/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Utility Class for handling Raw data // Does all transitions from Digits to Raw and vice versa, // for simu and reconstruction // // Note: the current version is still simplified. Only // one raw signal per digit is generated; either high-gain or low-gain // Need to add concurrent high and low-gain info in the future // No pedestal is added to the raw signal. //*-- Author: Marco van Leeuwen (LBL) #include "AliEMCALRawUtils.h" #include "TF1.h" #include "TGraph.h" class TSystem; class AliLog; #include "AliRun.h" #include "AliRunLoader.h" class AliCaloAltroMapping; #include "AliAltroBuffer.h" #include "AliRawReader.h" #include "AliCaloRawStreamV3.h" #include "AliDAQ.h" #include "AliEMCALRecParam.h" #include "AliEMCALLoader.h" #include "AliEMCALGeometry.h" class AliEMCALDigitizer; #include "AliEMCALDigit.h" #include "AliEMCAL.h" #include "AliCaloCalibPedestal.h" #include "AliCaloFastAltroFitv0.h" ClassImp(AliEMCALRawUtils) // Signal shape parameters Int_t AliEMCALRawUtils::fgTimeBins = 256; // number of sampling bins of the raw RO signal (we typically use 15-50; theoretical max is 1k+) Double_t AliEMCALRawUtils::fgTimeBinWidth = 100E-9 ; // each sample is 100 ns Double_t AliEMCALRawUtils::fgTimeTrigger = 1.5E-6 ; // 15 time bins ~ 1.5 musec // some digitization constants Int_t AliEMCALRawUtils::fgThreshold = 1; Int_t AliEMCALRawUtils::fgDDLPerSuperModule = 2; // 2 ddls per SuperModule Int_t AliEMCALRawUtils::fgPedestalValue = 32; // pedestal value for digits2raw Double_t AliEMCALRawUtils::fgFEENoise = 3.; // 3 ADC channels of noise (sampled) AliEMCALRawUtils::AliEMCALRawUtils() : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(0), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0) { //These are default parameters. //Can be re-set from without with setter functions //Already set in the OCDB and passed via setter in the AliEMCALReconstructor fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; // 3 ADC counts is approx. noise level fNPedSamples = 4; // less than this value => likely pedestal samples fRemoveBadChannels = kTRUE; //Remove bad channels before fitting fFittingAlgorithm = kFastFit;//kStandard; // Use default minuit fitter //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } //To make sure we match with the geometry in a simulation file, //let's try to get it first. If not, take the default geometry AliRunLoader *rl = AliRunLoader::Instance(); if(!rl) AliError("Cannot find RunLoader!"); if (rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) { fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); } else { AliInfo(Form("Using default geometry in raw reco")); fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(pGeometry), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0) { // // Initialize with the given geometry - constructor required by HLT // HLT does not use/support AliRunLoader(s) instances // This is a minimum intervention solution // Comment by MPloskon@lbl.gov // //These are default parameters. //Can be re-set from without with setter functions //Already set in the OCDB and passed via setter in the AliEMCALReconstructor fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; // 3 ADC counts is approx. noise level fNPedSamples = 4; // less than this value => likely pedestal samples fRemoveBadChannels = kTRUE; //Remove bad channels before fitting fFittingAlgorithm = kStandard; // Use default minuit fitter //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(const AliEMCALRawUtils& rawU) : TObject(), fHighLowGainFactor(rawU.fHighLowGainFactor), fOrder(rawU.fOrder), fTau(rawU.fTau), fNoiseThreshold(rawU.fNoiseThreshold), fNPedSamples(rawU.fNPedSamples), fGeom(rawU.fGeom), fOption(rawU.fOption), fRemoveBadChannels(rawU.fRemoveBadChannels), fFittingAlgorithm(rawU.fFittingAlgorithm) { //copy ctor fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } //____________________________________________________________________________ AliEMCALRawUtils& AliEMCALRawUtils::operator =(const AliEMCALRawUtils &rawU) { //assignment operator if(this != &rawU) { fHighLowGainFactor = rawU.fHighLowGainFactor; fOrder = rawU.fOrder; fTau = rawU.fTau; fNoiseThreshold = rawU.fNoiseThreshold; fNPedSamples = rawU.fNPedSamples; fGeom = rawU.fGeom; fOption = rawU.fOption; fRemoveBadChannels = rawU.fRemoveBadChannels; fFittingAlgorithm = rawU.fFittingAlgorithm; fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } return *this; } //____________________________________________________________________________ AliEMCALRawUtils::~AliEMCALRawUtils() { //dtor } //____________________________________________________________________________ void AliEMCALRawUtils::Digits2Raw() { // convert digits of the current event to raw data AliRunLoader *rl = AliRunLoader::Instance(); AliEMCALLoader *loader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); // get the digits loader->LoadDigits("EMCAL"); loader->GetEvent(); TClonesArray* digits = loader->Digits() ; if (!digits) { Warning("Digits2Raw", "no digits found !"); return; } static const Int_t nDDL = 12*2; // 12 SM hardcoded for now. Buffers allocated dynamically, when needed, so just need an upper limit here AliAltroBuffer* buffers[nDDL]; for (Int_t i=0; i < nDDL; i++) buffers[i] = 0; TArrayI adcValuesLow(fgTimeBins); TArrayI adcValuesHigh(fgTimeBins); // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = dynamic_cast(digits->At(iDigit)) ; if (digit->GetAmp() < fgThreshold) continue; //get cell indices Int_t nSM = 0; Int_t nIphi = 0; Int_t nIeta = 0; Int_t iphi = 0; Int_t ieta = 0; Int_t nModule = 0; fGeom->GetCellIndex(digit->GetId(), nSM, nModule, nIphi, nIeta); fGeom->GetCellPhiEtaIndexInSModule(nSM, nModule, nIphi, nIeta,iphi, ieta) ; //Check which is the RCU, 0 or 1, of the cell. Int_t iRCU = -111; //RCU0 if (0<=iphi&&iphi<8) iRCU=0; // first cable row else if (8<=iphi&&iphi<16 && 0<=ieta&&ieta<24) iRCU=0; // first half; //second cable row //RCU1 else if(8<=iphi&&iphi<16 && 24<=ieta&&ieta<48) iRCU=1; // second half; //second cable row else if(16<=iphi&&iphi<24) iRCU=1; // third cable row if (nSM%2==1) iRCU = 1 - iRCU; // swap for odd=C side, to allow us to cable both sides the same if (iRCU<0) Fatal("Digits2Raw()","Non-existent RCU number: %d", iRCU); //Which DDL? Int_t iDDL = fgDDLPerSuperModule* nSM + iRCU; if (iDDL >= nDDL) Fatal("Digits2Raw()","Non-existent DDL board number: %d", iDDL); if (buffers[iDDL] == 0) { // open new file and write dummy header TString fileName = AliDAQ::DdlFileName("EMCAL",iDDL); //Select mapping file RCU0A, RCU0C, RCU1A, RCU1C Int_t iRCUside=iRCU+(nSM%2)*2; //iRCU=0 and even (0) SM -> RCU0A.data 0 //iRCU=1 and even (0) SM -> RCU1A.data 1 //iRCU=0 and odd (1) SM -> RCU0C.data 2 //iRCU=1 and odd (1) SM -> RCU1C.data 3 //cout<<" nSM "<WriteDataHeader(kTRUE, kFALSE); //Dummy; } // out of time range signal (?) if (digit->GetTimeR() > GetRawFormatTimeMax() ) { AliInfo("Signal is out of time range.\n"); buffers[iDDL]->FillBuffer((Int_t)digit->GetAmp()); buffers[iDDL]->FillBuffer(GetRawFormatTimeBins() ); // time bin buffers[iDDL]->FillBuffer(3); // bunch length buffers[iDDL]->WriteTrailer(3, ieta, iphi, nSM); // trailer // calculate the time response function } else { Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), digit->GetAmp(), adcValuesHigh.GetArray(), adcValuesLow.GetArray()) ; if (lowgain) buffers[iDDL]->WriteChannel(ieta, iphi, 0, GetRawFormatTimeBins(), adcValuesLow.GetArray(), fgThreshold); else buffers[iDDL]->WriteChannel(ieta,iphi, 1, GetRawFormatTimeBins(), adcValuesHigh.GetArray(), fgThreshold); } } // write headers and close files for (Int_t i=0; i < nDDL; i++) { if (buffers[i]) { buffers[i]->Flush(); buffers[i]->WriteDataHeader(kFALSE, kFALSE); delete buffers[i]; } } loader->UnloadDigits(); } //____________________________________________________________________________ void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr, AliCaloCalibPedestal* pedbadmap) { // convert raw data of the current event to digits digitsArr->Clear(); if (!digitsArr) { Error("Raw2Digits", "no digits found !"); return; } if (!reader) { Error("Raw2Digits", "no raw reader found !"); return; } AliCaloRawStreamV3 in(reader,"EMCAL",fMapping); // Select EMCAL DDL's; reader->Select("EMCAL",0,43); // 43 = AliEMCALGeoParams::fgkLastAltroDDL //Updated fitting routine from 2007 beam test takes into account //possibility of two peaks in data and selects first one for fitting //Also sets some of the starting parameters based on the shape of the //given raw signal being fit TF1 * signalF = new TF1("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF->SetParameters(10.,5.,fTau,fOrder,0.); //set all defaults once, just to be safe signalF->SetParNames("amp","t0","tau","N","ped"); signalF->FixParameter(2,fTau); // tau in units of time bin signalF->FixParameter(3,fOrder); // order Int_t id = -1; Float_t time = 0. ; Float_t amp = 0. ; Float_t ped = 0. ; Float_t ampEstimate = 0; Float_t timeEstimate = 0; Float_t pedEstimate = 0; Int_t i = 0; Int_t startBin = 0; //Graph to hold data we will fit (should be converted to an array //later to speed up processing TGraph * gSig = new TGraph(GetRawFormatTimeBins()); Int_t lowGain = 0; Int_t caloFlag = 0; // low, high gain, or TRU, or LED ref. // start loop over input stream while (in.NextDDL()) { while (in.NextChannel()) { //Check if the signal is high or low gain and then do the fit, //if it is from TRU do not fit caloFlag = in.GetCaloFlag(); if (caloFlag != 0 && caloFlag != 1) continue; //Do not fit bad channels if(fRemoveBadChannels && pedbadmap->IsBadChannel(in.GetModule(),in.GetColumn(),in.GetRow())) { //printf("Tower from SM %d, column %d, row %d is BAD!!! Skip \n", in.GetModule(),in.GetColumn(),in.GetRow()); continue; } // There can be zero-suppression in the raw data, // so set up the TGraph in advance for (i=0; i < GetRawFormatTimeBins(); i++) { gSig->SetPoint(i, i , -1); // init to out-of-range values } Int_t maxTimeBin = 0; Int_t min = 0x3ff; // init to 10-bit max Int_t max = 0; // init to 10-bit min while (in.NextBunch()) { const UShort_t *sig = in.GetSignals(); startBin = in.GetStartTimeBin(); if (maxTimeBin < startBin) { maxTimeBin = startBin; // timebins come in reverse order } if (maxTimeBin < 0 || maxTimeBin >= GetRawFormatTimeBins()) { AliWarning(Form("Invalid time bin %d",maxTimeBin)); maxTimeBin = GetRawFormatTimeBins(); } for (i = 0; i < in.GetBunchLength(); i++) { time = startBin--; gSig->SetPoint((Int_t)time, time, (Double_t) sig[i]) ; if (max < sig[i]) max = sig[i]; if (min > sig[i]) min = sig[i]; } } // loop over bunches gSig->Set(maxTimeBin+1); // set actual max size of TGraph //Initialize the variables, do not keep previous values. // not really necessary to reset all of them (only amp and time at the moment), but better safe than sorry amp = -1 ; time = -1 ; ped = -1; ampEstimate = -1 ; timeEstimate = -1 ; pedEstimate = -1; if ( (max - min) > fNoiseThreshold) { FitRaw(gSig, signalF, maxTimeBin, amp, time, ped, ampEstimate, timeEstimate, pedEstimate); // switch(fFittingAlgorithm) // { // case kStandard: // { // //printf("Standard fitter \n"); // FitRaw(gSig, signalF, maxTimeBin, amp, time, ped, // ampEstimate, timeEstimate, pedEstimate); // break; // } // case kFastFit: // { // //printf("FastFitter \n"); // Double_t eSignal = 0; // Double_t dAmp = amp; // Double_t dTimeEstimate = timeEstimate; // Double_t eTimeEstimate = 0; // Double_t eAmp = 0; // Double_t chi2 = 0; // // AliCaloFastAltroFitv0::FastFit(gSig->GetX(), gSig->GetY(), gSig->GetN(), // eSignal, fTau, // dAmp, eAmp, dTimeEstimate, eTimeEstimate, chi2); // amp=dAmp; // timeEstimate = dTimeEstimate; // //printf("FastFitter: Amp %f, time %f, eAmp %f, eTimeEstimate %f, chi2 %f\n",amp, timeEstimate,eAmp,eTimeEstimate,chi2); // // break; // } // } } if ( amp>0 && amp<2000 && time>0 && time<(maxTimeBin*GetRawFormatTimeBinWidth()) ) { //check both high and low end of amplitude result, and time //2000 is somewhat arbitrary - not nice with magic numbers in the code.. id = fGeom->GetAbsCellIdFromCellIndexes(in.GetModule(), in.GetRow(), in.GetColumn()) ; lowGain = in.IsLowGain(); // check fit results: should be consistent with initial estimates // more magic numbers, but very loose cuts, for now.. // We have checked that amp an time values are positive so division for assymmetry // calculation should be OK/safe Float_t ampAsymm = (amp - ampEstimate)/(amp + ampEstimate); if ( (TMath::Abs(ampAsymm) > 0.1) || (TMath::Abs(time - timeEstimate) > 2*GetRawFormatTimeBinWidth()) ) { AliDebug(2,Form("Fit results ped %f amp %f time %f not consistent with expectations ped %f max-ped %f time %d", ped, amp, time, pedEstimate, ampEstimate, timeEstimate)); // what should do we do then? skip this channel or assign the simple estimate? // for now just overwrite the fit results with the simple estimate amp = ampEstimate; time = timeEstimate; } AliDebug(2,Form("id %d lowGain %d amp %g", id, lowGain, amp)); // printf("Added tower: SM %d, row %d, column %d, amp %3.2f\n",in.GetModule(), in.GetRow(), in.GetColumn(),amp); // round off amplitude value to nearest integer AddDigit(digitsArr, id, lowGain, TMath::Nint(amp), time); } // Reset graph for (Int_t index = 0; index < gSig->GetN(); index++) { gSig->SetPoint(index, index, -1) ; } // Reset starting parameters for fit function signalF->SetParameters(10.,5.,fTau,fOrder,0.); //reset all defaults just to be safe } // end while over channel } //end while over DDL's, of input stream delete signalF ; delete gSig; return ; } //____________________________________________________________________________ void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t lowGain, Int_t amp, Float_t time) { // // Add a new digit. // This routine checks whether a digit exists already for this tower // and then decides whether to use the high or low gain info // // Called by Raw2Digits AliEMCALDigit *digit = 0, *tmpdigit = 0; TIter nextdigit(digitsArr); while (digit == 0 && (tmpdigit = (AliEMCALDigit*) nextdigit())) { if (tmpdigit->GetId() == id) digit = tmpdigit; } if (!digit) { // no digit existed for this tower; create one if (lowGain && amp > fgkOverflowCut) amp = Int_t(fHighLowGainFactor * amp); Int_t idigit = digitsArr->GetEntries(); new((*digitsArr)[idigit]) AliEMCALDigit( -1, -1, id, amp, time, idigit) ; } else { // a digit already exists, check range // (use high gain if signal < cut value, otherwise low gain) if (lowGain) { // new digit is low gain if (digit->GetAmp() > fgkOverflowCut) { // use if stored digit is out of range digit->SetAmp(Int_t(fHighLowGainFactor * amp)); digit->SetTime(time); } } else if (amp < fgkOverflowCut) { // new digit is high gain; use if not out of range digit->SetAmp(amp); digit->SetTime(time); } } } //____________________________________________________________________________ void AliEMCALRawUtils::FitRaw(TGraph * gSig, TF1* signalF, const Int_t lastTimeBin, Float_t & amp, Float_t & time, Float_t & ped, Float_t & ampEstimate, Float_t & timeEstimate, Float_t & pedEstimate, const Float_t cut) const { // Fits the raw signal time distribution; from AliEMCALGetter // last argument: Float_t cut = 0.0; // indicating how much of amplitude w.r.t. max value fit should be above noise and pedestal // initialize return values amp = 0; time = 0; ped = 0; ampEstimate = 0; timeEstimate = 0; pedEstimate = 0; // 0th step: remove plateau / overflow candidates // before trying to estimate amplitude, search for maxima etc. // Int_t nOrig = gSig->GetN(); // number of samples before we remove any overflows // Values for readback from input graph Double_t ttime = 0; Double_t signal = 0; /* // start: tmp dump of all values for (Int_t i=0; iGetN(); i++) { gSig->GetPoint(i, ttime, signal) ; // get values printf("orig: i %d, time %f, signal %f\n",i, ttime, signal); } // end: tmp dump of all values */ // start from back of TGraph since RemovePoint will downshift indices for (Int_t i=nOrig-1; i>=0; i--) { gSig->GetPoint(i, ttime, signal) ; // get values if (signal >= (pedEstimate + fgkOverflowCut) ) { gSig->RemovePoint(i); } } // 1st step: we try to estimate the pedestal value Int_t nPed = 0; for (Int_t index = 0; index < gSig->GetN(); index++) { gSig->GetPoint(index, ttime, signal) ; // ttime < fNPedsamples used for pedestal estimate; // ttime >= fNPedSamples used for signal checks if (signal >= 0 && ttime 0) pedEstimate /= nPed; else { //AliWarning("Could not determine pedestal"); AliDebug(1,"Could not determine pedestal"); pedEstimate = 0; // good estimate for ZeroSupp data (non ZS data should have no problem with pedestal estimate) } // 2nd step: we look through the rest of the time-bins/ADC values and // see if we have something that looks like a signal. // We look for a first local maxima, as well as for a global maxima Int_t locMaxFound = 0; Int_t locMaxId = 0; // time-bin index at first local max Float_t locMaxSig = -1; // actual local max value Int_t globMaxId = 0; // time-bin index at global max Float_t globMaxSig = -1; // actual global max value // We will also look for any values that look like they are in overflow region for (Int_t i=0; iGetN(); i++) { gSig->GetPoint(i, ttime, signal) ; // get values // ttime < fNPedsamples used for pedestal estimate; // ttime >= fNPedSamples used for signal checks if (ttime >= fNPedSamples) { // look for first local maximum signal=ADC value if (!locMaxFound && signal > locMaxSig) { locMaxId = i; locMaxSig = signal; } else if ( locMaxSig > (pedEstimate + fNoiseThreshold) ) { // we enter this condition after signal<=max, but previous // max value was large enough. I.e. at least a significant local // maxima has been found (just before) locMaxFound = 1; } // also check for global maximum.. if (signal > globMaxSig) { globMaxId = i; globMaxSig = signal; } } // ttime check } // end for-loop over samples after pedestal // OK, we have looked through the signal spectra, let's see if we should try to make the fit ampEstimate = locMaxSig - pedEstimate; // estimate using first local maxima if ( ampEstimate > fNoiseThreshold ) { // else it's just noise //Check that the local maximum we will use is not at the end or beginning of time sample range Double_t timeMax = -1; Int_t iMax = locMaxId; gSig->GetPoint(locMaxId, timeMax, signal) ; if (timeMax < 2 || timeMax > lastTimeBin-1) { // lastTimeBin is the lowest kept time-sample; current (Dec 2009) case // if (timeMax < 2 || timeMax > lastTimeBin-2) { // for when lastTimeBin is the lowest read-out time-sample, future (2010) case AliDebug(1,Form("Skip fit, maximum of the sample close to the edges : timeMax %3.2f, ampEstimate %3.2f",timeMax, ampEstimate)); return; } // Check if the local and global maximum disagree if (locMaxId != globMaxId) { AliDebug(1,Form("Warning, local first maximum %d does not agree with global maximum %d\n", locMaxId, globMaxId)); return; } // Get the maximum and find the lowest timebin (tailmin) where the ADC value is not // significantly different from the pedestal // first lower times edge a.k.a. tailmin Int_t tailMin = 0; Double_t tmptime = 0; for (Int_t i=iMax-1; i > 0; i--) { gSig->GetPoint(i, tmptime, signal) ; if((signal-pedEstimate) < fNoiseThreshold){ tailMin = i; break; } } // then same exercise for the higher times edge a.k.a. tailmax Int_t tailMax = lastTimeBin; for (Int_t i=iMax+1; i < gSig->GetN(); i++) { gSig->GetPoint(i, tmptime, signal) ; if ((signal-pedEstimate) <= (ampEstimate*cut + fNoiseThreshold)) { // stop fit at cut-fraction of amplitude above noise-threshold (cut>0 would mean avoid the pulse shape falling edge) tailMax = i; break; } } // remove all points which are not in the distribution around maximum // i.e. up to tailmin, and from tailmax if ( tailMax != (gSig->GetN()-1) ){ // else nothing to remove nOrig = gSig->GetN(); // can't use GetN call in for loop below since gSig size changes.. for(int j = tailMax; j < nOrig; j++) gSig->RemovePoint(tailMax); } for(int j = 0; j<=tailMin; j++) gSig->RemovePoint(0); if(gSig->GetN() < 3) { AliDebug(2,Form("Skip fit, number of entries in sample smaller than number of fitting parameters: in sample %d, fitting param 3", gSig->GetN() )); return; } timeEstimate = timeMax * GetRawFormatTimeBinWidth(); //-------------------------------------------------- //Do the fit, different fitting algorithms available //-------------------------------------------------- switch(fFittingAlgorithm) { case kStandard: { //printf("Standard fitter \n"); // determine what the valid fit range is Double_t minFit = 9999; Double_t maxFit = 0; for (Int_t i=0; i < gSig->GetN(); i++) { gSig->GetPoint(i, ttime, signal); if (minFit > ttime) minFit=ttime; if (maxFit < ttime) maxFit=ttime; //debug: printf("no tail: i %d, time %f, signal %f\n",i, ttime, signal); } signalF->SetRange(minFit, maxFit); signalF->FixParameter(4, pedEstimate) ; signalF->SetParameter(1, timeMax); signalF->SetParameter(0, ampEstimate); gSig->Fit(signalF, "QROW"); // Note option 'W': equal errors on all points // assign fit results amp = signalF->GetParameter(0); time = signalF->GetParameter(1) * GetRawFormatTimeBinWidth(); // skip subtraction of fgTimeTrigger? ped = signalF->GetParameter(4); //printf("Std : Amp %f, time %g\n",amp, time); //BEG YS alternative methods to calculate the amplitude Double_t * ymx = gSig->GetX() ; Double_t * ymy = gSig->GetY() ; const Int_t kN = 3 ; Double_t ymMaxX[kN] = {0., 0., 0.} ; Double_t ymMaxY[kN] = {0., 0., 0.} ; Double_t ymax = 0. ; // find the maximum amplitude Int_t ymiMax = 0 ; for (Int_t ymi = 0; ymi < gSig->GetN(); ymi++) { if (ymy[ymi] > ymMaxY[0] ) { ymMaxY[0] = ymy[ymi] ; //<========== This is the maximum amplitude ymMaxX[0] = ymx[ymi] ; ymiMax = ymi ; } } // find the maximum by fitting a parabola through the max and the two adjacent samples if ( ymiMax < gSig->GetN()-1 && ymiMax > 0) { ymMaxY[1] = ymy[ymiMax+1] ; ymMaxY[2] = ymy[ymiMax-1] ; ymMaxX[1] = ymx[ymiMax+1] ; ymMaxX[2] = ymx[ymiMax-1] ; if (ymMaxY[0]*ymMaxY[1]*ymMaxY[2] > 0) { //fit a parabola through the 3 points y= a+bx+x*x*x Double_t sy = 0 ; Double_t sx = 0 ; Double_t sx2 = 0 ; Double_t sx3 = 0 ; Double_t sx4 = 0 ; Double_t sxy = 0 ; Double_t sx2y = 0 ; for (Int_t i = 0; i < kN ; i++) { sy += ymMaxY[i] ; sx += ymMaxX[i] ; sx2 += ymMaxX[i]*ymMaxX[i] ; sx3 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; sx4 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; sxy += ymMaxX[i]*ymMaxY[i] ; sx2y += ymMaxX[i]*ymMaxX[i]*ymMaxY[i] ; } Double_t cN = (sx2y*kN-sy*sx2)*(sx3*sx-sx2*sx2)-(sx2y*sx-sxy*sx2)*(sx3*kN-sx*sx2); Double_t cD = (sx4*kN-sx2*sx2)*(sx3*sx-sx2*sx2)-(sx4*sx-sx3*sx2)*(sx3*kN-sx*sx2) ; Double_t c = cN / cD ; Double_t b = ((sx2y*kN-sy*sx2)-c*(sx4*kN-sx2*sx2))/(sx3*kN-sx*sx2) ; Double_t a = (sy-b*sx-c*sx2)/kN ; Double_t xmax = -b/(2*c) ; ymax = a + b*xmax + c*xmax*xmax ;//<========== This is the maximum amplitude } } Double_t diff = TMath::Abs(1-ymMaxY[0]/amp) ; if (diff > 0.1) amp = ymMaxY[0] ; //printf("Yves : Amp %f, time %g\n",amp, time); //END YS break; }//kStandard Fitter //---------------------------- case kFastFit: { //printf("FastFitter \n"); Double_t eSignal = 0; Double_t dAmp = amp; Double_t eAmp = 0; Double_t dTime = time; Double_t eTime = 0; Double_t chi2 = 0; AliCaloFastAltroFitv0::FastFit(gSig->GetX(), gSig->GetY(), gSig->GetN(), eSignal, fTau, dAmp, eAmp, dTime, eTime, chi2); amp = dAmp; time = dTime * GetRawFormatTimeBinWidth(); //printf("FastFitter: Amp %f, time %g, eAmp %f, eTimeEstimate %g, chi2 %f\n",amp, time,eAmp,eTime,chi2); break; } //kFastFit //---------------------------- }//switch fitting algorithms } // ampEstimate > fNoiseThreshold return; } //__________________________________________________________________ Double_t AliEMCALRawUtils::RawResponseFunction(Double_t *x, Double_t *par) { // Matches version used in 2007 beam test // // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // // xx = (t - t0 + tau) / tau [xx is just a convenient help variable] // F = A * (xx**N * exp( N * ( 1 - xx) ) for xx >= 0 // F = 0 for xx < 0 // // parameters: // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] // Double_t signal ; Double_t tau =par[2]; Double_t n =par[3]; Double_t ped = par[4]; Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx <= 0) signal = ped ; else { signal = ped + par[0] * TMath::Power(xx , n) * TMath::Exp(n * (1 - xx )) ; } return signal ; } //__________________________________________________________________ Bool_t AliEMCALRawUtils::RawSampledResponse( const Double_t dtime, const Double_t damp, Int_t * adcH, Int_t * adcL) const { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliEMCAL::RawResponseFunction Bool_t lowGain = kFALSE ; // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF.SetParameter(0, damp) ; signalF.SetParameter(1, (dtime + fgTimeTrigger)/fgTimeBinWidth) ; signalF.SetParameter(2, fTau) ; signalF.SetParameter(3, fOrder); signalF.SetParameter(4, fgPedestalValue); for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { Double_t signal = signalF.Eval(iTime) ; // Next lines commeted for the moment but in principle it is not necessary to add // extra noise since noise already added at the digits level. //According to Terry Awes, 13-Apr-2008 //add gaussian noise in quadrature to each sample //Double_t noise = gRandom->Gaus(0.,fgFEENoise); //signal = sqrt(signal*signal + noise*noise); // March 17,09 for fast fit simulations by Alexei Pavlinov. // Get from PHOS analysis. In some sense it is open questions. //Double_t noise = gRandom->Gaus(0.,fgFEENoise); //signal += noise; adcH[iTime] = static_cast(signal + 0.5) ; if ( adcH[iTime] > fgkRawSignalOverflow ){ // larger than 10 bits adcH[iTime] = fgkRawSignalOverflow ; lowGain = kTRUE ; } signal /= fHighLowGainFactor; adcL[iTime] = static_cast(signal + 0.5) ; if ( adcL[iTime] > fgkRawSignalOverflow) // larger than 10 bits adcL[iTime] = fgkRawSignalOverflow ; } return lowGain ; }