/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$*/ //_________________________________________________________________________ // Geometry class for EMCAL : singleton // EMCAL consists of layers of scintillator and lead // with scintillator fiber arranged as "shish-kebab" skewers // Places the the Barrel Geometry of The EMCAL at Midrapidity // between 80 and 180(or 190) degrees of Phi and // -0.7 to 0.7 in eta // // EMCAL geometry tree: // EMCAL -> superModule -> module -> tower(cell) // Indexes // absId -> nSupMod -> nModule -> (nIphi,nIeta) // // Name choices: // EMCAL_PDC06 (geometry used for PDC06 simulations, kept for backward compatibility) // = equivalent to SHISH_77_TRD1_2X2_FINAL_110DEG in old notation // EMCAL_COMPLETE (geometry for expected complete detector) // = equivalent to SHISH_77_TRD1_2X2_FINAL_110DEG scTh=0.176 pbTh=0.144 // in old notation // EMCAL_WSUC (Wayne State test stand) // = no definite equivalent in old notation, was only used by // Aleksei, but kept for testing purposes // // etc. // // // //*-- Author: Sahal Yacoob (LBL / UCT) // and : Yves Schutz (SUBATECH) // and : Jennifer Klay (LBL) // and : Aleksei Pavlinov (WSU) // #include // --- Root header files --- #include #include #include #include #include #include #include #include #include #include #include #include #include // -- ALICE Headers. #include "AliLog.h" // --- EMCAL headers #include "AliEMCALGeometry.h" #include "AliEMCALShishKebabTrd1Module.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALHistoUtilities.h" ClassImp(AliEMCALGeometry) // these initialisations are needed for a singleton AliEMCALGeometry *AliEMCALGeometry::fgGeom = 0; Bool_t AliEMCALGeometry::fgInit = kFALSE; const Char_t* AliEMCALGeometry::fgDefaultGeometryName = "EMCAL_COMPLETE"; // // Usage: // You can create the AliEMCALGeometry object independently from anything. // You have to use just the correct name of geometry. If name is empty string the // default name of geometry will be used. // // AliEMCALGeometry* g = AliEMCALGeometry::GetInstance(name,title); // first time // .. // g = AliEMCALGeometry::GetInstance(); // after first time // // MC: If you work with MC data you have to get geometry the next way: // == ============================= // AliRunLoader *rl = AliRunLoader::Instance(); // AliEMCALGeometry *geom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); // TGeoManager::Import("geometry.root"); AliEMCALGeometry::AliEMCALGeometry() : AliGeometry(), fGeoName(0),fArrayOpts(0),fNAdditionalOpts(0),fECPbRadThickness(0.),fECScintThick(0.), fNECLayers(0),fArm1PhiMin(0.),fArm1PhiMax(0.),fArm1EtaMin(0.),fArm1EtaMax(0.),fIPDistance(0.), fShellThickness(0.),fZLength(0.),fNZ(0),fNPhi(0),fSampling(0.),fNumberOfSuperModules(0), fFrontSteelStrip(0.),fLateralSteelStrip(0.),fPassiveScintThick(0.),fPhiModuleSize(0.), fEtaModuleSize(0.),fPhiTileSize(0.),fEtaTileSize(0.),fLongModuleSize(0.),fNPhiSuperModule(0), fNPHIdiv(0),fNETAdiv(0), fNCells(0),fNCellsInSupMod(0),fNCellsInModule(0), // Trigger staff fNTRUEta(0), fNTRUPhi(0), fNModulesInTRUEta(0), fNModulesInTRUPhi(0), fNEtaSubOfTRU(0), // fTrd1Angle(0.),f2Trd1Dx2(0.), fPhiGapForSM(0.),fKey110DEG(0),fPhiBoundariesOfSM(0), fPhiCentersOfSM(0),fEtaMaxOfTRD1(0), fCentersOfCellsEtaDir(0), fCentersOfCellsXDir(0),fCentersOfCellsPhiDir(0), fEtaCentersOfCells(0),fPhiCentersOfCells(0),fShishKebabTrd1Modules(0), fILOSS(-1), fIHADR(-1), //obsolete member data fAlFrontThick(0.), fGap2Active(0.), fSteelFrontThick(0.), fTrd2AngleY(0.), f2Trd2Dy2(0.), fEmptySpace(0.), fTubsR(0.), fTubsTurnAngle(0.) { // default ctor only for internal usage (singleton) // must be kept public for root persistency purposes, // but should never be called by the outside world AliDebug(2, "AliEMCALGeometry : default ctor "); } //______________________________________________________________________ AliEMCALGeometry::AliEMCALGeometry(const Text_t* name, const Text_t* title) : AliGeometry(name, title), fGeoName(0),fArrayOpts(0),fNAdditionalOpts(0),fECPbRadThickness(0.),fECScintThick(0.), fNECLayers(0),fArm1PhiMin(0.),fArm1PhiMax(0.),fArm1EtaMin(0.),fArm1EtaMax(0.),fIPDistance(0.), fShellThickness(0.),fZLength(0.),fNZ(0),fNPhi(0),fSampling(0.),fNumberOfSuperModules(0), fFrontSteelStrip(0.),fLateralSteelStrip(0.),fPassiveScintThick(0.),fPhiModuleSize(0.), fEtaModuleSize(0.),fPhiTileSize(0.),fEtaTileSize(0.),fLongModuleSize(0.),fNPhiSuperModule(0), fNPHIdiv(0),fNETAdiv(0), fNCells(0),fNCellsInSupMod(0),fNCellsInModule(0), // Trigger staff fNTRUEta(0), fNTRUPhi(0), fNModulesInTRUEta(0), fNModulesInTRUPhi(0), fNEtaSubOfTRU(0), // fTrd1Angle(0.),f2Trd1Dx2(0.), fPhiGapForSM(0.),fKey110DEG(0),fPhiBoundariesOfSM(0), fPhiCentersOfSM(0), fEtaMaxOfTRD1(0), fCentersOfCellsEtaDir(0),fCentersOfCellsXDir(0),fCentersOfCellsPhiDir(0), fEtaCentersOfCells(0),fPhiCentersOfCells(0),fShishKebabTrd1Modules(0), fILOSS(-1), fIHADR(-1), //obsolete member data fAlFrontThick(0.), fGap2Active(0.), fSteelFrontThick(0.), fTrd2AngleY(0.), f2Trd2Dy2(0.), fEmptySpace(0.), fTubsR(0.), fTubsTurnAngle(0.) { // ctor only for internal usage (singleton) AliDebug(2, Form("AliEMCALGeometry(%s,%s) ", name,title)); Init(); CreateListOfTrd1Modules(); if (AliDebugLevel()>=2) { PrintGeometry(); } } //______________________________________________________________________ AliEMCALGeometry::AliEMCALGeometry(const AliEMCALGeometry& geom) : AliGeometry(geom), fGeoName(geom.fGeoName), fArrayOpts(geom.fArrayOpts), fNAdditionalOpts(geom.fNAdditionalOpts), fECPbRadThickness(geom.fECPbRadThickness), fECScintThick(geom.fECScintThick), fNECLayers(geom.fNECLayers), fArm1PhiMin(geom.fArm1PhiMin), fArm1PhiMax(geom.fArm1PhiMax), fArm1EtaMin(geom.fArm1EtaMin), fArm1EtaMax(geom.fArm1EtaMax), fIPDistance(geom.fIPDistance), fShellThickness(geom.fShellThickness), fZLength(geom.fZLength), fNZ(geom.fNZ), fNPhi(geom.fNPhi), fSampling(geom.fSampling), fNumberOfSuperModules(geom.fNumberOfSuperModules), fFrontSteelStrip(geom.fFrontSteelStrip), fLateralSteelStrip(geom.fLateralSteelStrip), fPassiveScintThick(geom.fPassiveScintThick), fPhiModuleSize(geom.fPhiModuleSize), fEtaModuleSize(geom.fEtaModuleSize), fPhiTileSize(geom.fPhiTileSize), fEtaTileSize(geom.fEtaTileSize), fLongModuleSize(geom.fLongModuleSize), fNPhiSuperModule(geom.fNPhiSuperModule), fNPHIdiv(geom.fNPHIdiv), fNETAdiv(geom.fNETAdiv), fNCells(geom.fNCells), fNCellsInSupMod(geom.fNCellsInSupMod), fNCellsInModule(geom.fNCellsInModule), // Trigger staff fNTRUEta(geom.fNTRUEta), fNTRUPhi(geom.fNTRUPhi), fNModulesInTRUEta(geom.fNModulesInTRUEta), fNModulesInTRUPhi(geom.fNModulesInTRUPhi), fNEtaSubOfTRU(geom.fNEtaSubOfTRU), // fTrd1Angle(geom.fTrd1Angle), f2Trd1Dx2(geom.f2Trd1Dx2), fPhiGapForSM(geom.fPhiGapForSM), fKey110DEG(geom.fKey110DEG), fPhiBoundariesOfSM(geom.fPhiBoundariesOfSM), fPhiCentersOfSM(geom.fPhiCentersOfSM), fEtaMaxOfTRD1(geom.fEtaMaxOfTRD1), fCentersOfCellsEtaDir(geom.fCentersOfCellsEtaDir), fCentersOfCellsXDir(geom.fCentersOfCellsXDir), fCentersOfCellsPhiDir(geom.fCentersOfCellsPhiDir), fEtaCentersOfCells(geom.fEtaCentersOfCells), fPhiCentersOfCells(geom.fPhiCentersOfCells), fShishKebabTrd1Modules(geom.fShishKebabTrd1Modules), fILOSS(geom.fILOSS), fIHADR(geom.fIHADR), //obsolete member data fAlFrontThick(geom.fAlFrontThick), fGap2Active(geom.fGap2Active), fSteelFrontThick(geom.fSteelFrontThick), fTrd2AngleY(geom.fTrd2AngleY), f2Trd2Dy2(geom.f2Trd2Dy2), fEmptySpace(geom.fEmptySpace), fTubsR(geom.fTubsR), fTubsTurnAngle(geom.fTubsTurnAngle) { //copy ctor } //______________________________________________________________________ AliEMCALGeometry::~AliEMCALGeometry(void){ // dtor } //______________________________________________________________________ void AliEMCALGeometry::Init(void){ // // Initializes the EMCAL parameters based on the name // Only Shashlyk geometry is available, but various combinations of // layers and number of supermodules can be selected with additional // options or geometry name // fAdditionalOpts[0] = "nl="; // number of sampling layers (fNECLayers) fAdditionalOpts[1] = "pbTh="; // cm, Thickness of the Pb (fECPbRadThick) fAdditionalOpts[2] = "scTh="; // cm, Thickness of the Sc (fECScintThick) fAdditionalOpts[3] = "latSS="; // cm, Thickness of lateral steel strip (fLateralSteelStrip) fAdditionalOpts[4] = "allILOSS="; // = 0,1,2,3,4 (4 - energy loss without fluctuation) fAdditionalOpts[5] = "allIHADR="; // = 0,1,2 (0 - no hadronic interaction) fNAdditionalOpts = sizeof(fAdditionalOpts) / sizeof(char*); // geometry fgInit = kFALSE; // Assume failed until proven otherwise. fGeoName = GetName(); fGeoName.ToUpper(); //Convert old geometry names to new ones if(fGeoName.Contains("SHISH_77_TRD1_2X2_FINAL_110DEG")) { if(fGeoName.Contains("PBTH=0.144") && fGeoName.Contains("SCTH=0.176")) { fGeoName = "EMCAL_COMPLETE"; } else { fGeoName = "EMCAL_PDC06"; } } if(fGeoName.Contains("WSUC")) fGeoName = "EMCAL_WSUC"; //check that we have a valid geometry name if(!(fGeoName.Contains("EMCAL_PDC06") || fGeoName.Contains("EMCAL_COMPLETE") || fGeoName.Contains("EMCAL_WSUC") || fGeoName.Contains("EMCAL_1stYear"))) { Fatal("Init", "%s is an undefined geometry!", fGeoName.Data()) ; } // Option to know whether we have the "half" supermodule(s) or not fKey110DEG = 0; if(fGeoName.Contains("COMPLETE") || fGeoName.Contains("PDC06")) fKey110DEG = 1; // for GetAbsCellId fShishKebabTrd1Modules = 0; // JLK 13-Apr-2008 //default parameters are those of EMCAL_COMPLETE geometry //all others render variations from these at the end of //geometry-name specific options fNumberOfSuperModules = 12; // 12 = 6 * 2 (6 in phi, 2 in Z) fNPhi = 12; // module granularity in phi within smod (azimuth) fNZ = 24; // module granularity along Z within smod (eta) fNPHIdiv = fNETAdiv = 2; // tower granularity within module fArm1PhiMin = 80.0; // degrees, Starting EMCAL Phi position fArm1PhiMax = 200.0; // degrees, Ending EMCAL Phi position fArm1EtaMin = -0.7; // pseudorapidity, Starting EMCAL Eta position fArm1EtaMax = +0.7; // pseudorapidity, Ending EMCAL Eta position fIPDistance = 428.0; // cm, radial distance to front face from nominal vertex point fPhiGapForSM = 2.; // cm, only for final TRD1 geometry fFrontSteelStrip = 0.025; // 0.025cm = 0.25mm (13-may-05 from V.Petrov) fPassiveScintThick = 0.8; // 0.8cm = 8mm (13-may-05 from V.Petrov) fLateralSteelStrip = 0.01; // 0.01cm = 0.1mm (13-may-05 from V.Petrov) - was 0.025 fTrd1Angle = 1.5; // in degrees fSampling = 1.; // should be calculated with call to DefineSamplingFraction() fNECLayers = 77; // (13-may-05 from V.Petrov) - can be changed with additional options fECScintThick = 0.176; // scintillator layer thickness fECPbRadThickness = 0.144; // lead layer thickness fPhiModuleSize = 12.26 - fPhiGapForSM / Float_t(fNPhi); // first assumption fEtaModuleSize = fPhiModuleSize; fZLength = 700.; // Z coverage (cm) //needs to be called for each geometry and before setting geometry //parameters which can depend on the outcome CheckAdditionalOptions(); //modifications to the above for PDC06 geometry if(fGeoName.Contains("PDC06")){ // 18-may-05 - about common structure fECScintThick = fECPbRadThickness = 0.16;// (13-may-05 from V.Petrov) CheckAdditionalOptions(); } //modifications to the above for WSUC geometry if(fGeoName.Contains("WSUC")){ // 18-may-05 - about common structure fPhiModuleSize = 12.5; // 20-may-05 - rectangular shape fEtaModuleSize = 11.9; fECScintThick = fECPbRadThickness = 0.16;// (13-may-05 from V.Petrov) fNumberOfSuperModules = 1; // 27-may-05 fShellThickness = 30.; // should be change fNPhi = fNZ = 4; CheckAdditionalOptions(); } if(fGeoName.Contains("1stYear")){ fNumberOfSuperModules = 2; if(fGeoName.Contains("LowerEta")) { fNPhiSuperModule = 1; } else if(fGeoName.Contains("LowerPhi_SideA")){ fNPhiSuperModule = 2; fArm1EtaMax=0; } else if(fGeoName.Contains("LowerPhi_SideC")){ fNPhiSuperModule = 2; fArm1EtaMin=0; } CheckAdditionalOptions(); } // constant for transition absid <--> indexes fNCellsInModule = fNPHIdiv*fNETAdiv; fNCellsInSupMod = fNCellsInModule*fNPhi*fNZ; fNCells = fNCellsInSupMod*fNumberOfSuperModules; if(GetKey110DEG()) fNCells -= fNCellsInSupMod; fNPhiSuperModule = fNumberOfSuperModules/2; if(fNPhiSuperModule < 1) fNPhiSuperModule = 1; fPhiTileSize = fPhiModuleSize/double(fNPHIdiv) - fLateralSteelStrip; // 13-may-05 fEtaTileSize = fEtaModuleSize/double(fNETAdiv) - fLateralSteelStrip; // 13-may-05 fLongModuleSize = fNECLayers*(fECScintThick + fECPbRadThickness); f2Trd1Dx2 = fEtaModuleSize + 2.*fLongModuleSize*TMath::Tan(fTrd1Angle*TMath::DegToRad()/2.); if(!fGeoName.Contains("WSUC")) fShellThickness = TMath::Sqrt(fLongModuleSize*fLongModuleSize + f2Trd1Dx2*f2Trd1Dx2); //These parameters are used to create the mother volume to hold the supermodules //2cm padding added to allow for misalignments - JLK 30-May-2008 fEnvelop[0] = fIPDistance - 1.; // mother volume inner radius fEnvelop[1] = fIPDistance + fShellThickness + 1.; // mother volume outer r. fEnvelop[2] = fZLength + 2.; //mother volume length // Local coordinates fParSM[0] = GetShellThickness()/2.; fParSM[1] = GetPhiModuleSize() * GetNPhi()/2.; fParSM[2] = fZLength/4.; //divide by 4 to get half-length of SM // SM phi boundaries - (0,1),(2,3) .. (10,11) - has the same boundaries; Nov 7, 2006 fPhiBoundariesOfSM.Set(fNumberOfSuperModules); fPhiCentersOfSM.Set(fNumberOfSuperModules/2); fPhiBoundariesOfSM[0] = TMath::PiOver2() - TMath::ATan2(fParSM[1] , fIPDistance); // 1th and 2th modules) fPhiCentersOfSM[0] = TMath::PiOver2(); if(fNumberOfSuperModules > 1) fPhiBoundariesOfSM[1] = TMath::PiOver2() + TMath::ATan2(fParSM[1] , fIPDistance); if(fNumberOfSuperModules > 2) { for(int i=1; i<=4; i++) { // from 2th ro 9th fPhiBoundariesOfSM[2*i] = fPhiBoundariesOfSM[0] + 20.*TMath::DegToRad()*i; fPhiBoundariesOfSM[2*i+1] = fPhiBoundariesOfSM[1] + 20.*TMath::DegToRad()*i; fPhiCentersOfSM[i] = fPhiCentersOfSM[0] + 20.*TMath::DegToRad()*i; } } if(fNumberOfSuperModules > 10) { fPhiBoundariesOfSM[11] = 190.*TMath::DegToRad(); fPhiBoundariesOfSM[10] = fPhiBoundariesOfSM[11] - TMath::ATan2((fParSM[1]) , fIPDistance); fPhiCentersOfSM[5] = (fPhiBoundariesOfSM[10]+fPhiBoundariesOfSM[11])/2.; } //called after setting of scintillator and lead layer parameters DefineSamplingFraction(); // TRU parameters - Apr 29,08 by PAI. // These parameters values was updated at Nov 05, 2007 // As is on Olivier BOURRION (LPSC) ppt preasentation // at ALICE trigger meeting at 13th-14th March fNTRUEta = 1; // was 3 fNTRUPhi = 3; // was 1 fNModulesInTRUEta = 24; // was 8 fNModulesInTRUPhi = 4; // was 12 // Jet trigger // 3*6*10 + 2*6*2 = 204 -> matrix (nphi(17), neta(12)) fNEtaSubOfTRU = 6; fgInit = kTRUE; } //___________________________________________________________________ void AliEMCALGeometry::PrintGeometry() { // Separate routine is callable from broswer; Nov 7,2006 printf("\nInit: geometry of EMCAL named %s :\n", fGeoName.Data()); if(fArrayOpts) { for(Int_t i=0; iGetEntries(); i++){ TObjString *o = (TObjString*)fArrayOpts->At(i); printf(" %i : %s \n", i, o->String().Data()); } } printf("Granularity: %d in eta and %d in phi\n", GetNZ(), GetNPhi()) ; printf("Layout: phi = (%7.1f, %7.1f), eta = (%5.2f, %5.2f), IP = %7.2f -> for EMCAL envelope only\n", GetArm1PhiMin(), GetArm1PhiMax(),GetArm1EtaMin(), GetArm1EtaMax(), GetIPDistance() ); printf( " ECAL : %d x (%f cm Pb, %f cm Sc) \n", GetNECLayers(), GetECPbRadThick(), GetECScintThick() ) ; printf(" fSampling %5.2f \n", fSampling ); printf(" fIPDistance %6.3f cm \n", fIPDistance); printf(" fNPhi %i | fNZ %i \n", fNPhi, fNZ); printf(" fNCellsInModule %i : fNCellsInSupMod %i : fNCells %i\n",fNCellsInModule, fNCellsInSupMod, fNCells); printf(" X:Y module size %6.3f , %6.3f cm \n", fPhiModuleSize, fEtaModuleSize); printf(" X:Y tile size %6.3f , %6.3f cm \n", fPhiTileSize, fEtaTileSize); printf(" #of sampling layers %i(fNECLayers) \n", fNECLayers); printf(" fLongModuleSize %6.3f cm \n", fLongModuleSize); printf(" #supermodule in phi direction %i \n", fNPhiSuperModule ); printf(" fILOSS %i : fIHADR %i \n", fILOSS, fIHADR); printf(" fTrd1Angle %7.4f\n", fTrd1Angle); printf(" f2Trd1Dx2 %7.4f\n", f2Trd1Dx2); printf("SM dimensions(TRD1) : dx %7.2f dy %7.2f dz %7.2f (SMOD, BOX)\n", fParSM[0],fParSM[1],fParSM[2]); printf(" fPhiGapForSM %7.4f cm (%7.4f <- phi size in degree)\n", fPhiGapForSM, TMath::ATan2(fPhiGapForSM,fIPDistance)*TMath::RadToDeg()); if(GetKey110DEG()) printf(" Last two modules have size 10 degree in phi (180 %7.5f(%7.2f) : center %7.5f(%7.2f) \n", i, fPhiBoundariesOfSM[2*i], fPhiBoundariesOfSM[2*i]*TMath::RadToDeg(), fPhiBoundariesOfSM[2*i+1], fPhiBoundariesOfSM[2*i+1]*TMath::RadToDeg(), fPhiCentersOfSM[i], fPhiCentersOfSM[i]*TMath::RadToDeg()); } printf(" fShishKebabTrd1Modules has %i modules : max eta %5.4f \n", fShishKebabTrd1Modules->GetSize(),fEtaMaxOfTRD1); printf("\n Cells grid in eta directions : size %i\n", fCentersOfCellsEtaDir.GetSize()); for(Int_t i=0; i nSupMod %i nModule %i nIphi %i nIeta %i \n", tit, absId, nSupMod, nModule, nIphi, nIeta); if(pri>0) { GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi,ieta); printf(" local SM index : iphi %i : ieta %i \n", iphi,ieta); GetGlobal(absId, vg); printf(" vglob : mag %7.2f : perp %7.2f : z %7.2f : eta %6.4f : phi %6.4f(%6.2f) \n", vg.Mag(), vg.Perp(), vg.Z(), vg.Eta(), vg.Phi(), vg.Phi()*TMath::RadToDeg()); } } //______________________________________________________________________ void AliEMCALGeometry::CheckAdditionalOptions() { // Feb 06,2006 // Additional options that // can be used to select // the specific geometry of // EMCAL to run // Dec 27,2006 // adeed allILOSS= and allIHADR= for MIP investigation fArrayOpts = new TObjArray; Int_t nopt = AliEMCALHistoUtilities::ParseString(fGeoName, *fArrayOpts); if(nopt==1) { // no aditional option(s) fArrayOpts->Delete(); delete fArrayOpts; fArrayOpts = 0; return; } for(Int_t i=1; iAt(i); TString addOpt = o->String(); Int_t indj=-1; for(Int_t j=0; j option |%s| unavailable : ** look to the file AliEMCALGeometry.h **\n", addOpt.Data())); assert(0); } else { AliDebug(2,Form(" option |%s| is valid : number %i : |%s|\n", addOpt.Data(), indj, fAdditionalOpts[indj])); if (addOpt.Contains("NL=",TString::kIgnoreCase)) {// number of sampling layers sscanf(addOpt.Data(),"NL=%i", &fNECLayers); AliDebug(2,Form(" fNECLayers %i (new) \n", fNECLayers)); } else if(addOpt.Contains("PBTH=",TString::kIgnoreCase)) {//Thickness of the Pb(fECPbRadThicknes) sscanf(addOpt.Data(),"PBTH=%f", &fECPbRadThickness); } else if(addOpt.Contains("SCTH=",TString::kIgnoreCase)) {//Thickness of the Sc(fECScintThick) sscanf(addOpt.Data(),"SCTH=%f", &fECScintThick); } else if(addOpt.Contains("LATSS=",TString::kIgnoreCase)) {// Thickness of lateral steel strip (fLateralSteelStrip) sscanf(addOpt.Data(),"LATSS=%f", &fLateralSteelStrip); AliDebug(2,Form(" fLateralSteelStrip %f (new) \n", fLateralSteelStrip)); } else if(addOpt.Contains("ILOSS=",TString::kIgnoreCase)) {// As in Geant sscanf(addOpt.Data(),"ALLILOSS=%i", &fILOSS); AliDebug(2,Form(" fILOSS %i \n", fILOSS)); } else if(addOpt.Contains("IHADR=",TString::kIgnoreCase)) {// As in Geant sscanf(addOpt.Data(),"ALLIHADR=%i", &fIHADR); AliDebug(2,Form(" fIHADR %i \n", fIHADR)); } } } } //__________________________________________________________________ void AliEMCALGeometry::DefineSamplingFraction() { // Jun 05,2006 // Look http://rhic.physics.wayne.edu/~pavlinov/ALICE/SHISHKEBAB/RES/linearityAndResolutionForTRD1.html // Keep for compatibilty // if(fNECLayers == 69) { // 10% layer reduction fSampling = 12.55; } else if(fNECLayers == 61) { // 20% layer reduction fSampling = 12.80; } else if(fNECLayers == 77) { if (fECScintThick>0.159 && fECScintThick<0.161) { // original sampling fraction, equal layers fSampling = 12.327; // fECScintThick = fECPbRadThickness = 0.160; } else if (fECScintThick>0.175 && fECScintThick<0.177) { // 10% Pb thicknes reduction fSampling = 10.5; // fECScintThick = 0.176, fECPbRadThickness=0.144; } else if(fECScintThick>0.191 && fECScintThick<0.193) { // 20% Pb thicknes reduction fSampling = 8.93; // fECScintThick = 0.192, fECPbRadThickness=0.128; } } } //______________________________________________________________________ void AliEMCALGeometry::GetModulePhiEtaIndexInSModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru, Int_t &iphiSM, Int_t &ietaSM) const { // This method transforms the (eta,phi) index of module in a // TRU matrix into Super Module (eta,phi) index. // Calculate in which row and column where the TRU are // ordered in the SM Int_t col = itru/ fNTRUPhi ; // indexes of TRU in SM Int_t row = itru - col*fNTRUPhi ; iphiSM = fNModulesInTRUPhi*row + iphitru ; ietaSM = fNModulesInTRUEta*col + ietatru ; //printf(" GetModulePhiEtaIndexInSModuleFromTRUIndex : itru %2i iphitru %2i ietatru %2i iphiSM %2i ietaSM %2i \n", // itru, iphitru, ietatru, iphiSM, ietaSM); } //______________________________________________________________________ AliEMCALGeometry * AliEMCALGeometry::GetInstance(){ // Returns the pointer of the unique instance AliEMCALGeometry * rv = static_cast( fgGeom ); return rv; } //______________________________________________________________________ AliEMCALGeometry* AliEMCALGeometry::GetInstance(const Text_t* name, const Text_t* title){ // Returns the pointer of the unique instance AliEMCALGeometry * rv = 0; if ( fgGeom == 0 ) { if ( strcmp(name,"") == 0 ) { // get default geometry fgGeom = new AliEMCALGeometry(fgDefaultGeometryName, title); } else { fgGeom = new AliEMCALGeometry(name, title); } // end if strcmp(name,"") if ( fgInit ) rv = (AliEMCALGeometry * ) fgGeom; else { rv = 0; delete fgGeom; fgGeom = 0; } // end if fgInit }else{ if ( strcmp(fgGeom->GetName(), name) != 0) { printf("\ncurrent geometry is %s : ", fgGeom->GetName()); printf(" you cannot call %s ",name); }else{ rv = (AliEMCALGeometry *) fgGeom; } // end } // end if fgGeom return rv; } //_____________________________________________________________________________ Bool_t AliEMCALGeometry::IsInEMCAL(Double_t x, Double_t y, Double_t z) const { // Checks whether point is inside the EMCal volume, used in AliEMCALv*.cxx // // Code uses cylindrical approximation made of inner radius (for speed) // // Points behind EMCAl, i.e. R > outer radius, but eta, phi in acceptance // are considered to inside Double_t r=sqrt(x*x+y*y); if ( r > fEnvelop[0] ) { Double_t theta; theta = TMath::ATan2(r,z); Double_t eta; if(theta == 0) eta = 9999; else eta = -TMath::Log(TMath::Tan(theta/2.)); if (eta < fArm1EtaMin || eta > fArm1EtaMax) return 0; Double_t phi = TMath::ATan2(y,x) * 180./TMath::Pi(); if (phi < 0) phi += 360; // phi should go from 0 to 360 in this case if (phi > fArm1PhiMin && phi < fArm1PhiMax) return 1; } return 0; } // // == Shish-kebab cases == // //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsCellId(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta) const { // 27-aug-04; // corr. 21-sep-04; // 13-oct-05; 110 degree case // May 31, 2006; ALICE numbering scheme: // 0 <= nSupMod < fNumberOfSuperModules // 0 <= nModule < fNPHI * fNZ ( fNPHI * fNZ/2 for fKey110DEG=1) // 0 <= nIphi < fNPHIdiv // 0 <= nIeta < fNETAdiv // 0 <= absid < fNCells static Int_t id=0; // have to change from 0 to fNCells-1 if(fKey110DEG == 1 && nSupMod >= 10) { // 110 degree case; last two supermodules id = fNCellsInSupMod*10 + (fNCellsInSupMod/2)*(nSupMod-10); } else { id = fNCellsInSupMod*nSupMod; } id += fNCellsInModule *nModule; id += fNPHIdiv *nIphi; id += nIeta; if(id<0 || id >= fNCells) { // printf(" wrong numerations !!\n"); // printf(" id %6i(will be force to -1)\n", id); // printf(" fNCells %6i\n", fNCells); // printf(" nSupMod %6i\n", nSupMod); // printf(" nModule %6i\n", nModule); // printf(" nIphi %6i\n", nIphi); // printf(" nIeta %6i\n", nIeta); id = -TMath::Abs(id); // if negative something wrong } return id; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::CheckAbsCellId(Int_t absId) const { // May 31, 2006; only trd1 now if(absId<0 || absId >= fNCells) return kFALSE; else return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetCellIndex(Int_t absId,Int_t &nSupMod,Int_t &nModule,Int_t &nIphi,Int_t &nIeta) const { // 21-sep-04; 19-oct-05; // May 31, 2006; ALICE numbering scheme: // // In: // absId - cell is as in Geant, 0<= absId < fNCells; // Out: // nSupMod - super module(SM) number, 0<= nSupMod < fNumberOfSuperModules; // nModule - module number in SM, 0<= nModule < fNCellsInSupMod/fNCellsInSupMod or(/2) for tow last SM (10th and 11th); // nIphi - cell number in phi driection inside module; 0<= nIphi < fNPHIdiv; // nIeta - cell number in eta driection inside module; 0<= nIeta < fNETAdiv; // static Int_t tmp=0, sm10=0; if(!CheckAbsCellId(absId)) return kFALSE; sm10 = fNCellsInSupMod*10; if(fKey110DEG == 1 && absId >= sm10) { // 110 degree case; last two supermodules nSupMod = (absId-sm10) / (fNCellsInSupMod/2) + 10; tmp = (absId-sm10) % (fNCellsInSupMod/2); } else { nSupMod = absId / fNCellsInSupMod; tmp = absId % fNCellsInSupMod; } nModule = tmp / fNCellsInModule; tmp = tmp % fNCellsInModule; nIphi = tmp / fNPHIdiv; nIeta = tmp % fNPHIdiv; return kTRUE; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetModulePhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, int &iphim, int &ietam) const { // added nSupMod; - 19-oct-05 ! // Alice numbering scheme - Jun 01,2006 // ietam, iphi - indexes of module in two dimensional grid of SM // ietam - have to change from 0 to fNZ-1 // iphim - have to change from 0 to nphi-1 (fNPhi-1 or fNPhi/2-1) static Int_t nphi; if(fKey110DEG == 1 && nSupMod>=10) nphi = fNPhi/2; else nphi = fNPhi; ietam = nModule/nphi; iphim = nModule%nphi; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetCellPhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta, int &iphi, int &ieta) const { // // Added nSupMod; Nov 25, 05 // Alice numbering scheme - Jun 01,2006 // IN: // nSupMod - super module(SM) number, 0<= nSupMod < fNumberOfSuperModules; // nModule - module number in SM, 0<= nModule < fNCellsInSupMod/fNCellsInSupMod or(/2) for tow last SM (10th and 11th); // nIphi - cell number in phi driection inside module; 0<= nIphi < fNPHIdiv; // nIeta - cell number in eta driection inside module; 0<= nIeta < fNETAdiv; // // OUT: // ieta, iphi - indexes of cell(tower) in two dimensional grid of SM // ieta - have to change from 0 to (fNZ*fNETAdiv-1) // iphi - have to change from 0 to (fNPhi*fNPHIdiv-1 or fNPhi*fNPHIdiv/2-1) // static Int_t iphim, ietam; GetModulePhiEtaIndexInSModule(nSupMod,nModule, iphim, ietam); // ieta = ietam*fNETAdiv + (1-nIeta); // x(module) = -z(SM) ieta = ietam*fNETAdiv + (fNETAdiv - 1 - nIeta); // x(module) = -z(SM) iphi = iphim*fNPHIdiv + nIphi; // y(module) = y(SM) if(iphi<0 || ieta<0) AliDebug(1,Form(" nSupMod %i nModule %i nIphi %i nIeta %i => ieta %i iphi %i\n", nSupMod, nModule, nIphi, nIeta, ieta, iphi)); } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetSuperModuleNumber(Int_t absId) const { // Return the number of the supermodule given the absolute // ALICE numbering id static Int_t nSupMod, nModule, nIphi, nIeta; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); return nSupMod; } //________________________________________________________________________________________________ void AliEMCALGeometry::GetModuleIndexesFromCellIndexesInSModule(Int_t nSupMod, Int_t iphi, Int_t ieta, Int_t &iphim, Int_t &ietam, Int_t &nModule) const { // Transition from cell indexes (ieta,iphi) to module indexes (ietam,iphim, nModule) static Int_t nphi; nphi = GetNumberOfModuleInPhiDirection(nSupMod); ietam = ieta/fNETAdiv; iphim = iphi/fNPHIdiv; nModule = ietam * nphi + iphim; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsCellIdFromCellIndexes(Int_t nSupMod, Int_t iphi, Int_t ieta) const { // Transition from super module number(nSupMod) and cell indexes (ieta,iphi) to absId static Int_t ietam, iphim, nModule; static Int_t nIeta, nIphi; // cell indexes in module GetModuleIndexesFromCellIndexesInSModule(nSupMod, iphi, ieta, ietam, iphim, nModule); nIeta = ieta%fNETAdiv; nIeta = fNETAdiv - 1 - nIeta; nIphi = iphi%fNPHIdiv; return GetAbsCellId(nSupMod, nModule, nIphi, nIeta); } // Methods for AliEMCALRecPoint - Feb 19, 2006 //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t &xr, Double_t &yr, Double_t &zr) const { // Look to see what the relative // position inside a given cell is // for a recpoint. // Alice numbering scheme - Jun 08, 2006 // In: // absId - cell is as in Geant, 0<= absId < fNCells; // OUT: // xr,yr,zr - x,y,z coordinates of cell with absId inside SM // Shift index taking into account the difference between standard SM // and SM of half size in phi direction const Int_t kphiIndexShift = fCentersOfCellsPhiDir.GetSize()/4; // Nov 22, 2006; was 6 for cas 2X2 static Int_t nSupMod, nModule, nIphi, nIeta, iphi, ieta; if(!CheckAbsCellId(absId)) return kFALSE; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi, ieta); xr = fCentersOfCellsXDir.At(ieta); zr = fCentersOfCellsEtaDir.At(ieta); if(nSupMod<10) { yr = fCentersOfCellsPhiDir.At(iphi); } else { yr = fCentersOfCellsPhiDir.At(iphi + kphiIndexShift); } AliDebug(1,Form("absId %i nSupMod %i iphi %i ieta %i xr %f yr %f zr %f ",absId,nSupMod,iphi,ieta,xr,yr,zr)); return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t loc[3]) const { // Alice numbering scheme - Jun 03, 2006 loc[0] = loc[1] = loc[2]=0.0; if(RelPosCellInSModule(absId, loc[0],loc[1],loc[2])) { return kTRUE; } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, TVector3 &vloc) const { static Double_t loc[3]; if(RelPosCellInSModule(absId,loc)) { vloc.SetXYZ(loc[0], loc[1], loc[2]); return kTRUE; } else { vloc.SetXYZ(0,0,0); return kFALSE; } // Alice numbering scheme - Jun 03, 2006 } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Double_t distEff, Double_t &xr, Double_t &yr, Double_t &zr) const { // Jul 30, 2007 - taking into account position of shower max // Look to see what the relative // position inside a given cell is // for a recpoint. // In: // absId - cell is as in Geant, 0<= absId < fNCells; // e - cluster energy // OUT: // xr,yr,zr - x,y,z coordinates of cell with absId inside SM // Shift index taking into account the difference between standard SM // and SM of half size in phi direction const Int_t kphiIndexShift = fCentersOfCellsPhiDir.GetSize()/4; // Nov 22, 2006; was 6 for cas 2X2 static Int_t nSupMod, nModule, nIphi, nIeta, iphi, ieta; static Int_t iphim, ietam; static AliEMCALShishKebabTrd1Module *mod = 0; static TVector2 v; if(!CheckAbsCellId(absId)) return kFALSE; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); GetModulePhiEtaIndexInSModule(nSupMod, nModule, iphim, ietam); GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi, ieta); mod = GetShishKebabModule(ietam); mod->GetPositionAtCenterCellLine(nIeta, distEff, v); xr = v.Y() - fParSM[0]; zr = v.X() - fParSM[2]; if(nSupMod<10) { yr = fCentersOfCellsPhiDir.At(iphi); } else { yr = fCentersOfCellsPhiDir.At(iphi + kphiIndexShift); } AliDebug(1,Form("absId %i nSupMod %i iphi %i ieta %i xr %f yr %f zr %f ",absId,nSupMod,iphi,ieta,xr,yr,zr)); return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::RelPosCellInSModule(Int_t absId, Int_t maxAbsId, Double_t distEff, Double_t &xr, Double_t &yr, Double_t &zr) const { // Jul 31, 2007 - taking into account position of shower max and apply coor2. // Look to see what the relative // position inside a given cell is // for a recpoint. // In: // absId - cell is as in Geant, 0<= absId < fNCells; // maxAbsId - abs id of cell with highest energy // e - cluster energy // OUT: // xr,yr,zr - x,y,z coordinates of cell with absId inside SM // Shift index taking into account the difference between standard SM // and SM of half size in phi direction const Int_t kphiIndexShift = fCentersOfCellsPhiDir.GetSize()/4; // Nov 22, 2006; was 6 for cas 2X2 static Int_t nSupMod, nModule, nIphi, nIeta, iphi, ieta; static Int_t iphim, ietam; static AliEMCALShishKebabTrd1Module *mod = 0; static TVector2 v; static Int_t nSupModM, nModuleM, nIphiM, nIetaM, iphiM, ietaM; static Int_t iphimM, ietamM, maxAbsIdCopy=-1; static AliEMCALShishKebabTrd1Module *modM = 0; static Double_t distCorr; if(!CheckAbsCellId(absId)) return kFALSE; GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); GetModulePhiEtaIndexInSModule(nSupMod, nModule, iphim, ietam); GetCellPhiEtaIndexInSModule(nSupMod,nModule,nIphi,nIeta, iphi, ieta); mod = GetShishKebabModule(ietam); if(absId != maxAbsId) { distCorr = 0.; if(maxAbsIdCopy != maxAbsId) { GetCellIndex(maxAbsId, nSupModM, nModuleM, nIphiM, nIetaM); GetModulePhiEtaIndexInSModule(nSupModM, nModuleM, iphimM, ietamM); GetCellPhiEtaIndexInSModule(nSupModM,nModuleM,nIphiM,nIetaM, iphiM, ietaM); modM = GetShishKebabModule(ietamM); // do I need this ? maxAbsIdCopy = maxAbsId; } if(ietamM !=0) { distCorr = GetEtaModuleSize()*(ietam-ietamM)/TMath::Tan(modM->GetTheta()); // Stay here //printf(" distCorr %f | dist %f | ietam %i -> etamM %i\n", distCorr, dist, ietam, ietamM); } // distEff += distCorr; } // Bad resolution in this case, strong bias vs phi // distEff = 0.0; mod->GetPositionAtCenterCellLine(nIeta, distEff, v); // Stay here xr = v.Y() - fParSM[0]; zr = v.X() - fParSM[2]; if(nSupMod<10) { yr = fCentersOfCellsPhiDir.At(iphi); } else { yr = fCentersOfCellsPhiDir.At(iphi + kphiIndexShift); } AliDebug(1,Form("absId %i nSupMod %i iphi %i ieta %i xr %f yr %f zr %f ",absId,nSupMod,iphi,ieta,xr,yr,zr)); return kTRUE; } //________________________________________________________________________________________________ void AliEMCALGeometry::CreateListOfTrd1Modules() { // Generate the list of Trd1 modules // which will make up the EMCAL // geometry AliDebug(2,Form(" AliEMCALGeometry::CreateListOfTrd1Modules() started ")); AliEMCALShishKebabTrd1Module *mod=0, *mTmp=0; // current module if(fShishKebabTrd1Modules == 0) { fShishKebabTrd1Modules = new TList; fShishKebabTrd1Modules->SetName("ListOfTRD1"); for(int iz=0; iz< GetNZ(); iz++) { if(iz==0) { mod = new AliEMCALShishKebabTrd1Module(TMath::Pi()/2.,this); } else { mTmp = new AliEMCALShishKebabTrd1Module(*mod); mod = mTmp; } fShishKebabTrd1Modules->Add(mod); } } else { AliDebug(2,Form(" Already exits : ")); } mod = (AliEMCALShishKebabTrd1Module*)fShishKebabTrd1Modules->At(fShishKebabTrd1Modules->GetSize()-1); fEtaMaxOfTRD1 = mod->GetMaxEtaOfModule(0); AliDebug(2,Form(" fShishKebabTrd1Modules has %i modules : max eta %5.4f \n", fShishKebabTrd1Modules->GetSize(),fEtaMaxOfTRD1)); // Feb 20,2006; // Jun 01, 2006 - ALICE numbering scheme // define grid for cells in eta(z) and x directions in local coordinates system of SM // Works just for 2x2 case only -- ?? start here // // // Define grid for cells in phi(y) direction in local coordinates system of SM // as for 2X2 as for 3X3 - Nov 8,2006 // AliDebug(2,Form(" Cells grid in phi directions : size %i\n", fCentersOfCellsPhiDir.GetSize())); Int_t ind=0; // this is phi index Int_t ieta=0, nModule=0, iphiTemp; Double_t xr=0., zr=0., theta=0., phi=0., eta=0., r=0., x=0.,y=0.; TVector3 vglob; Double_t ytCenterModule=0.0, ytCenterCell=0.0; fCentersOfCellsPhiDir.Set(fNPhi*fNPHIdiv); fPhiCentersOfCells.Set(fNPhi*fNPHIdiv); Double_t r0 = GetIPDistance() + GetLongModuleSize()/2.; for(Int_t it=0; itGetCenterOfCellInLocalCoordinateofSM(ic, xr, zr); // case of 2X2 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } if(fNPHIdiv==3) { trd1->GetCenterOfCellInLocalCoordinateofSM_3X3(ic, xr, zr); // case of 3X3 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } if(fNPHIdiv==1) { trd1->GetCenterOfCellInLocalCoordinateofSM_1X1(xr, zr); // case of 1X1 GetCellPhiEtaIndexInSModule(0, nModule, 0, ic, iphiTemp, ieta); } fCentersOfCellsXDir.AddAt(float(xr) - fParSM[0],ieta); fCentersOfCellsEtaDir.AddAt(float(zr) - fParSM[2],ieta); // Define grid on eta direction for each bin in phi for(int iphi=0; iphiGetRadius(); y = fCentersOfCellsPhiDir[iphi]; r = TMath::Sqrt(x*x + y*y + zr*zr); theta = TMath::ACos(zr/r); eta = AliEMCALShishKebabTrd1Module::ThetaToEta(theta); // ind = ieta*fCentersOfCellsPhiDir.GetSize() + iphi; ind = iphi*fCentersOfCellsEtaDir.GetSize() + ieta; fEtaCentersOfCells.AddAt(eta, ind); } //printf(" ieta %i : xr + trd1->GetRadius() %f : zr %f : eta %f \n", ieta, xr + trd1->GetRadius(), zr, eta); } } for(Int_t i=0; i=0 && ind < GetNumberOfSuperModules()) { TString volpath = "ALIC_1/XEN1_1/SMOD_"; volpath += ind+1; if(GetKey110DEG() && ind>=10) { volpath = "ALIC_1/XEN1_1/SM10_"; volpath += ind-10+1; } if(!gGeoManager->cd(volpath.Data())) AliFatal(Form("AliEMCALGeometry::GeoManager cannot find path %s!",volpath.Data())); TGeoHMatrix* m = gGeoManager->GetCurrentMatrix(); if(m) { m->LocalToMaster(loc, glob); } else { AliFatal("Geo matrixes are not loaded \n") ; } } } //________________________________________________________________________________________________ void AliEMCALGeometry::GetGlobal(const TVector3 &vloc, TVector3 &vglob, int ind) const { //Figure out the global numbering //of a given supermodule from the //local numbering given a 3-vector location static Double_t tglob[3], tloc[3]; vloc.GetXYZ(tloc); GetGlobal(tloc, tglob, ind); vglob.SetXYZ(tglob[0], tglob[1], tglob[2]); } //________________________________________________________________________________________________ void AliEMCALGeometry::GetGlobal(Int_t absId , double glob[3]) const { // Alice numbering scheme - Jun 03, 2006 static Int_t nSupMod, nModule, nIphi, nIeta; static double loc[3]; if (!gGeoManager || !gGeoManager->IsClosed()) { AliError("Can't get the global coordinates! gGeoManager doesn't exist or it is still open!"); return; } glob[0]=glob[1]=glob[2]=0.0; // bad case if(RelPosCellInSModule(absId, loc)) { GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); TString volpath = "ALIC_1/XEN1_1/SMOD_"; volpath += (nSupMod+1); if(GetKey110DEG() && nSupMod>=10) { volpath = "ALIC_1/XEN1_1/SM10_"; volpath += (nSupMod-10+1); } if(!gGeoManager->cd(volpath.Data())) AliFatal(Form("GeoManager cannot find path %s!",volpath.Data())); TGeoHMatrix* m = gGeoManager->GetCurrentMatrix(); if(m) { m->LocalToMaster(loc, glob); } else { AliFatal("Geo matrixes are not loaded \n") ; } } } //___________________________________________________________________ void AliEMCALGeometry::GetGlobal(Int_t absId , TVector3 &vglob) const { // Alice numbering scheme - Jun 03, 2006 static Double_t glob[3]; GetGlobal(absId, glob); vglob.SetXYZ(glob[0], glob[1], glob[2]); } //____________________________________________________________________________ void AliEMCALGeometry::GetGlobal(const AliRecPoint* /*rp*/, TVector3& /* vglob */) const { AliFatal(Form("Please use GetGlobalEMCAL(recPoint,gpos) instead of GetGlobal!")); } //_________________________________________________________________________________ void AliEMCALGeometry::GetGlobalEMCAL(const AliEMCALRecPoint *rp, TVector3 &vglob) const { // Figure out the global numbering // of a given supermodule from the // local numbering for RecPoints static TVector3 vloc; static Int_t nSupMod, nModule, nIphi, nIeta; const AliEMCALRecPoint *rpTmp = rp; const AliEMCALRecPoint *rpEmc = rpTmp; GetCellIndex(rpEmc->GetAbsId(0), nSupMod, nModule, nIphi, nIeta); rpTmp->GetLocalPosition(vloc); GetGlobal(vloc, vglob, nSupMod); } //________________________________________________________________________________________________ void AliEMCALGeometry::EtaPhiFromIndex(Int_t absId,Double_t &eta,Double_t &phi) const { // Nov 16, 2006- float to double // version for TRD1 only static TVector3 vglob; GetGlobal(absId, vglob); eta = vglob.Eta(); phi = vglob.Phi(); } //________________________________________________________________________________________________ void AliEMCALGeometry::EtaPhiFromIndex(Int_t absId,Float_t &eta,Float_t &phi) const { // Nov 16,2006 - should be discard in future static TVector3 vglob; GetGlobal(absId, vglob); eta = float(vglob.Eta()); phi = float(vglob.Phi()); } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetPhiBoundariesOfSM(Int_t nSupMod, Double_t &phiMin, Double_t &phiMax) const { // 0<= nSupMod <=11; phi in rad static int i; if(nSupMod<0 || nSupMod >11) return kFALSE; i = nSupMod/2; phiMin = fPhiBoundariesOfSM[2*i]; phiMax = fPhiBoundariesOfSM[2*i+1]; return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetPhiBoundariesOfSMGap(Int_t nPhiSec, Double_t &phiMin, Double_t &phiMax) const { // 0<= nPhiSec <=4; phi in rad // 0; gap boundaries between 0th&2th | 1th&3th SM // 1; gap boundaries between 2th&4th | 3th&5th SM // 2; gap boundaries between 4th&6th | 5th&7th SM // 3; gap boundaries between 6th&8th | 7th&9th SM // 4; gap boundaries between 8th&10th | 9th&11th SM if(nPhiSec<0 || nPhiSec >4) return kFALSE; phiMin = fPhiBoundariesOfSM[2*nPhiSec+1]; phiMax = fPhiBoundariesOfSM[2*nPhiSec+2]; return kTRUE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::SuperModuleNumberFromEtaPhi(Double_t eta, Double_t phi, Int_t &nSupMod) const { // Return false if phi belongs a phi cracks between SM static Int_t i; if(TMath::Abs(eta) > fEtaMaxOfTRD1) return kFALSE; phi = TVector2::Phi_0_2pi(phi); // move phi to (0,2pi) boundaries for(i=0; i<6; i++) { if(phi>=fPhiBoundariesOfSM[2*i] && phi<=fPhiBoundariesOfSM[2*i+1]) { nSupMod = 2*i; if(eta < 0.0) nSupMod++; AliDebug(1,Form("eta %f phi %f(%5.2f) : nSupMod %i : #bound %i", eta,phi,phi*TMath::RadToDeg(), nSupMod,i)); return kTRUE; } } return kFALSE; } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::GetAbsCellIdFromEtaPhi(Double_t eta, Double_t phi, Int_t &absId) const { // Nov 17,2006 // stay here - phi problem as usual static Int_t nSupMod, i, ieta, iphi, etaShift, nphi; static Double_t absEta=0.0, d=0.0, dmin=0.0, phiLoc; absId = nSupMod = - 1; if(SuperModuleNumberFromEtaPhi(eta, phi, nSupMod)) { // phi index first phi = TVector2::Phi_0_2pi(phi); phiLoc = phi - fPhiCentersOfSM[nSupMod/2]; nphi = fPhiCentersOfCells.GetSize(); if(nSupMod>=10) { phiLoc = phi - 190.*TMath::DegToRad(); nphi /= 2; } dmin = TMath::Abs(fPhiCentersOfCells[0]-phiLoc); iphi = 0; for(i=1; i=0 && netaGetSize()) { trd1 = (AliEMCALShishKebabTrd1Module*)fShishKebabTrd1Modules->At(neta); } else trd1 = 0; return trd1; } //________________________________________________________________________________________________ Int_t AliEMCALGeometry::GetAbsTRUNumberFromNumberInSm(const Int_t row, const Int_t col, const Int_t sm) { // Nov 6, 2007 Int_t itru = row + col*GetNModulesInTRUPhi() + sm*GetNTRU(); // printf(" GetAbsTRUNumberFromNumberInSm : row %2i col %2i sm %2i -> itru %2i\n", row, col, sm, itru); return itru; } //________________________________________________________________________________________________ void AliEMCALGeometry::Browse(TBrowser* b) { //Browse the modules if(fShishKebabTrd1Modules) b->Add(fShishKebabTrd1Modules); } //________________________________________________________________________________________________ Bool_t AliEMCALGeometry::IsFolder() const { //Check if fShishKebabTrd1Modules is in folder if(fShishKebabTrd1Modules) return kTRUE; else return kFALSE; } //________________________________________________________________________________________________ Double_t AliEMCALGeometry::GetPhiCenterOfSM(Int_t nsupmod) const { //returns center of supermodule in phi int i = nsupmod/2; return fPhiCentersOfSM[i]; } //____________________________________________________________________________ Bool_t AliEMCALGeometry::Impact(const TParticle * particle) const { // Tells if a particle enters EMCAL Bool_t in=kFALSE; Int_t AbsID=0; TVector3 vtx(particle->Vx(),particle->Vy(),particle->Vz()); TVector3 vimpact(0,0,0); ImpactOnEmcal(vtx,particle->Theta(),particle->Phi(),AbsID,vimpact); if(AbsID!=0) in=kTRUE; return in; } //____________________________________________________________________________ void AliEMCALGeometry::ImpactOnEmcal(TVector3 vtx, Double_t theta, Double_t phi, Int_t & absId, TVector3 & vimpact) const { // calculates the impact coordinates on EMCAL (centre of a tower/not on EMCAL surface) // of a neutral particle // emitted in the vertex vtx[3] with direction theta and phi in the ALICE global coordinate system TVector3 p(TMath::Sin(theta)*TMath::Cos(phi),TMath::Sin(theta)*TMath::Sin(phi),TMath::Cos(theta)) ; vimpact.SetXYZ(0,0,0); absId=-1; if(phi==0 || theta==0) return; TVector3 direction; Double_t factor = (GetIPDistance()-vtx[1])/p[1]; direction = vtx + factor*p; if (!gGeoManager){ AliFatal("Geo manager not initialized\n"); } //from particle direction -> tower hitted GetAbsCellIdFromEtaPhi(direction.Eta(),direction.Phi(),absId); //tower absID hitted -> tower/module plane (evaluated at the center of the tower) Int_t nSupMod, nModule, nIphi, nIeta; Double_t loc[3],loc2[3],loc3[3]; Double_t glob[3]={},glob2[3]={},glob3[3]={}; if(!RelPosCellInSModule(absId,loc)) return; //loc is cell center of tower GetCellIndex(absId, nSupMod, nModule, nIphi, nIeta); //look at 2 neighbours-s cell using nIphi={0,1} and nIeta={0,1} Int_t nIphi2,nIeta2,absId2,absId3; if(nIeta==0) nIeta2=1; else nIeta2=0; absId2=GetAbsCellId(nSupMod,nModule,nIphi,nIeta2); if(nIphi==0) nIphi2=1; else nIphi2=0; absId3=GetAbsCellId(nSupMod,nModule,nIphi2,nIeta); //2nd point on emcal cell plane if(!RelPosCellInSModule(absId2,loc2)) return; //3rd point on emcal cell plane if(!RelPosCellInSModule(absId3,loc3)) return; TString volpath = "ALIC_1/XEN1_1/SMOD_"; volpath += (nSupMod+1); if(GetKey110DEG() && nSupMod>=10) { volpath = "ALIC_1/XEN1_1/SM10_"; volpath += (nSupMod-10+1); } if(!gGeoManager->cd(volpath.Data())){ AliFatal(Form("GeoManager cannot find path %s!",volpath.Data())) return; } TGeoHMatrix* m = gGeoManager->GetCurrentMatrix(); if(m) { m->LocalToMaster(loc, glob); m->LocalToMaster(loc2, glob2); m->LocalToMaster(loc3, glob3); } else { AliFatal("Geo matrixes are not loaded \n") ; } //Equation of Plane from glob,glob2,glob3 (Ax+By+Cz+D=0) Double_t A = glob[1]*(glob2[2]-glob3[2]) + glob2[1]*(glob3[2]-glob[2]) + glob3[1]*(glob[2]-glob2[2]); Double_t B = glob[2]*(glob2[0]-glob3[0]) + glob2[2]*(glob3[0]-glob[0]) + glob3[2]*(glob[0]-glob2[0]); Double_t C = glob[0]*(glob2[1]-glob3[1]) + glob2[0]*(glob3[1]-glob[1]) + glob3[0]*(glob[1]-glob2[1]); Double_t D = glob[0]*(glob2[1]*glob3[2]-glob3[1]*glob2[2]) + glob2[0]*(glob3[1]*glob[2]-glob[1]*glob3[2]) + glob3[0]*(glob[1]*glob2[2]-glob2[1]*glob[2]); D=-D; //shift equation of plane from tower/module center to surface along vector (A,B,C) normal to tower/module plane Double_t dist = GetLongModuleSize()/2.; Double_t norm = TMath::Sqrt(A*A+B*B+C*C); Double_t glob4[3]={}; TVector3 dir(A,B,C); TVector3 point(glob[0],glob[1],glob[2]); if(point.Dot(dir)<0) dist*=-1; glob4[0]=glob[0]-dist*A/norm; glob4[1]=glob[1]-dist*B/norm; glob4[2]=glob[2]-dist*C/norm; D = glob4[0]*A + glob4[1]*B + glob4[2]*C ; D = -D; //Line determination (2 points for equation of line : vtx and direction) //impact between line (particle) and plane (module/tower plane) Double_t den = A*(vtx(0)-direction(0)) + B*(vtx(1)-direction(1)) + C*(vtx(2)-direction(2)); if(den==0){ printf("ImpactOnEmcal() No solution :\n"); return; } Double_t length = A*vtx(0)+B*vtx(1)+C*vtx(2)+D; length /=den; vimpact.SetXYZ(vtx(0)+length*(direction(0)-vtx(0)),vtx(1)+length*(direction(1)-vtx(1)),vtx(2)+length*(direction(2)-vtx(2))); //shift vimpact from tower/module surface to center along vector (A,B,C) normal to tower/module plane vimpact.SetXYZ(vimpact(0)+dist*A/norm,vimpact(1)+dist*B/norm,vimpact(2)+dist*C/norm); return; }