#ifndef ALIEMCALGEOMETRY_H #define ALIEMCALGEOMETRY_H /* Copyright(c) 1998-2004, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //_________________________________________________________________________ // Geometry class for EMCAL : singleton // EMCAL consists of a layers of scintillator, and lead. // //*-- Author: Sahal Yacoob (LBL / UCT) //*-- and : Yves Schutz (Subatech) //*-- and : Aleksei Pavlinov (WSU) - shashlyk staff //*-- and : Gustavo Conesa: Add TRU mapping. TRU parameters still not fixed. // --- ROOT system --- class TString ; class TObjArray; class TVector3; class TGeoMatrix; class TArrayD; class TParticle ; class AliEMCALShishKebabTrd1Module; class AliEMCALRecPoint; class TClonesArray ; // --- AliRoot header files --- #include "AliGeometry.h" #include "AliEMCALAlignData.h" class AliEMCALGeometry : public AliGeometry { public: AliEMCALGeometry(const AliEMCALGeometry& geom):AliGeometry(geom) { // cpy ctor requested by Coding Convention but not yet needed Fatal("Cpy ctor", "Not implemented"); }; virtual ~AliEMCALGeometry(void); static AliEMCALGeometry * GetInstance(const Text_t* name, const Text_t* title="") ; static AliEMCALGeometry * GetInstance() ; AliEMCALGeometry & operator = (const AliEMCALGeometry & /*rvalue*/) const { // assignement operator requested by coding convention but not needed Fatal("operator =", "not implemented"); return *(GetInstance()); }; void FillTRU(const TClonesArray * digits, TClonesArray * amptru, TClonesArray * timeRtru) ; //Fills Trigger Unit matrices with digit amplitudes and time void GetCellPhiEtaIndexInSModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru, Int_t &ietaSM, Int_t &iphiSM) const ; // Tranforms Eta-Phi Cell index in TRU into Eta-Phi index in Super Module // Have to call GetTransformationForSM() before calculation global charachteristics void GetGlobal(const Double_t *loc, Double_t *glob, int nsm) const; void GetGlobal(const TVector3 &vloc, TVector3 &vglob, int nsm) const; void GetGlobal(Int_t absId, TVector3 &vglob) const; // for a given tower index it returns eta and phi of center of that tower. void EtaPhiFromIndex(Int_t index,Float_t &eta,Float_t &phi) const; // virtual void GetGlobal(const AliEMCALRecPoint *rp, TVector3 &vglob) const; virtual void GetGlobal(const AliRecPoint *rp, TVector3 &vglob) const; // Bool_t AreInSameTower(Int_t id1, Int_t id2) const ; virtual void GetGlobal(const AliRecPoint *, TVector3 &, TMatrixF &) const {} virtual Bool_t Impact(const TParticle *) const {return kTRUE;} Bool_t IsInEMCAL(Double_t x, Double_t y, Double_t z) const; // General Bool_t IsInitialized(void) const { return fgInit ; } // Return EMCAL geometrical parameters // geometry Char_t* GetNameOfEMCALEnvelope() const {return "XEN1";} Float_t GetAlFrontThickness() const { return fAlFrontThick;} Float_t GetArm1PhiMin() const { return fArm1PhiMin ; } Float_t GetArm1PhiMax() const { return fArm1PhiMax ; } Float_t GetArm1EtaMin() const { return fArm1EtaMin;} Float_t GetArm1EtaMax() const { return fArm1EtaMax;} Float_t GetIPDistance() const { return fIPDistance;} Float_t GetIP2ECASection() const { return ( GetIPDistance() + GetAlFrontThickness() + GetGap2Active() ) ; } Float_t GetEnvelop(Int_t index) const { return fEnvelop[index] ; } Float_t GetShellThickness() const { return fShellThickness ; } Float_t GetZLength() const { return fZLength ; } Float_t GetGap2Active() const {return fGap2Active ;} Float_t GetDeltaEta() const {return (fArm1EtaMax-fArm1EtaMin)/ ((Float_t)fNZ);} Float_t GetDeltaPhi() const {return (fArm1PhiMax-fArm1PhiMin)/ ((Float_t)fNPhi);} Int_t GetNECLayers() const {return fNECLayers ;} Int_t GetNZ() const {return fNZ ;} Int_t GetNEta() const {return fNZ ;} Int_t GetNPhi() const {return fNPhi ;} Int_t GetNTowers() const {return fNPhi * fNZ ;} Float_t GetECPbRadThick()const {return fECPbRadThickness;} Float_t GetECScintThick() const {return fECScintThick;} Float_t GetSampling() const {return fSampling ; } Bool_t IsInECA(Int_t index) const { if ( (index > 0 && (index <= GetNZ() * GetNPhi()))) return kTRUE; else return kFALSE ;} Int_t GetNumberOfSuperModules() const {return fNumberOfSuperModules;} Float_t GetfPhiGapForSuperModules() const {return fPhiGapForSM;} Float_t GetPhiModuleSize() const {return fPhiModuleSize;} Float_t GetEtaModuleSize() const {return fEtaModuleSize;} Float_t GetFrontSteelStrip() const {return fFrontSteelStrip;} Float_t GetLateralSteelStrip() const {return fLateralSteelStrip;} Float_t GetPassiveScintThick() const {return fPassiveScintThick;} Float_t GetPhiTileSize() const {return fPhiTileSize;} Float_t GetEtaTileSize() const {return fEtaTileSize;} Int_t GetNPhiSuperModule() const {return fNPhiSuperModule;} Int_t GetNPHIdiv() const {return fNPHIdiv ;} Int_t GetNETAdiv() const {return fNETAdiv ;} Int_t GetNCells() const {return fNCells;} Int_t GetNTRU() const {return fNTRU ; } Int_t GetNTRUEta() const {return fNTRUEta ; } Int_t GetNTRUPhi() const {return fNTRUPhi ; } Float_t GetSteelFrontThickness() const { return fSteelFrontThick;} Float_t GetLongModuleSize() const {return fLongModuleSize;} Float_t GetTrd1Angle() const {return fTrd1Angle;} Float_t Get2Trd1Dx2() const {return f2Trd1Dx2;} Float_t GetTrd2AngleY()const {return fTrd2AngleY;} Float_t Get2Trd2Dy2() const {return f2Trd2Dy2;} Float_t GetTubsR() const {return fTubsR;} Float_t GetTubsTurnAngle() const {return fTubsTurnAngle;} // TRD1 staff void CreateListOfTrd1Modules(); TList *GetShishKebabTrd1Modules() const {return fShishKebabTrd1Modules;} AliEMCALShishKebabTrd1Module *GetShishKebabModule(Int_t neta); void GetTransformationForSM(); Float_t *GetSuperModulesPars() {return fParSM;} TGeoMatrix *GetTransformationForSM(int i) { if(i>=0 && GetNumberOfSuperModules()) return fMatrixOfSM[i]; else return 0;} // abs id <-> indexes; Shish-kebab case (TRD1 or TRD2) Int_t GetAbsCellId(Int_t nSupMod, Int_t nTower, Int_t nIphi, Int_t nIeta) const; Bool_t CheckAbsCellId(Int_t ind) const; // replace the IsInECA Bool_t GetCellIndex(Int_t absId, Int_t &nSupMod, Int_t &nTower, Int_t &nIphi, Int_t &nIeta) const; void GetTowerPhiEtaIndexInSModule(Int_t nSupMod, Int_t nTower, Int_t &iphit, Int_t &ietat) const; void GetCellPhiEtaIndexInSModule(Int_t nSupMod, Int_t nTower, Int_t nIphi, Int_t nIeta, Int_t &iphi, Int_t &ieta) const ; Int_t GetSuperModuleNumber(Int_t absId) const; // Methods for AliEMCALRecPoint - Frb 19, 2006 Bool_t RelPosCellInSModule(Int_t absId, Double_t &xr, Double_t &yr, Double_t &zr); // --- Float_t AngleFromEta(Float_t eta) const { // returns theta in radians for a given pseudorapidity return 2.0*TMath::ATan(TMath::Exp(-eta)); } Float_t ZFromEtaR(Float_t r,Float_t eta) const { // returns z in for a given // pseudorapidity and r=sqrt(x*x+y*y). return r/TMath::Tan(AngleFromEta(eta)); } // These methods are obsolete but use in AliEMCALRecPoint - keep it now Int_t TowerIndex(Int_t iz,Int_t iphi) const; // returns tower index // returns tower indexs iz, iphi. void TowerIndexes(Int_t index,Int_t &iz,Int_t &iphi) const; // returns x, y, and z (cm) on the inner surface of a given EMCAL Cell specified by relid. void XYZFromIndex(const Int_t *relid,Float_t &x,Float_t &y, Float_t &z) const; void XYZFromIndex(Int_t absid, TVector3 &v) const; // for a given eta and phi in the EMCAL it returns the tower index. Int_t TowerIndexFromEtaPhi(Float_t eta,Float_t phi) const; // for a given eta and phi in the EMCAL it returns the pretower index. void PosInAlice(const Int_t *relid, Float_t &theta, Float_t &phi) const ; void PosInAlice(Int_t absid, Float_t &theta, Float_t &phi) const ; Bool_t AbsToRelNumbering(Int_t AbsId, Int_t *relid) const; // -- void SetNZ(Int_t nz) { fNZ= nz ; printf("SetNZ: Number of modules in Z set to %d", fNZ) ; } void SetNPhi(Int_t nphi) { fNPhi= nphi ; printf("SetNPhi: Number of modules in Phi set to %d", fNPhi) ; } void SetNTRU(Int_t ntru) {fNTRU = ntru; printf("SetNTRU: Number of TRUs per SuperModule set to %d", fNTRU) ; } void SetNTRUEta(Int_t ntru) {fNTRUEta = ntru; ; printf("SetNTRU: Number of TRUs per SuperModule in Etaset to %d", fNTRUEta) ;} void SetNTRUPhi(Int_t ntru) {fNTRUPhi = ntru; ; printf("SetNTRU: Number of TRUs per SuperModule in Phi set to %d", fNTRUPhi) ;} void SetSampling(Float_t samp) { fSampling = samp; printf("SetSampling: Sampling factor set to %f", fSampling) ; } Int_t GetNCellsInSupMod() const {return fNCellsInSupMod;} Int_t GetNCellsInTower() const {return fNCellsInTower; } AliEMCALGeometry() : AliGeometry() {// default ctor only for internal usage (singleton) // must be kept public for root persistency purposes, but should never be called by the outside world CreateListOfTrd1Modules(); }; protected: AliEMCALGeometry(const Text_t* name, const Text_t* title) : AliGeometry(name, title) {// ctor only for internal usage (singleton) Init(); CreateListOfTrd1Modules(); }; AliEMCALGeometry(const Text_t* name, const Text_t* title, AliEMCALAlignData* alignData) : AliGeometry(name, title) {// Align data in action fgAlignData = alignData; Init(); CreateListOfTrd1Modules(); }; void Init(void); // initializes the parameters of EMCAL void CheckAdditionalOptions(); // private: static AliEMCALGeometry * fgGeom; // pointer to the unique instance of the singleton static Bool_t fgInit; // Tells if geometry has been succesfully set up. static AliEMCALAlignData *fgAlignData;// Alignment data, to be replaced by AliAlignData soon TString fGeoName; //geometry name TObjArray *fArrayOpts; //! array of geometry options Float_t fAlFrontThick; // Thickness of the front Al face of the support box Float_t fECPbRadThickness; // cm, Thickness of the Pb radiators Float_t fECScintThick; // cm, Thickness of the scintillators Int_t fNECLayers; // number of scintillator layers Float_t fArm1PhiMin; // Minimum angular position of EMCAL in Phi (degrees) Float_t fArm1PhiMax; // Maximum angular position of EMCAL in Phi (degrees) Float_t fArm1EtaMin; // Minimum pseudorapidity position of EMCAL in Eta Float_t fArm1EtaMax; // Maximum pseudorapidity position of EMCAL in Eta // Geometry Parameters Float_t fEnvelop[3]; // the GEANT TUB for the detector Float_t fIPDistance; // Radial Distance of the inner surface of the EMCAL Float_t fShellThickness; // Total thickness in (x,y) direction Float_t fZLength; // Total length in z direction Float_t fGap2Active; // Gap between the envelop and the active material Int_t fNZ; // Number of Towers in the Z direction Int_t fNPhi; // Number of Towers in the PHI direction Float_t fSampling; // Sampling factor // Shish-kebab option - 23-aug-04 by PAI; COMPACT, TWIST, TRD1 and TRD2 Int_t fNumberOfSuperModules; // default is 12 = 6 * 2 Float_t fSteelFrontThick; // Thickness of the front stell face of the support box - 9-sep-04 Float_t fFrontSteelStrip; // 13-may-05 Float_t fLateralSteelStrip; // 13-may-05 Float_t fPassiveScintThick; // 13-may-05 Float_t fPhiModuleSize; // Phi -> X Float_t fEtaModuleSize; // Eta -> Y Float_t fPhiTileSize; // Size of phi tile Float_t fEtaTileSize; // Size of eta tile Float_t fLongModuleSize; // Size of long module Int_t fNPhiSuperModule; // 6 - number supermodule in phi direction Int_t fNPHIdiv; // number phi divizion of module Int_t fNETAdiv; // number eta divizion of module // Int_t fNCells; // number of cells in calo Int_t fNCellsInSupMod; // number cell in super module Int_t fNCellsInTower; // number cell in tower(or module) //TRU parameters Int_t fNTRU ; //! Number of TRUs per module Int_t fNTRUEta ; //! Number of cell rows per Z in one TRU Int_t fNTRUPhi ; //! Number of cell rows per Phi in one TRU // TRD1 options - 30-sep-04 Float_t fTrd1Angle; // angle in x-z plane (in degree) Float_t f2Trd1Dx2; // 2*dx2 for TRD1 Float_t fPhiGapForSM; // Gap betweeen supermodules in phi direction Int_t fKey110DEG; // for calculation abs cell id; 19-oct-05 // TRD2 options - 27-jan-07 Float_t fTrd2AngleY; // angle in y-z plane (in degree) Float_t f2Trd2Dy2; // 2*dy2 for TRD2 Float_t fEmptySpace; // 2mm om fred drawing // Super module as TUBS Float_t fTubsR; // radius of tubs Float_t fTubsTurnAngle; // turn angle of tubs in degree // Local Coordinates of SM TArrayD *fEtaCentersOfCells; // size fNEta*fNETAdiv (for TRD1 only) (eta or z in SM) TArrayD *fXCentersOfCells; // size fNEta*fNETAdiv (for TRD1 only) ( x in SM) TArrayD *fPhiCentersOfCells; // size fNPhi*fNPHIdiv (for TRD1 only) (phi or y in SM) // Move from AliEMCALv0 - Feb 19, 2006 TList *fShishKebabTrd1Modules; //! list of modules // Local coordinates of SM for TRD1 Float_t fParSM[3]; // SM sizes as in GEANT (TRD1) TGeoMatrix* fMatrixOfSM[12]; //![fNumberOfSuperModules]; get from gGeoManager; char *fAdditionalOpts[4]; //! some additional options for the geometry type and name int fNAdditionalOpts; //! size of additional options parameter ClassDef(AliEMCALGeometry, 10) // EMCAL geometry class }; #endif // AliEMCALGEOMETRY_H