#ifndef ALIEMCALGEOMETRY_H #define ALIEMCALGEOMETRY_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //_________________________________________________________________________ // Geometry class for EMCAL : singleton // EMCAL consists of a layers of scintillator, and lead. // //*-- Author: Sahal Yacoob (LBL / UCT) //*-- and : Yves Schutz (Subatech) #include // --- ROOT system --- class TString ; class TObjArray ; class TVector3 ; class TParticle ; // --- AliRoot header files --- #include "AliGeometry.h" class AliEMCALGeometry : public AliGeometry { public: AliEMCALGeometry() { // default ctor, must be kept public for root persistency purposes, // but should never be called by the outside world }; AliEMCALGeometry(const AliEMCALGeometry & geom) { // cpy ctor requested by Coding Convention but not yet needed assert(0==1); }; virtual ~AliEMCALGeometry(void) ; static AliEMCALGeometry * GetInstance(const Text_t* name, const Text_t* title="") ; static AliEMCALGeometry * GetInstance() ; AliEMCALGeometry & operator = (const AliEMCALGeometry & rvalue) const { // assignement operator requested by coding convention but not needed assert(0==1) ; return *(GetInstance()) ; }; const Bool_t AreInSameTower(Int_t id1, Int_t id2) const ; virtual void GetGlobal(const AliRecPoint *, TVector3 &, TMatrix &) const {} virtual void GetGlobal(const AliRecPoint *, TVector3 &) const {} virtual Bool_t Impact(const TParticle * particle) const {return kTRUE;} // General Bool_t IsInitialized(void) const { return fgInit ; } // Return EMCA geometrical parameters // geometry const Float_t GetAlFrontThickness() const { return fAlFrontThick;} const Float_t GetArm1PhiMin() const { return fArm1PhiMin ; } const Float_t GetArm1PhiMax() const { return fArm1PhiMax ; } const Float_t GetArm1EtaMin() const { return fArm1EtaMin;} const Float_t GetArm1EtaMax() const { return fArm1EtaMax;} const Float_t GetIPDistance() const { return fIPDistance ; } const Float_t GetIP2PRESection() const { return (GetIPDistance() + GetAlFrontThickness() + GetGap2Active() ) ;} const Float_t GetIP2ECASection() const { return ( GetIP2PRESection() + GetNPRLayers() * ( GetPRScintThick() + GetPRPbRadThick() ) ) ; } const Float_t GetIP2HCASection() const { return ( GetIP2ECASection() + GetNECLayers() * ( GetECScintThick() + GetECPbRadThick() ) ) ; } const Float_t GetEnvelop(Int_t index) const { return fEnvelop[index] ; } const Float_t GetShellThickness() const { return fShellThickness ; } const Float_t GetZLength() const { return fZLength ; } const Float_t GetGap2Active() const {return fGap2Active ; } const Float_t GetDeltaEta() const {return (fArm1EtaMax-fArm1EtaMin)/ ((Float_t)fNZ);} const Float_t GetDeltaPhi() const {return (fArm1PhiMax-fArm1PhiMin)/ ((Float_t)fNPhi);} const Int_t GetNECLayers() const {return fNECLayers ;} const Int_t GetNHCLayers() const {return fNHCLayers ;} const Int_t GetNPRLayers() const {return fNPRLayers;} const Int_t GetNZ() const {return fNZ ;} const Int_t GetNEta() const {return fNZ ;} const Int_t GetNPhi() const {return fNPhi ;} const Int_t GetNTowers() const {return fNPhi * fNZ ;} const Float_t GetPRPbRadThick()const {return fPRPbRadThickness;} const Float_t GetECPbRadThick()const {return fECPbRadThickness;} const Float_t GetHCCuRadThick()const {return fHCCuRadThickness;} const Float_t GetPRScintThick() const {return fPRScintThick;} const Float_t GetECScintThick() const {return fECScintThick;} const Float_t GetHCScintThick() const {return fECScintThick;} const Float_t GetSampling() const {return fSampling ; } const Float_t GetSummationFraction() const {return fSummationFraction ; } const Bool_t IsInPRE(Int_t index) const { if ( (index > (GetNZ() * GetNPhi()) && (index <= 2 * (GetNZ() * GetNPhi())))) return kTRUE; else return kFALSE ;} const Bool_t IsInECA(Int_t index) const { if ( (index > 0 && (index <= GetNZ() * GetNPhi()))) return kTRUE; else return kFALSE ;} const Bool_t IsInHCA(Int_t index) const { if ( (index > 2*(GetNZ() * GetNPhi()) && (index <= 3 * (GetNZ() * GetNPhi())))) return kTRUE; else return kFALSE ;} ; Float_t AngleFromEta(Float_t eta){ // returns angle in radians for a given // pseudorapidity. return 2.0*TMath::ATan(TMath::Exp(-eta)); } Float_t ZFromEtaR(Float_t r,Float_t eta){ // returns z in for a given // pseudorapidity and r=sqrt(x*x+y*y). return r/TMath::Tan(AngleFromEta(eta)); } Int_t TowerIndex(Int_t iz,Int_t iphi) const; // returns tower index // returns tower indexs iz, iphi. void TowerIndexes(Int_t index,Int_t &iz,Int_t &iphi,Int_t &ipre) const; // for a given tower index it returns eta and phi of center of that tower. void EtaPhiFromIndex(Int_t index,Float_t &eta,Float_t &phi) const; // returns x, y, and z (cm) on the inner surface of a given EMCAL Cell specified by relid. void XYZFromIndex(const Int_t *relid,Float_t &x,Float_t &y, Float_t &z) const; void XYZFromIndex(const Int_t absid, TVector3 &v) const; // for a given eta and phi in the EMCAL it returns the tower index. Int_t TowerIndexFromEtaPhi(Float_t eta,Float_t phi) const; // for a given eta and phi in the EMCAL it returns the pretower index. Int_t PreTowerIndexFromEtaPhi(Float_t eta,Float_t phi) const; // Returns theta and phi (degree) for a given EMCAL cell indicated by relid or absid void PosInAlice(const Int_t *relid, Float_t &theta, Float_t &phi) const ; void PosInAlice(const Int_t absid, Float_t &theta, Float_t &phi) const ; Bool_t AbsToRelNumbering(Int_t AbsId, Int_t *relid) const; /* // Returns kTRUE if the two indexs are neighboring towers or preshowers. Boot_t AliEMCALGeometry::AreNeighbours(Int_t index1,Int_t index2) const; */ void SetNZ(Int_t nz) { fNZ= nz ; Info("SetNZ", "Number of modules in Z set to %d", fNZ) ; } void SetNPhi(Int_t nphi) { fNPhi= nphi ; Info("SetNPhi", "Number of modules in Phi set to %d", fNPhi) ; } void SetSampling(Float_t samp) { fSampling = samp; Info("SetSampling", "Sampling factor set to %f", fSampling) ; } protected: AliEMCALGeometry(const Text_t* name, const Text_t* title="") : AliGeometry(name, title) {// ctor only for internal usage (singleton) Init(); }; void Init(void) ; // initializes the parameters of EMCAL private: static AliEMCALGeometry * fgGeom ; // pointer to the unique instance // of the singleton static Bool_t fgInit;// Tells if geometry has been succesfully set up. Float_t fAlFrontThick; // Thickness of the front Al face of the support box Float_t fPRPbRadThickness ; // cm, Thickness of the Pb radiators for the preshower section Float_t fPRScintThick ; // cm, Thickness of the sintilator for the preshower section of the tower Int_t fNPRLayers ; // number of scintillator layers in the preshower section Float_t fECPbRadThickness ; // cm, Thickness of the Pb radiators for the EM calorimeter section Float_t fECScintThick ; // cm, Thickness of the sintilator for the EM alorimeter section of the tower Int_t fNECLayers ; // number of scintillator layers in the EM calorimeter section Float_t fHCCuRadThickness ; // cm, Thickness of the Cu radiators. Float_t fHCScintThick ; // cm, Thickness of the sintilator for the hadronic alorimeter section of the tower Int_t fNHCLayers ; // number of scintillator layers in the hadronic calorimeter section Float_t fArm1PhiMin; // Minimum angular position of EMCAL in Phi (degrees) Float_t fArm1PhiMax; // Maximum angular position of EMCAL in Phi (degrees) Float_t fArm1EtaMin; // Minimum pseudorapidity position of EMCAL in Eta Float_t fArm1EtaMax; // Maximum pseudorapidity position of EMCAL in Eta // It is assumed that Arm1 and Arm2 have the same following parameters Float_t fEnvelop[3]; // the GEANT TUB for the detector Float_t fIPDistance; // Radial Distance of the inner surface of the EMCAL Float_t fShellThickness; // Total thickness in (x,y) direction Float_t fZLength; // Total length in z direction Float_t fGap2Active; // Gap between the envelop and the active material Int_t fNZ; // Number of Towers in the Z direction Int_t fNPhi; // Number of Towers in the Phi Direction Float_t fSampling; // Sampling factor Float_t fSummationFraction; // Fraction of the energy collected in the PRE section to be added to the EC section ClassDef(AliEMCALGeometry,5) // EMCAL geometry class }; #endif // AliEMCALGEOMETRY_H