from geometry.root or \n"); printf("\t read stored matrixes from AliESD Header: \n") ; printf("\t AliEMCALGeometry::SetMisalMatrixes(header->GetEMCALMisalMatrix()) \n") ; abort() ; } }//external matrices if(gGeoManager){ const Int_t buffersize = 255; char path[buffersize] ; snprintf(path,buffersize,"/ALIC_1/XEN1_1/SMOD_%d",smod+1) ; //TString volpath = "ALIC_1/XEN1_1/SMOD_"; //volpath += smod+1; if(fKey110DEG && smod >= 10){ snprintf(path,buffersize,"/ALIC_1/XEN1_1/SM10_%d",smod-10+1) ; //volpath = "ALIC_1/XEN1_1/SM10_"; //volpath += smod-10+1; } if (!gGeoManager->cd(path)){ AliFatal(Form("Geo manager can not find path %s!\n",path)); } return gGeoManager->GetCurrentMatrix(); } return 0 ; } //______________________________________________________________________ void AliEMCALGeometry::GetModulePhiEtaIndexInSModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru, Int_t &iphiSM, Int_t &ietaSM) const { // This method transforms the (eta,phi) index of module in a // TRU matrix into Super Module (eta,phi) index. // Calculate in which row and column where the TRU are // ordered in the SM Int_t col = itru/fEMCGeometry->GetNTRUPhi() ; // indexes of TRU in SM Int_t row = itru - col*fEMCGeometry->GetNTRUPhi(); iphiSM = fEMCGeometry->GetNModulesInTRUPhi()*row + iphitru ; ietaSM = fEMCGeometry->GetNModulesInTRUEta()*col + ietatru ; //printf(" GetModulePhiEtaIndexInSModuleFromTRUIndex : itru %2i iphitru %2i ietatru %2i iphiSM %2i ietaSM %2i \n", // itru, iphitru, ietatru, iphiSM, ietaSM); } //__________________________________________________________________________________________________________________ void AliEMCALGeometry::RecalculateTowerPosition(Float_t drow, Float_t dcol, const Int_t sm, const Float_t depth, const Float_t misaligTransShifts[15], const Float_t misaligRotShifts[15], Float_t global[3]) const { //Transform clusters cell position into global with alternative method, taking into account the depth calculation. //Input are: the tower indeces, // supermodule, // particle type (photon 0, electron 1, hadron 2 ) // misalignment shifts to global position in case of need. // Federico.Ronchetti@cern.ch // To use in a print later Float_t droworg = drow; Float_t dcolorg = dcol; if(gGeoManager){ //Recover some stuff const Int_t nSMod = fEMCGeometry->GetNumberOfSuperModules(); gGeoManager->cd("ALIC_1/XEN1_1"); TGeoNode *geoXEn1 = gGeoManager->GetCurrentNode(); TGeoNodeMatrix *geoSM[nSMod]; TGeoVolume *geoSMVol[nSMod]; TGeoShape *geoSMShape[nSMod]; TGeoBBox *geoBox[nSMod]; TGeoMatrix *geoSMMatrix[nSMod]; for(int iSM = 0; iSM < nSMod; iSM++) { geoSM[iSM] = dynamic_cast(geoXEn1->GetDaughter(iSM)); geoSMVol[iSM] = geoSM[iSM]->GetVolume(); geoSMShape[iSM] = geoSMVol[iSM]->GetShape(); geoBox[iSM] = dynamic_cast(geoSMShape[iSM]); geoSMMatrix[iSM] = geoSM[iSM]->GetMatrix(); } if(sm % 2 == 0) { dcol = 47. - dcol; drow = 23. - drow; } Int_t istrip = 0; Float_t z0 = 0; Float_t zb = 0; Float_t z_is = 0; Float_t x,y,z; // return variables in terry's RF //*********************************************************** //Do not like this: too many hardcoded values, is it not already stored somewhere else? // : need more comments in the code //*********************************************************** Float_t dz = 6.0; // base cell width in eta Float_t dx = 6.004; // base cell width in phi //Float_t L = 26.04; // active tower length for hadron (lead+scint+paper) // we use the geant numbers 13.87*2=27.74 Float_t teta1 = 0.; //Do some basic checks if (dcol >= 47.5 || dcol<-0.5) { AliError(Form("Bad tower coordinate dcol=%f, where dcol >= 47.5 || dcol<-0.5; org: %f", dcol, dcolorg)); return; } if (drow >= 23.5 || drow<-0.5) { AliError(Form("Bad tower coordinate drow=%f, where drow >= 23.5 || drow<-0.5; org: %f", drow, droworg)); return; } if (sm >= nSMod || sm < 0) { AliError(Form("Bad SM number sm=%d, where sm >= %d || sm < 0", nSMod, sm)); return; } istrip = int ((dcol+0.5)/2); // tapering angle teta1 = TMath::DegToRad() * istrip * 1.5; // calculation of module corner along z // as a function of strip for (int is=0; is<= istrip; is++) { teta1 = TMath::DegToRad() * (is*1.5 + 0.75); if(is==0) z_is = z_is + 2*dz*TMath::Cos(teta1); else z_is = z_is + 2*dz*TMath::Cos(teta1) + 2*dz*TMath::Sin(teta1)*TMath::Tan(teta1-0.75*TMath::DegToRad()); } z0 = dz*(dcol-2*istrip+0.5); zb = (2*dz-z0-depth*TMath::Tan(teta1)); z = z_is - zb*TMath::Cos(teta1); y = depth/TMath::Cos(teta1) + zb*TMath::Sin(teta1); x = (drow + 0.5)*dx; // moving the origin from terry's RF // to the GEANT one double xx = y - geoBox[sm]->GetDX(); double yy = -x + geoBox[sm]->GetDY(); double zz = z - geoBox[sm]->GetDZ(); const double localIn[3] = {xx, yy, zz}; double dglobal[3]; //geoSMMatrix[sm]->Print(); //printf("TFF Local (row = %d, col = %d, x = %3.2f, y = %3.2f, z = %3.2f)\n", iroworg, icolorg, localIn[0], localIn[1], localIn[2]); geoSMMatrix[sm]->LocalToMaster(localIn, dglobal); //printf("TFF Global (row = %2.0f, col = %2.0f, x = %3.2f, y = %3.2f, z = %3.2f)\n", drow, dcol, dglobal[0], dglobal[1], dglobal[2]); //apply global shifts if(sm == 2 || sm == 3) {//sector 1 global[0] = dglobal[0] + misaligTransShifts[3] + misaligRotShifts[3]*TMath::Sin(TMath::DegToRad()*20) ; global[1] = dglobal[1] + misaligTransShifts[4] + misaligRotShifts[4]*TMath::Cos(TMath::DegToRad()*20) ; global[2] = dglobal[2] + misaligTransShifts[5]; } else if(sm == 0 || sm == 1){//sector 0 global[0] = dglobal[0] + misaligTransShifts[0]; global[1] = dglobal[1] + misaligTransShifts[1]; global[2] = dglobal[2] + misaligTransShifts[2]; } else { AliInfo("Careful, correction not implemented yet!"); global[0] = dglobal[0] ; global[1] = dglobal[1] ; global[2] = dglobal[2] ; } } else{ AliFatal("Geometry boxes information, check that geometry.root is loaded\n"); } }