#ifndef ALIEMCALGEOMETRY_H #define ALIEMCALGEOMETRY_H /* Copyright(c) 1998-2004, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //_________________________________________________________________________ // Geometry class for EMCAL : singleton // EMCAL consists of a layers of scintillator, and lead. // //*-- Author: Sahal Yacoob (LBL / UCT) //*-- and : Yves Schutz (Subatech) //*-- and : Aleksei Pavlinov (WSU) - shashlyk staff //*-- and : Gustavo Conesa: Add TRU mapping. TRU parameters still not fixed. // --- ROOT system --- class TString ; class TObjArray; class TVector3; class TGeoMatrix; class TParticle ; class TClonesArray ; #include #include class assert; class Riostream; class TClonesArray; class TGeoNode; class TGeoManager; // --- AliRoot header files --- class AliEMCALGeometry; class AliEMCALShishKebabTrd1Module; class AliEMCALRecPoint; class AliEMCALDigit; #include "AliGeometry.h" class AliEMCALGeometry : public AliGeometry { public: AliEMCALGeometry(const AliEMCALGeometry& geom); virtual ~AliEMCALGeometry(void); static AliEMCALGeometry * GetInstance(const Text_t* name, const Text_t* title="") ; static AliEMCALGeometry * GetInstance(); AliEMCALGeometry & operator = (const AliEMCALGeometry & /*rvalue*/) { // assignement operator requested by coding convention but not needed Fatal("operator =", "not implemented"); return *this; }; AliEMCALGeometry(); // default ctor only for internal usage (singleton) ////////// // General // Bool_t IsInitialized(void) const { return fgInit ; } static Char_t* GetDefaultGeometryName() {return fgDefaultGeometryName;} void PrintGeometry(); //*MENU* void PrintCellIndexes(Int_t absId=0, int pri=0, char *tit=""); //*MENU* virtual void Browse(TBrowser* b); virtual Bool_t IsFolder() const; ////////////////////////// // Global geometry methods // void GetGlobal(const Double_t *loc, Double_t *glob, int ind) const; void GetGlobal(const TVector3 &vloc, TVector3 &vglob, int ind) const; void GetGlobal(Int_t absId, Double_t glob[3]) const; void GetGlobal(Int_t absId, TVector3 &vglob) const; // virtual void GetGlobal(const AliRecPoint *rp, TVector3 &vglob) const; virtual void GetGlobal(const AliRecPoint *rp, TVector3 & gpos, TMatrixF & /* gmat */) const {GetGlobal(rp,gpos); } virtual void GetGlobalEMCAL(const AliEMCALRecPoint *rp, TVector3 &vglob) const; virtual void GetGlobalEMCAL(const AliEMCALRecPoint *rp, TVector3 & gpos, TMatrixF & /* gmat */) const {GetGlobalEMCAL(rp,gpos); } ///////////// // TRD1 stuff void CreateListOfTrd1Modules(); TList *GetShishKebabTrd1Modules() const {return fShishKebabTrd1Modules;} AliEMCALShishKebabTrd1Module *GetShishKebabModule(Int_t neta) const; ////////////////////////////////////// // Return EMCAL geometrical parameters // Char_t* GetNameOfEMCALEnvelope() const {return "XEN1";} Float_t GetArm1PhiMin() const { return fArm1PhiMin ; } Float_t GetArm1PhiMax() const { return fArm1PhiMax ; } Float_t GetArm1EtaMin() const { return fArm1EtaMin;} Float_t GetArm1EtaMax() const { return fArm1EtaMax;} Float_t GetIPDistance() const { return fIPDistance;} Float_t GetEnvelop(Int_t index) const { return fEnvelop[index] ; } Float_t GetShellThickness() const { return fShellThickness ; } Float_t GetZLength() const { return fZLength ; } Int_t GetNECLayers() const {return fNECLayers ;} Int_t GetNZ() const {return fNZ ;} Int_t GetNEta() const {return fNZ ;} Int_t GetNPhi() const {return fNPhi ;} Float_t GetECPbRadThick()const {return fECPbRadThickness;} Float_t GetECScintThick() const {return fECScintThick;} Float_t GetSampling() const {return fSampling ; } Int_t GetNumberOfSuperModules() const {return fNumberOfSuperModules;} Float_t GetfPhiGapForSuperModules() const {return fPhiGapForSM;} Float_t GetPhiModuleSize() const {return fPhiModuleSize;} Float_t GetEtaModuleSize() const {return fEtaModuleSize;} Float_t GetFrontSteelStrip() const {return fFrontSteelStrip;} Float_t GetLateralSteelStrip() const {return fLateralSteelStrip;} Float_t GetPassiveScintThick() const {return fPassiveScintThick;} Float_t GetPhiTileSize() const {return fPhiTileSize;} Float_t GetEtaTileSize() const {return fEtaTileSize;} Int_t GetNPhiSuperModule() const {return fNPhiSuperModule;} Int_t GetNPHIdiv() const {return fNPHIdiv ;} Int_t GetNETAdiv() const {return fNETAdiv ;} Int_t GetNCells() const {return fNCells;} Float_t GetLongModuleSize() const {return fLongModuleSize;} Float_t GetTrd1Angle() const {return fTrd1Angle;} Float_t Get2Trd1Dx2() const {return f2Trd1Dx2;} Int_t GetNTRUEta() const {return fNTRUEta ; } Int_t GetNTRUPhi() const {return fNTRUPhi ; } Int_t GetNCellsInTRUEta() const {return fNCellsInTRUEta ; } Int_t GetNCellsInTRUPhi() const {return fNCellsInTRUPhi ; } Int_t GetNCellsInSupMod() const {return fNCellsInSupMod;} Int_t GetNCellsInModule() const {return fNCellsInModule; } Int_t GetKey110DEG() const {return fKey110DEG;} Int_t GetILOSS() const {return fILOSS;} Int_t GetIHADR() const {return fIHADR;} // Int_t GetNTRU() const {return fNTRUEta*fNTRUPhi ; } Int_t GetNCellsInTRU() const {return fNCellsInTRUEta*fNCellsInTRUPhi; } Float_t GetDeltaEta() const {return (fArm1EtaMax-fArm1EtaMin)/ ((Float_t)fNZ);} Float_t GetDeltaPhi() const {return (fArm1PhiMax-fArm1PhiMin)/ ((Float_t)fNPhi);} Int_t GetNTowers() const {return fNPhi * fNZ ;} // Double_t GetPhiCenterOfSM(Int_t nsupmod) const; Float_t *GetSuperModulesPars() {return fParSM;} // Bool_t GetPhiBoundariesOfSM (Int_t nSupMod, Double_t &phiMin, Double_t &phiMax) const; Bool_t GetPhiBoundariesOfSMGap(Int_t nPhiSec, Double_t &phiMin, Double_t &phiMax) const; // virtual Bool_t Impact(const TParticle *) const {return kTRUE;} Bool_t IsInEMCAL(Double_t x, Double_t y, Double_t z) const; //////////////////////////////////////// // May 31, 2006; ALICE numbering scheme: // see ALICE-INT-2003-038: ALICE Coordinate System and Software Numbering Convention // All indexes are stared from zero now. // // abs id <-> indexes; Shish-kebab case, only TRD1 now. // EMCAL -> Super Module -> module -> tower(or cell) - logic tree of EMCAL // //** Usual name of variable - Dec 18,2006 ** // nSupMod - index of super module (SM) // nModule - index of module in SM // nIphi - phi index of tower(cell) in module // nIeta - eta index of tower(cell) in module // // Inside SM // iphim - phi index of module in SM // ietam - eta index of module in SM // // iphi - phi index of tower(cell) in SM // ieta - eta index of tower(cell) in SM // // for a given tower index absId returns eta and phi of gravity center of tower. void EtaPhiFromIndex(Int_t absId, Double_t &eta, Double_t &phi) const; void EtaPhiFromIndex(Int_t absId, Float_t &eta, Float_t &phi) const; // // Tranforms Eta-Phi Cell index in TRU into Eta-Phi index in Super Module void GetCellPhiEtaIndexInSModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru, Int_t &ietaSM, Int_t &iphiSM) const ; Bool_t GetAbsCellIdFromEtaPhi(Double_t eta,Double_t phi, Int_t &absId) const; Bool_t SuperModuleNumberFromEtaPhi(Double_t eta, Double_t phi, Int_t &nSupMod) const; Int_t GetAbsCellId(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta) const; Bool_t CheckAbsCellId(Int_t absId) const; Bool_t GetCellIndex(Int_t absId, Int_t &nSupMod, Int_t &nModule, Int_t &nIphi, Int_t &nIeta) const; // Local coordinate of Super Module void GetModulePhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, Int_t &iphim, Int_t &ietam) const; void GetCellPhiEtaIndexInSModule(Int_t nSupMod, Int_t nModule, Int_t nIphi, Int_t nIeta, Int_t &iphi, Int_t &ieta) const ; Int_t GetSuperModuleNumber(Int_t absId) const; Int_t GetNumberOfModuleInPhiDirection(Int_t nSupMod) const { if(fKey110DEG == 1 && nSupMod>=10) return fNPhi/2; else return fNPhi; } // From cell indexes to abs cell id void GetModuleIndexesFromCellIndexesInSModule(Int_t nSupMod, Int_t iphi, Int_t ieta, Int_t &iphim, Int_t &ietam, Int_t &nModule) const; Int_t GetAbsCellIdFromCellIndexes(Int_t nSupMod, Int_t iphi, Int_t ieta) const; // Methods for AliEMCALRecPoint - Feb 19, 2006 Bool_t RelPosCellInSModule(Int_t absId, Double_t &xr, Double_t &yr, Double_t &zr) const; Bool_t RelPosCellInSModule(Int_t absId, Double_t loc[3]) const; Bool_t RelPosCellInSModule(Int_t absId, TVector3 &vloc) const; // Methods for AliEMCALRecPoint with taking into account energy of rec.point - Jul 30. 2007 Bool_t RelPosCellInSModule(Int_t absId,Double_t distEff,Double_t &xr,Double_t &yr, Double_t & zr) const; Bool_t RelPosCellInSModule(Int_t absId,Int_t maxAbsId,Double_t distEff,Double_t &xr, Double_t &yr,Double_t &zr) const; /////////////////////////////// //Geometry data member setters // void SetNZ(Int_t nz) { fNZ= nz; printf("SetNZ: Number of modules in Z set to %d", fNZ) ; } void SetNPhi(Int_t nphi) { fNPhi= nphi; printf("SetNPhi: Number of modules in Phi set to %d", fNPhi) ; } void SetNTRUEta(Int_t ntru) {fNTRUEta = ntru; printf("SetNTRU: Number of TRUs per SuperModule in Etaset to %d", fNTRUEta) ;} void SetNTRUPhi(Int_t ntru) {fNTRUPhi = ntru; printf("SetNTRU: Number of TRUs per SuperModule in Phi set to %d", fNTRUPhi) ;} void SetSampling(Float_t samp) { fSampling = samp; printf("SetSampling: Sampling factor set to %f", fSampling) ; } /////////////////// // useful utilities // Float_t AngleFromEta(Float_t eta) const { // returns theta in radians for a given pseudorapidity return 2.0*TMath::ATan(TMath::Exp(-eta)); } Float_t ZFromEtaR(Float_t r,Float_t eta) const { // returns z in for a given // pseudorapidity and r=sqrt(x*x+y*y). return r/TMath::Tan(AngleFromEta(eta)); } ////////////////////////////////////////////////// // Obsolete methods to be thrown out when feasible Float_t GetAlFrontThickness() const { return fAlFrontThick;} Float_t GetGap2Active() const {return fGap2Active ;} Float_t GetSteelFrontThickness() const { return fSteelFrontThick;} Float_t GetTrd2AngleY()const {return fTrd2AngleY;} Float_t Get2Trd2Dy2() const {return f2Trd2Dy2;} Float_t GetTubsR() const {return fTubsR;} Float_t GetTubsTurnAngle() const {return fTubsTurnAngle;} Float_t GetIP2ECASection() const { return ( GetIPDistance() + GetAlFrontThickness() + GetGap2Active() ) ; } ////////////////////////////////////////////////// protected: // ctor only for internal usage (singleton) AliEMCALGeometry(const Text_t* name, const Text_t* title); void Init(void); // initializes the parameters of EMCAL void CheckAdditionalOptions(); // void DefineSamplingFraction(); // Jun 5, 2006 private: //Member data static AliEMCALGeometry * fgGeom; // pointer to the unique instance of the singleton static Bool_t fgInit; // Tells if geometry has been succesfully set up. static Char_t* fgDefaultGeometryName; // Default name of geometry TString fGeoName; //geometry name TObjArray *fArrayOpts; //! array of geometry options char *fAdditionalOpts[6]; //! some additional options for the geometry type and name int fNAdditionalOpts; //! size of additional options parameter Float_t fECPbRadThickness; // cm, Thickness of the Pb radiators Float_t fECScintThick; // cm, Thickness of the scintillators Int_t fNECLayers; // number of scintillator layers Float_t fArm1PhiMin; // Minimum angular position of EMCAL in Phi (degrees) Float_t fArm1PhiMax; // Maximum angular position of EMCAL in Phi (degrees) Float_t fArm1EtaMin; // Minimum pseudorapidity position of EMCAL in Eta Float_t fArm1EtaMax; // Maximum pseudorapidity position of EMCAL in Eta // Geometry Parameters Float_t fEnvelop[3]; // the GEANT TUB for the detector Float_t fIPDistance; // Radial Distance of the inner surface of the EMCAL Float_t fShellThickness; // Total thickness in (x,y) direction Float_t fZLength; // Total length in z direction Int_t fNZ; // Number of Towers in the Z direction Int_t fNPhi; // Number of Towers in the PHI direction Float_t fSampling; // Sampling factor // Shish-kebab option - 23-aug-04 by PAI; COMPACT, TWIST, TRD1 and TRD2 Int_t fNumberOfSuperModules; // default is 12 = 6 * 2 Float_t fFrontSteelStrip; // 13-may-05 Float_t fLateralSteelStrip; // 13-may-05 Float_t fPassiveScintThick; // 13-may-05 Float_t fPhiModuleSize; // Phi -> X Float_t fEtaModuleSize; // Eta -> Y Float_t fPhiTileSize; // Size of phi tile Float_t fEtaTileSize; // Size of eta tile Float_t fLongModuleSize; // Size of long module Int_t fNPhiSuperModule; // 6 - number supermodule in phi direction Int_t fNPHIdiv; // number phi divizion of module Int_t fNETAdiv; // number eta divizion of module // Int_t fNCells; // number of cells in calo Int_t fNCellsInSupMod; // number cell in super module Int_t fNCellsInModule; // number cell in module) //TRU parameters Int_t fNTRUEta ; // Number of TRUs per module in eta Int_t fNTRUPhi ; // Number of TRUs per module in phi Int_t fNCellsInTRUEta; // Number of cells per TRU in eta Int_t fNCellsInTRUPhi; // Number of cells per TRU in phi // TRD1 options - 30-sep-04 Float_t fTrd1Angle; // angle in x-z plane (in degree) Float_t f2Trd1Dx2; // 2*dx2 for TRD1 Float_t fPhiGapForSM; // Gap betweeen supermodules in phi direction Int_t fKey110DEG; // for calculation abs cell id; 19-oct-05 TArrayD fPhiBoundariesOfSM; // phi boundaries of SM in rad; size is fNumberOfSuperModules; TArrayD fPhiCentersOfSM; // phi of centers of SMl size is fNumberOfSuperModules/2 Float_t fEtaMaxOfTRD1; // max eta in case of TRD1 geometry (see AliEMCALShishKebabTrd1Module) // Local Coordinates of SM TArrayD fCentersOfCellsEtaDir; // size fNEta*fNETAdiv (for TRD1 only) (eta or z in SM, in cm) TArrayD fCentersOfCellsXDir; // size fNEta*fNETAdiv (for TRD1 only) ( x in SM, in cm) TArrayD fCentersOfCellsPhiDir; // size fNPhi*fNPHIdiv (for TRD1 only) (phi or y in SM, in cm) // TArrayD fEtaCentersOfCells; // [fNEta*fNETAdiv*fNPhi*fNPHIdiv], positive direction (eta>0); eta depend from phi position; TArrayD fPhiCentersOfCells; // [fNPhi*fNPHIdiv] from center of SM (-10. < phi < +10.) // Move from AliEMCALv0 - Feb 19, 2006 TList *fShishKebabTrd1Modules; //! list of modules // Local coordinates of SM for TRD1 Float_t fParSM[3]; // SM sizes as in GEANT (TRD1) Int_t fILOSS; // Options for Geant (MIP business) - will call in AliEMCAL Int_t fIHADR; // Options for Geant (MIP business) - will call in AliEMCAL //////////////////////////////////////////////////////////// //Obsolete member data that will be thrown out when feasible // Float_t fAlFrontThick; // Thickness of the front Al face of the support box Float_t fGap2Active; // Gap between the envelop and the active material Float_t fSteelFrontThick; // Thickness of the front stell face of the support box - 9-sep-04 // TRD2 options - 27-jan-07 Float_t fTrd2AngleY; // angle in y-z plane (in degree) Float_t f2Trd2Dy2; // 2*dy2 for TRD2 Float_t fEmptySpace; // 2mm om fred drawing // Super module as TUBS Float_t fTubsR; // radius of tubs Float_t fTubsTurnAngle; // turn angle of tubs in degree /////////////////////////////////////////////////////////// ClassDef(AliEMCALGeometry, 13) // EMCAL geometry class }; #endif // AliEMCALGEOMETRY_H