/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Utility Class for handling Raw data // Does all transitions from Digits to Raw and vice versa, // for simu and reconstruction // // Note: the current version is still simplified. Only // one raw signal per digit is generated; either high-gain or low-gain // Need to add concurrent high and low-gain info in the future // No pedestal is added to the raw signal. //*-- Author: Marco van Leeuwen (LBL) #include "AliEMCALRawUtils.h" #include "TF1.h" #include "TGraph.h" #include class TSystem; class AliLog; #include "AliRun.h" #include "AliRunLoader.h" class AliCaloAltroMapping; #include "AliAltroBuffer.h" #include "AliRawReader.h" #include "AliCaloRawStreamV3.h" #include "AliDAQ.h" #include "AliEMCALRecParam.h" #include "AliEMCALLoader.h" #include "AliEMCALGeometry.h" class AliEMCALDigitizer; #include "AliEMCALDigit.h" #include "AliEMCALRawDigit.h" #include "AliEMCAL.h" #include "AliCaloCalibPedestal.h" #include "AliCaloFastAltroFitv0.h" #include "AliCaloNeuralFit.h" #include "AliCaloBunchInfo.h" #include "AliCaloFitResults.h" #include "AliCaloRawAnalyzerFastFit.h" #include "AliCaloRawAnalyzerNN.h" #include "AliCaloRawAnalyzerLMS.h" #include "AliCaloRawAnalyzerPeakFinder.h" #include "AliCaloRawAnalyzerCrude.h" ClassImp(AliEMCALRawUtils) // Signal shape parameters Int_t AliEMCALRawUtils::fgTimeBins = 256; // number of sampling bins of the raw RO signal (we typically use 15-50; theoretical max is 1k+) Double_t AliEMCALRawUtils::fgTimeBinWidth = 100E-9 ; // each sample is 100 ns Double_t AliEMCALRawUtils::fgTimeTrigger = 1.5E-6 ; // 15 time bins ~ 1.5 musec // some digitization constants Int_t AliEMCALRawUtils::fgThreshold = 1; Int_t AliEMCALRawUtils::fgDDLPerSuperModule = 2; // 2 ddls per SuperModule Int_t AliEMCALRawUtils::fgPedestalValue = 0; // pedestal value for digits2raw, default generate ZS data Double_t AliEMCALRawUtils::fgFEENoise = 3.; // 3 ADC channels of noise (sampled) AliEMCALRawUtils::AliEMCALRawUtils(fitAlgorithm fitAlgo) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(0), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0),fUseFALTRO(kFALSE),fRawAnalyzer(0) { //These are default parameters. //Can be re-set from without with setter functions //Already set in the OCDB and passed via setter in the AliEMCALReconstructor fHighLowGainFactor = 16. ; // Adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // Order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; // 3 ADC counts is approx. noise level fNPedSamples = 4; // Less than this value => likely pedestal samples fRemoveBadChannels = kFALSE; // Do not remove bad channels before fitting fUseFALTRO = kTRUE; // Get the trigger FALTRO information and pass it to digits. SetFittingAlgorithm(fitAlgo); //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } //To make sure we match with the geometry in a simulation file, //let's try to get it first. If not, take the default geometry AliRunLoader *rl = AliRunLoader::Instance(); if (rl && rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) { fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); } else { AliInfo(Form("Using default geometry in raw reco")); fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry, fitAlgorithm fitAlgo) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(pGeometry), fOption(""), fRemoveBadChannels(kTRUE),fFittingAlgorithm(0),fUseFALTRO(kFALSE),fRawAnalyzer() { // // Initialize with the given geometry - constructor required by HLT // HLT does not use/support AliRunLoader(s) instances // This is a minimum intervention solution // Comment by MPloskon@lbl.gov // //These are default parameters. //Can be re-set from without with setter functions //Already set in the OCDB and passed via setter in the AliEMCALReconstructor fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; // 3 ADC counts is approx. noise level fNPedSamples = 4; // Less than this value => likely pedestal samples fRemoveBadChannels = kFALSE; // Do not remove bad channels before fitting fUseFALTRO = kTRUE; // Get the trigger FALTRO information and pass it to digits. SetFittingAlgorithm(fitAlgo); //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(const AliEMCALRawUtils& rawU) : TObject(), fHighLowGainFactor(rawU.fHighLowGainFactor), fOrder(rawU.fOrder), fTau(rawU.fTau), fNoiseThreshold(rawU.fNoiseThreshold), fNPedSamples(rawU.fNPedSamples), fGeom(rawU.fGeom), fOption(rawU.fOption), fRemoveBadChannels(rawU.fRemoveBadChannels), fFittingAlgorithm(rawU.fFittingAlgorithm), fUseFALTRO(rawU.fUseFALTRO), fRawAnalyzer(rawU.fRawAnalyzer) { //copy ctor fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } //____________________________________________________________________________ AliEMCALRawUtils& AliEMCALRawUtils::operator =(const AliEMCALRawUtils &rawU) { //assignment operator if(this != &rawU) { fHighLowGainFactor = rawU.fHighLowGainFactor; fOrder = rawU.fOrder; fTau = rawU.fTau; fNoiseThreshold = rawU.fNoiseThreshold; fNPedSamples = rawU.fNPedSamples; fGeom = rawU.fGeom; fOption = rawU.fOption; fRemoveBadChannels = rawU.fRemoveBadChannels; fFittingAlgorithm = rawU.fFittingAlgorithm; fUseFALTRO = rawU.fUseFALTRO; fRawAnalyzer = rawU.fRawAnalyzer; fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } return *this; } //____________________________________________________________________________ AliEMCALRawUtils::~AliEMCALRawUtils() { //dtor } //____________________________________________________________________________ void AliEMCALRawUtils::Digits2Raw() { // convert digits of the current event to raw data AliRunLoader *rl = AliRunLoader::Instance(); AliEMCALLoader *loader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); // get the digits loader->LoadDigits("EMCAL"); loader->GetEvent(); TClonesArray* digits = loader->Digits() ; if (!digits) { Warning("Digits2Raw", "no digits found !"); return; } static const Int_t nDDL = 12*2; // 12 SM hardcoded for now. Buffers allocated dynamically, when needed, so just need an upper limit here AliAltroBuffer* buffers[nDDL]; for (Int_t i=0; i < nDDL; i++) buffers[i] = 0; TArrayI adcValuesLow(fgTimeBins); TArrayI adcValuesHigh(fgTimeBins); // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = dynamic_cast(digits->At(iDigit)) ; if (digit->GetAmp() < fgThreshold) continue; //get cell indices Int_t nSM = 0; Int_t nIphi = 0; Int_t nIeta = 0; Int_t iphi = 0; Int_t ieta = 0; Int_t nModule = 0; fGeom->GetCellIndex(digit->GetId(), nSM, nModule, nIphi, nIeta); fGeom->GetCellPhiEtaIndexInSModule(nSM, nModule, nIphi, nIeta,iphi, ieta) ; //Check which is the RCU, 0 or 1, of the cell. Int_t iRCU = -111; //RCU0 if (0<=iphi&&iphi<8) iRCU=0; // first cable row else if (8<=iphi&&iphi<16 && 0<=ieta&&ieta<24) iRCU=0; // first half; //second cable row //RCU1 else if(8<=iphi&&iphi<16 && 24<=ieta&&ieta<48) iRCU=1; // second half; //second cable row else if(16<=iphi&&iphi<24) iRCU=1; // third cable row if (nSM%2==1) iRCU = 1 - iRCU; // swap for odd=C side, to allow us to cable both sides the same if (iRCU<0) Fatal("Digits2Raw()","Non-existent RCU number: %d", iRCU); //Which DDL? Int_t iDDL = fgDDLPerSuperModule* nSM + iRCU; if (iDDL >= nDDL) Fatal("Digits2Raw()","Non-existent DDL board number: %d", iDDL); if (buffers[iDDL] == 0) { // open new file and write dummy header TString fileName = AliDAQ::DdlFileName("EMCAL",iDDL); //Select mapping file RCU0A, RCU0C, RCU1A, RCU1C Int_t iRCUside=iRCU+(nSM%2)*2; //iRCU=0 and even (0) SM -> RCU0A.data 0 //iRCU=1 and even (0) SM -> RCU1A.data 1 //iRCU=0 and odd (1) SM -> RCU0C.data 2 //iRCU=1 and odd (1) SM -> RCU1C.data 3 //cout<<" nSM "<WriteDataHeader(kTRUE, kFALSE); //Dummy; } // out of time range signal (?) if (digit->GetTimeR() > GetRawFormatTimeMax() ) { AliInfo("Signal is out of time range.\n"); buffers[iDDL]->FillBuffer((Int_t)digit->GetAmp()); buffers[iDDL]->FillBuffer(GetRawFormatTimeBins() ); // time bin buffers[iDDL]->FillBuffer(3); // bunch length buffers[iDDL]->WriteTrailer(3, ieta, iphi, nSM); // trailer // calculate the time response function } else { Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), digit->GetAmp(), adcValuesHigh.GetArray(), adcValuesLow.GetArray()) ; if (lowgain) buffers[iDDL]->WriteChannel(ieta, iphi, 0, GetRawFormatTimeBins(), adcValuesLow.GetArray(), fgThreshold); else buffers[iDDL]->WriteChannel(ieta,iphi, 1, GetRawFormatTimeBins(), adcValuesHigh.GetArray(), fgThreshold); } } // write headers and close files for (Int_t i=0; i < nDDL; i++) { if (buffers[i]) { buffers[i]->Flush(); buffers[i]->WriteDataHeader(kFALSE, kFALSE); delete buffers[i]; } } loader->UnloadDigits(); } //____________________________________________________________________________ void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr, const AliCaloCalibPedestal* pedbadmap, TClonesArray *digitsTRG) { // convert raw data of the current event to digits digitsArr->Clear(); if (!digitsArr) { Error("Raw2Digits", "no digits found !"); return; } if (!reader) { Error("Raw2Digits", "no raw reader found !"); return; } AliCaloRawStreamV3 in(reader,"EMCAL",fMapping); // Select EMCAL DDL's; reader->Select("EMCAL",0,43); // 43 = AliEMCALGeoParams::fgkLastAltroDDL // fRawAnalyzer setup fRawAnalyzer->SetAmpCut(fNoiseThreshold); fRawAnalyzer->SetFitArrayCut(fNoiseThreshold); fRawAnalyzer->SetIsZeroSuppressed(true); // TMP - should use stream->IsZeroSuppressed(), or altro cfg registers later // channel info parameters Int_t lowGain = 0; Int_t caloFlag = 0; // low, high gain, or TRU, or LED ref. // start loop over input stream while (in.NextDDL()) { // if ( in.GetDDLNumber() != 0 && in.GetDDLNumber() != 2 ) continue; while (in.NextChannel()) { /* Int_t hhwAdd = in.GetHWAddress(); UShort_t iiBranch = ( hhwAdd >> 11 ) & 0x1; // 0/1 UShort_t iiFEC = ( hhwAdd >> 7 ) & 0xF; UShort_t iiChip = ( hhwAdd >> 4 ) & 0x7; UShort_t iiChannel = hhwAdd & 0xF; if ( !( iiBranch == 0 && iiFEC == 1 && iiChip == 3 && ( iiChannel >= 8 && iiChannel <= 15 ) ) && !( iiBranch == 1 && iiFEC == 0 && in.GetColumn() == 0 ) ) continue; */ //Check if the signal is high or low gain and then do the fit, //if it is from TRU or LEDMon do not fit caloFlag = in.GetCaloFlag(); // if (caloFlag != 0 && caloFlag != 1) continue; if (caloFlag > 2) continue; // Work with ALTRO and FALTRO //Do not fit bad channels of ALTRO if(caloFlag < 2 && fRemoveBadChannels && pedbadmap->IsBadChannel(in.GetModule(),in.GetColumn(),in.GetRow())) { //printf("Tower from SM %d, column %d, row %d is BAD!!! Skip \n", in.GetModule(),in.GetColumn(),in.GetRow()); continue; } vector bunchlist; while (in.NextBunch()) { bunchlist.push_back( AliCaloBunchInfo(in.GetStartTimeBin(), in.GetBunchLength(), in.GetSignals() ) ); } // loop over bunches if ( caloFlag < 2 ){ // ALTRO Float_t time = 0; Float_t amp = 0; if ( fFittingAlgorithm == kFastFit || fFittingAlgorithm == kNeuralNet || fFittingAlgorithm == kLMS || fFittingAlgorithm == kPeakFinder || fFittingAlgorithm == kCrude) { // all functionality to determine amp and time etc is encapsulated inside the Evaluate call for these methods AliCaloFitResults fitResults = fRawAnalyzer->Evaluate( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2()); amp = fitResults.GetAmp(); time = fitResults.GetTof(); } else { // for the other methods we for now use the functionality of // AliCaloRawAnalyzer as well, to select samples and prepare for fits, // if it looks like there is something to fit // parameters init. Float_t ampEstimate = 0; short maxADC = 0; short timeEstimate = 0; Float_t pedEstimate = 0; Int_t first = 0; Int_t last = 0; Int_t bunchIndex = 0; // // The PreFitEvaluateSamples + later call to FitRaw will hopefully // be replaced by a single Evaluate call or so soon, like for the other // methods, but this should be good enough for evaluation of // the methods for now (Jan. 2010) // int nsamples = fRawAnalyzer->PreFitEvaluateSamples( bunchlist, in.GetAltroCFG1(), in.GetAltroCFG2(), bunchIndex, ampEstimate, maxADC, timeEstimate, pedEstimate, first, last); if (ampEstimate > fNoiseThreshold) { // something worth looking at time = timeEstimate; amp = ampEstimate; if ( nsamples > 1 ) { // possibly something to fit FitRaw(first, last, amp, time); } if ( amp>0 && time>0 ) { // brief sanity check of fit results // check fit results: should be consistent with initial estimates // more magic numbers, but very loose cuts, for now.. // We have checked that amp and ampEstimate values are positive so division for assymmetry // calculation should be OK/safe Float_t ampAsymm = (amp - ampEstimate)/(amp + ampEstimate); if ( (TMath::Abs(ampAsymm) > 0.1) ) { AliDebug(2,Form("Fit results amp %f time %f not consistent with expectations ped %f max-ped %f time %d", amp, time, pedEstimate, ampEstimate, timeEstimate)); // what should do we do then? skip this channel or assign the simple estimate? // for now just overwrite the fit results with the simple estimate amp = ampEstimate; time = timeEstimate; } // asymm check } // amp & time check } // ampEstimate check } // method selection if (amp > fNoiseThreshold && ampGetAbsCellIdFromCellIndexes(in.GetModule(), in.GetRow(), in.GetColumn()) ; lowGain = in.IsLowGain(); // go from time-bin units to physical time fgtimetrigger time = time * GetRawFormatTimeBinWidth(); // skip subtraction of fgTimeTrigger? AliDebug(2,Form("id %d lowGain %d amp %g", id, lowGain, amp)); // printf("Added tower: SM %d, row %d, column %d, amp %3.2f\n",in.GetModule(), in.GetRow(), in.GetColumn(),amp); // round off amplitude value to nearest integer AddDigit(digitsArr, id, lowGain, TMath::Nint(amp), time); } }//ALTRO else if(fUseFALTRO) {// Fake ALTRO // if (maxTimeBin && gSig->GetN() > maxTimeBin + 10) gSig->Set(maxTimeBin + 10); // set actual max size of TGraph Int_t hwAdd = in.GetHWAddress(); UShort_t iRCU = in.GetDDLNumber() % 2; // 0/1 UShort_t iBranch = ( hwAdd >> 11 ) & 0x1; // 0/1 // Now find TRU number Int_t itru = 3 * in.GetModule() + ( (iRCU << 1) | iBranch ) - 1; AliDebug(1,Form("Found TRG digit in TRU: %2d ADC: %2d",itru,in.GetColumn())); Int_t idtrg; Bool_t isOK = fGeom->GetAbsFastORIndexFromTRU(itru, in.GetColumn(), idtrg); Int_t timeSamples[256]; for (Int_t j=0;j<256;j++) timeSamples[j] = 0; Int_t nSamples = 0; for (std::vector::iterator itVectorData = bunchlist.begin(); itVectorData != bunchlist.end(); itVectorData++) { AliCaloBunchInfo bunch = *(itVectorData); const UShort_t* sig = bunch.GetData(); Int_t startBin = bunch.GetStartBin(); for (Int_t iS = 0; iS < bunch.GetLength(); iS++) { Int_t time = startBin--; Int_t amp = sig[iS]; if ( amp ) timeSamples[nSamples++] = ( ( time << 12 ) & 0xFF000 ) | ( amp & 0xFFF ); } } if (nSamples && isOK) AddDigit(digitsTRG, idtrg, timeSamples, nSamples); }//Fake ALTRO } // end while over channel } //end while over DDL's, of input stream return ; } //____________________________________________________________________________ void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t timeSamples[], Int_t nSamples) { new((*digitsArr)[digitsArr->GetEntriesFast()]) AliEMCALRawDigit(id, timeSamples, nSamples); // Int_t idx = digitsArr->GetEntriesFast()-1; // AliEMCALRawDigit* d = (AliEMCALRawDigit*)digitsArr->At(idx); } //____________________________________________________________________________ void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t lowGain, Int_t amp, Float_t time) { // // Add a new digit. // This routine checks whether a digit exists already for this tower // and then decides whether to use the high or low gain info // // Called by Raw2Digits AliEMCALDigit *digit = 0, *tmpdigit = 0; TIter nextdigit(digitsArr); while (digit == 0 && (tmpdigit = (AliEMCALDigit*) nextdigit())) { if (tmpdigit->GetId() == id) digit = tmpdigit; } if (!digit) { // no digit existed for this tower; create one if (lowGain && amp > fgkOverflowCut) amp = Int_t(fHighLowGainFactor * amp); Int_t idigit = digitsArr->GetEntries(); new((*digitsArr)[idigit]) AliEMCALDigit( -1, -1, id, amp, time, idigit) ; } else { // a digit already exists, check range // (use high gain if signal < cut value, otherwise low gain) if (lowGain) { // new digit is low gain if (digit->GetAmp() > fgkOverflowCut) { // use if stored digit is out of range digit->SetAmp(Int_t(fHighLowGainFactor * amp)); digit->SetTime(time); } } else if (amp < fgkOverflowCut) { // new digit is high gain; use if not out of range digit->SetAmp(amp); digit->SetTime(time); } } } //____________________________________________________________________________ void AliEMCALRawUtils::FitRaw(const Int_t firstTimeBin, const Int_t lastTimeBin, Float_t & amp, Float_t & time) const { // Fits the raw signal time distribution //-------------------------------------------------- //Do the fit, different fitting algorithms available //-------------------------------------------------- int nsamples = lastTimeBin - firstTimeBin + 1; switch(fFittingAlgorithm) { case kStandard: { if (nsamples < 3) { return; } // nothing much to fit //printf("Standard fitter \n"); // Create Graph to hold data we will fit TGraph *gSig = new TGraph( nsamples); for (int i=0; iSetPoint(timebin, timebin, fRawAnalyzer->GetReversed(timebin)); } TF1 * signalF = new TF1("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF->SetParameters(10.,5.,fTau,fOrder,0.); //set all defaults once, just to be safe signalF->SetParNames("amp","t0","tau","N","ped"); signalF->FixParameter(2,fTau); // tau in units of time bin signalF->FixParameter(3,fOrder); // order signalF->FixParameter(4, 0); // pedestal should be subtracted when we get here signalF->SetParameter(1, time); signalF->SetParameter(0, amp); gSig->Fit(signalF, "QROW"); // Note option 'W': equal errors on all points // assign fit results amp = signalF->GetParameter(0); time = signalF->GetParameter(1); delete signalF; // cross-check with ParabolaFit to see if the results make sense FitParabola(gSig, amp); // amp is possibly updated //printf("Std : Amp %f, time %g\n",amp, time); delete gSig; // delete TGraph break; }//kStandard Fitter //---------------------------- case kLogFit: { if (nsamples < 3) { return; } // nothing much to fit //printf("LogFit \n"); // Create Graph to hold data we will fit TGraph *gSigLog = new TGraph( nsamples); for (int i=0; iSetPoint(timebin, timebin, TMath::Log(fRawAnalyzer->GetReversed(timebin) ) ); } TF1 * signalFLog = new TF1("signalLog", RawResponseFunctionLog, 0, GetRawFormatTimeBins(), 5); signalFLog->SetParameters(2.3, 5.,fTau,fOrder,0.); //set all defaults once, just to be safe signalFLog->SetParNames("amplog","t0","tau","N","ped"); signalFLog->FixParameter(2,fTau); // tau in units of time bin signalFLog->FixParameter(3,fOrder); // order signalFLog->FixParameter(4, 0); // pedestal should be subtracted when we get here signalFLog->SetParameter(1, time); if (amp>=1) { signalFLog->SetParameter(0, TMath::Log(amp)); } gSigLog->Fit(signalFLog, "QROW"); // Note option 'W': equal errors on all points // assign fit results Double_t amplog = signalFLog->GetParameter(0); //Not Amp, but Log of Amp amp = TMath::Exp(amplog); time = signalFLog->GetParameter(1); delete signalFLog; //printf("LogFit: Amp %f, time %g\n",amp, time); delete gSigLog; break; } //kLogFit //---------------------------- //---------------------------- }//switch fitting algorithms return; } //__________________________________________________________________ void AliEMCALRawUtils::FitParabola(const TGraph *gSig, Float_t & amp) const { //BEG YS alternative methods to calculate the amplitude Double_t * ymx = gSig->GetX() ; Double_t * ymy = gSig->GetY() ; const Int_t kN = 3 ; Double_t ymMaxX[kN] = {0., 0., 0.} ; Double_t ymMaxY[kN] = {0., 0., 0.} ; Double_t ymax = 0. ; // find the maximum amplitude Int_t ymiMax = 0 ; for (Int_t ymi = 0; ymi < gSig->GetN(); ymi++) { if (ymy[ymi] > ymMaxY[0] ) { ymMaxY[0] = ymy[ymi] ; //<========== This is the maximum amplitude ymMaxX[0] = ymx[ymi] ; ymiMax = ymi ; } } // find the maximum by fitting a parabola through the max and the two adjacent samples if ( ymiMax < gSig->GetN()-1 && ymiMax > 0) { ymMaxY[1] = ymy[ymiMax+1] ; ymMaxY[2] = ymy[ymiMax-1] ; ymMaxX[1] = ymx[ymiMax+1] ; ymMaxX[2] = ymx[ymiMax-1] ; if (ymMaxY[0]*ymMaxY[1]*ymMaxY[2] > 0) { //fit a parabola through the 3 points y= a+bx+x*x*x Double_t sy = 0 ; Double_t sx = 0 ; Double_t sx2 = 0 ; Double_t sx3 = 0 ; Double_t sx4 = 0 ; Double_t sxy = 0 ; Double_t sx2y = 0 ; for (Int_t i = 0; i < kN ; i++) { sy += ymMaxY[i] ; sx += ymMaxX[i] ; sx2 += ymMaxX[i]*ymMaxX[i] ; sx3 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; sx4 += ymMaxX[i]*ymMaxX[i]*ymMaxX[i]*ymMaxX[i] ; sxy += ymMaxX[i]*ymMaxY[i] ; sx2y += ymMaxX[i]*ymMaxX[i]*ymMaxY[i] ; } Double_t cN = (sx2y*kN-sy*sx2)*(sx3*sx-sx2*sx2)-(sx2y*sx-sxy*sx2)*(sx3*kN-sx*sx2); Double_t cD = (sx4*kN-sx2*sx2)*(sx3*sx-sx2*sx2)-(sx4*sx-sx3*sx2)*(sx3*kN-sx*sx2) ; Double_t c = cN / cD ; Double_t b = ((sx2y*kN-sy*sx2)-c*(sx4*kN-sx2*sx2))/(sx3*kN-sx*sx2) ; Double_t a = (sy-b*sx-c*sx2)/kN ; Double_t xmax = -b/(2*c) ; ymax = a + b*xmax + c*xmax*xmax ;//<========== This is the maximum amplitude amp = ymax; } } Double_t diff = TMath::Abs(1-ymMaxY[0]/amp) ; if (diff > 0.1) amp = ymMaxY[0] ; //printf("Yves : Amp %f, time %g\n",amp, time); //END YS return; } //__________________________________________________________________ Double_t AliEMCALRawUtils::RawResponseFunction(Double_t *x, Double_t *par) { // Matches version used in 2007 beam test // // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // // xx = (t - t0 + tau) / tau [xx is just a convenient help variable] // F = A * (xx**N * exp( N * ( 1 - xx) ) for xx >= 0 // F = 0 for xx < 0 // // parameters: // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] // Double_t signal ; Double_t tau =par[2]; Double_t n =par[3]; Double_t ped = par[4]; Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx <= 0) signal = ped ; else { signal = ped + par[0] * TMath::Power(xx , n) * TMath::Exp(n * (1 - xx )) ; } return signal ; } //__________________________________________________________________ Double_t AliEMCALRawUtils::RawResponseFunctionLog(Double_t *x, Double_t *par) { // Matches version used in 2007 beam test // // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // // xx = (t - t0 + tau) / tau [xx is just a convenient help variable] // F = A * (xx**N * exp( N * ( 1 - xx) ) for xx >= 0 // F = 0 for xx < 0 // // parameters: // Log[A]: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] // Double_t signal ; Double_t tau =par[2]; Double_t n =par[3]; //Double_t ped = par[4]; // not used Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx < 0) signal = par[0] - n*TMath::Log(TMath::Abs(xx)) + n * (1 - xx ) ; else { signal = par[0] + n*TMath::Log(xx) + n * (1 - xx ) ; } return signal ; } //__________________________________________________________________ Bool_t AliEMCALRawUtils::RawSampledResponse(const Double_t dtime, const Double_t damp, Int_t * adcH, Int_t * adcL, const Int_t keyErr) const { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliEMCAL::RawResponseFunction Bool_t lowGain = kFALSE ; // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF.SetParameter(0, damp) ; signalF.SetParameter(1, (dtime + fgTimeTrigger)/fgTimeBinWidth) ; signalF.SetParameter(2, fTau) ; signalF.SetParameter(3, fOrder); signalF.SetParameter(4, fgPedestalValue); Double_t signal=0.0, noise=0.0; for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { signal = signalF.Eval(iTime) ; // Next lines commeted for the moment but in principle it is not necessary to add // extra noise since noise already added at the digits level. //According to Terry Awes, 13-Apr-2008 //add gaussian noise in quadrature to each sample //Double_t noise = gRandom->Gaus(0.,fgFEENoise); //signal = sqrt(signal*signal + noise*noise); // March 17,09 for fast fit simulations by Alexei Pavlinov. // Get from PHOS analysis. In some sense it is open questions. if(keyErr>0) { noise = gRandom->Gaus(0.,fgFEENoise); signal += noise; } adcH[iTime] = static_cast(signal + 0.5) ; if ( adcH[iTime] > fgkRawSignalOverflow ){ // larger than 10 bits adcH[iTime] = fgkRawSignalOverflow ; lowGain = kTRUE ; } signal /= fHighLowGainFactor; adcL[iTime] = static_cast(signal + 0.5) ; if ( adcL[iTime] > fgkRawSignalOverflow) // larger than 10 bits adcL[iTime] = fgkRawSignalOverflow ; } return lowGain ; } //__________________________________________________________________ void AliEMCALRawUtils::SetFittingAlgorithm(Int_t fitAlgo) { //Set fitting algorithm and initialize it if this same algorithm was not set before. //printf("**** Set Algorithm , number %d ****\n",fitAlgo); if(fitAlgo == fFittingAlgorithm && fRawAnalyzer) { //Do nothing, this same algorithm already set before. //printf("**** Algorithm already set before, number %d, %s ****\n",fitAlgo, fRawAnalyzer->GetName()); return; } //Initialize the requested algorithm if(fitAlgo != fFittingAlgorithm || !fRawAnalyzer) { //printf("**** Init Algorithm , number %d ****\n",fitAlgo); fFittingAlgorithm = fitAlgo; if (fRawAnalyzer) delete fRawAnalyzer; // delete prev. analyzer if existed. if (fitAlgo == kFastFit) { fRawAnalyzer = new AliCaloRawAnalyzerFastFit(); } else if (fitAlgo == kNeuralNet) { fRawAnalyzer = new AliCaloRawAnalyzerNN(); } else if (fitAlgo == kLMS) { fRawAnalyzer = new AliCaloRawAnalyzerLMS(); } else if (fitAlgo == kPeakFinder) { fRawAnalyzer = new AliCaloRawAnalyzerPeakFinder(); } else if (fitAlgo == kCrude) { fRawAnalyzer = new AliCaloRawAnalyzerCrude(); } else { fRawAnalyzer = new AliCaloRawAnalyzer(); } } }