/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Utility Class for handling Raw data // Does all transitions from Digits to Raw and vice versa, // for simu and reconstruction // // Note: the current version is still simplified. Only // one raw signal per digit is generated; either high-gain or low-gain // Need to add concurrent high and low-gain info in the future // No pedestal is added to the raw signal. //*-- Author: Marco van Leeuwen (LBL) #include "AliEMCALRawUtils.h" #include "TF1.h" #include "TGraph.h" class TSystem; class AliLog; #include "AliRun.h" #include "AliRunLoader.h" class AliCaloAltroMapping; #include "AliAltroBuffer.h" #include "AliRawReader.h" #include "AliCaloRawStream.h" #include "AliDAQ.h" #include "AliEMCALRecParam.h" #include "AliEMCALLoader.h" #include "AliEMCALGeometry.h" class AliEMCALDigitizer; #include "AliEMCALDigit.h" #include "AliEMCAL.h" ClassImp(AliEMCALRawUtils) // Signal shape parameters Double_t AliEMCALRawUtils::fgTimeBinWidth = 100E-9 ; // each sample is 100 ns Double_t AliEMCALRawUtils::fgTimeTrigger = 1.5E-6 ; // 15 time bins ~ 1.5 musec // some digitization constants Int_t AliEMCALRawUtils::fgThreshold = 1; Int_t AliEMCALRawUtils::fgDDLPerSuperModule = 2; // 2 ddls per SuperModule Int_t AliEMCALRawUtils::fgPedestalValue = 32; // pedestal value for digits2raw Double_t AliEMCALRawUtils::fgFEENoise = 3.; // 3 ADC channels of noise (sampled) AliEMCALRawUtils::AliEMCALRawUtils() : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(0), fOption("") { //These are default parameters. //Can be re-set from without with setter functions fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; fNPedSamples = 5; //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } //To make sure we match with the geometry in a simulation file, //let's try to get it first. If not, take the default geometry AliRunLoader *rl = AliRunLoader::Instance(); if(!rl) AliError("Cannot find RunLoader!"); if (rl->GetAliRun() && rl->GetAliRun()->GetDetector("EMCAL")) { fGeom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); } else { AliInfo(Form("Using default geometry in raw reco")); fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(AliEMCALGeometry *pGeometry) : fHighLowGainFactor(0.), fOrder(0), fTau(0.), fNoiseThreshold(0), fNPedSamples(0), fGeom(pGeometry), fOption("") { // // Initialize with the given geometry - constructor required by HLT // HLT does not use/support AliRunLoader(s) instances // This is a minimum intervention solution // Comment by MPloskon@lbl.gov // //These are default parameters. //Can be re-set from without with setter functions fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fOrder = 2; // order of gamma fn fTau = 2.35; // in units of timebin, from CERN 2007 testbeam fNoiseThreshold = 3; fNPedSamples = 5; //Get Mapping RCU files from the AliEMCALRecParam const TObjArray* maps = AliEMCALRecParam::GetMappings(); if(!maps) AliFatal("Cannot retrieve ALTRO mappings!!"); for(Int_t i = 0; i < 4; i++) { fMapping[i] = (AliAltroMapping*)maps->At(i); } if(!fGeom) AliFatal(Form("Could not get geometry!")); } //____________________________________________________________________________ AliEMCALRawUtils::AliEMCALRawUtils(const AliEMCALRawUtils& rawU) : TObject(), fHighLowGainFactor(rawU.fHighLowGainFactor), fOrder(rawU.fOrder), fTau(rawU.fTau), fNoiseThreshold(rawU.fNoiseThreshold), fNPedSamples(rawU.fNPedSamples), fGeom(rawU.fGeom), fOption(rawU.fOption) { //copy ctor fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } //____________________________________________________________________________ AliEMCALRawUtils& AliEMCALRawUtils::operator =(const AliEMCALRawUtils &rawU) { //assignment operator if(this != &rawU) { fHighLowGainFactor = rawU.fHighLowGainFactor; fOrder = rawU.fOrder; fTau = rawU.fTau; fNoiseThreshold = rawU.fNoiseThreshold; fNPedSamples = rawU.fNPedSamples; fGeom = rawU.fGeom; fOption = rawU.fOption; fMapping[0] = rawU.fMapping[0]; fMapping[1] = rawU.fMapping[1]; fMapping[2] = rawU.fMapping[2]; fMapping[3] = rawU.fMapping[3]; } return *this; } //____________________________________________________________________________ AliEMCALRawUtils::~AliEMCALRawUtils() { //dtor } //____________________________________________________________________________ void AliEMCALRawUtils::Digits2Raw() { // convert digits of the current event to raw data AliRunLoader *rl = AliRunLoader::Instance(); AliEMCALLoader *loader = dynamic_cast(rl->GetDetectorLoader("EMCAL")); // get the digits loader->LoadDigits("EMCAL"); loader->GetEvent(); TClonesArray* digits = loader->Digits() ; if (!digits) { Warning("Digits2Raw", "no digits found !"); return; } static const Int_t nDDL = 12*2; // 12 SM hardcoded for now. Buffers allocated dynamically, when needed, so just need an upper limit here AliAltroBuffer* buffers[nDDL]; for (Int_t i=0; i < nDDL; i++) buffers[i] = 0; Int_t adcValuesLow[fgkTimeBins]; Int_t adcValuesHigh[fgkTimeBins]; // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliEMCALDigit* digit = dynamic_cast(digits->At(iDigit)) ; if (digit->GetAmp() < fgThreshold) continue; //get cell indices Int_t nSM = 0; Int_t nIphi = 0; Int_t nIeta = 0; Int_t iphi = 0; Int_t ieta = 0; Int_t nModule = 0; fGeom->GetCellIndex(digit->GetId(), nSM, nModule, nIphi, nIeta); fGeom->GetCellPhiEtaIndexInSModule(nSM, nModule, nIphi, nIeta,iphi, ieta) ; //Check which is the RCU, 0 or 1, of the cell. Int_t iRCU = -111; //RCU0 if (0<=iphi&&iphi<8) iRCU=0; // first cable row else if (8<=iphi&&iphi<16 && 0<=ieta&&ieta<24) iRCU=0; // first half; //second cable row //RCU1 else if(8<=iphi&&iphi<16 && 24<=ieta&&ieta<48) iRCU=1; // second half; //second cable row else if(16<=iphi&&iphi<24) iRCU=1; // third cable row if (nSM%2==1) iRCU = 1 - iRCU; // swap for odd=C side, to allow us to cable both sides the same if (iRCU<0) Fatal("Digits2Raw()","Non-existent RCU number: %d", iRCU); //Which DDL? Int_t iDDL = fgDDLPerSuperModule* nSM + iRCU; if (iDDL >= nDDL) Fatal("Digits2Raw()","Non-existent DDL board number: %d", iDDL); if (buffers[iDDL] == 0) { // open new file and write dummy header TString fileName = AliDAQ::DdlFileName("EMCAL",iDDL); //Select mapping file RCU0A, RCU0C, RCU1A, RCU1C Int_t iRCUside=iRCU+(nSM%2)*2; //iRCU=0 and even (0) SM -> RCU0A.data 0 //iRCU=1 and even (0) SM -> RCU1A.data 1 //iRCU=0 and odd (1) SM -> RCU0C.data 2 //iRCU=1 and odd (1) SM -> RCU1C.data 3 //cout<<" nSM "<WriteDataHeader(kTRUE, kFALSE); //Dummy; } // out of time range signal (?) if (digit->GetTimeR() > GetRawFormatTimeMax() ) { AliInfo("Signal is out of time range.\n"); buffers[iDDL]->FillBuffer((Int_t)digit->GetAmp()); buffers[iDDL]->FillBuffer(GetRawFormatTimeBins() ); // time bin buffers[iDDL]->FillBuffer(3); // bunch length buffers[iDDL]->WriteTrailer(3, ieta, iphi, nSM); // trailer // calculate the time response function } else { Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), digit->GetAmp(), adcValuesHigh, adcValuesLow) ; if (lowgain) buffers[iDDL]->WriteChannel(ieta, iphi, 0, GetRawFormatTimeBins(), adcValuesLow, fgThreshold); else buffers[iDDL]->WriteChannel(ieta,iphi, 1, GetRawFormatTimeBins(), adcValuesHigh, fgThreshold); } } // write headers and close files for (Int_t i=0; i < nDDL; i++) { if (buffers[i]) { buffers[i]->Flush(); buffers[i]->WriteDataHeader(kFALSE, kFALSE); delete buffers[i]; } } loader->UnloadDigits(); } //____________________________________________________________________________ void AliEMCALRawUtils::Raw2Digits(AliRawReader* reader,TClonesArray *digitsArr) { // convert raw data of the current event to digits digitsArr->Clear(); if (!digitsArr) { Error("Raw2Digits", "no digits found !"); return; } if (!reader) { Error("Raw2Digits", "no raw reader found !"); return; } AliCaloRawStream in(reader,"EMCAL",fMapping); // Select EMCAL DDL's; reader->Select("EMCAL"); //Updated fitting routine from 2007 beam test takes into account //possibility of two peaks in data and selects first one for fitting //Also sets some of the starting parameters based on the shape of the //given raw signal being fit TF1 * signalF = new TF1("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF->SetParameters(10.,0.,fTau,fOrder,5.); //set all defaults once, just to be safe signalF->SetParNames("amp","t0","tau","N","ped"); signalF->SetParameter(2,fTau); // tau in units of time bin signalF->SetParLimits(2,2,-1); signalF->SetParameter(3,fOrder); // order signalF->SetParLimits(3,2,-1); Int_t id = -1; Float_t time = 0. ; Float_t amp = 0. ; //Graph to hold data we will fit (should be converted to an array //later to speed up processing TGraph * gSig = new TGraph(GetRawFormatTimeBins()); Int_t readOk = 1; Int_t lowGain = 0; Int_t caloFlag = 0; // low, high gain, or TRU, or LED ref. while (readOk && in.GetModule() < 0) readOk = in.Next(); // Go to first digit while (readOk) { id = fGeom->GetAbsCellIdFromCellIndexes(in.GetModule(), in.GetRow(), in.GetColumn()) ; caloFlag = in.GetCaloFlag(); lowGain = in.IsLowGain(); Int_t maxTime = in.GetTime(); // timebins come in reverse order if (maxTime < 0 || maxTime >= GetRawFormatTimeBins()) { AliWarning(Form("Invalid time bin %d",maxTime)); maxTime = GetRawFormatTimeBins(); } gSig->Set(maxTime+1); // There is some kind of zero-suppression in the raw data, // so set up the TGraph in advance for (Int_t i=0; i < maxTime; i++) { gSig->SetPoint(i, i , 0); } Int_t iTime = 0; do { if (in.GetTime() >= gSig->GetN()) { AliWarning("Too many time bins"); gSig->Set(in.GetTime()); } gSig->SetPoint(in.GetTime(), in.GetTime(), in.GetSignal()) ; if (in.GetTime() > maxTime) maxTime = in.GetTime(); iTime++; } while ((readOk = in.Next()) && !in.IsNewHWAddress()); FitRaw(gSig, signalF, amp, time) ; if (caloFlag == 0 || caloFlag == 1) { // low gain or high gain if (amp > 0 && amp < 2000) { //check both high and low end of //result, 2000 is somewhat arbitrary - not nice with magic numbers in the code.. AliDebug(2,Form("id %d lowGain %d amp %g", id, lowGain, amp)); AddDigit(digitsArr, id, lowGain, (Int_t)amp, time); } } // Reset graph for (Int_t index = 0; index < gSig->GetN(); index++) { gSig->SetPoint(index, index, 0) ; } // Reset starting parameters for fit function signalF->SetParameters(10.,0.,fTau,fOrder,5.); //reset all defaults just to be safe }; // EMCAL entries loop delete signalF ; delete gSig; return ; } //____________________________________________________________________________ void AliEMCALRawUtils::AddDigit(TClonesArray *digitsArr, Int_t id, Int_t lowGain, Int_t amp, Float_t time) { // // Add a new digit. // This routine checks whether a digit exists already for this tower // and then decides whether to use the high or low gain info // // Called by Raw2Digits AliEMCALDigit *digit = 0, *tmpdigit = 0; TIter nextdigit(digitsArr); while (digit == 0 && (tmpdigit = (AliEMCALDigit*) nextdigit())) { if (tmpdigit->GetId() == id) digit = tmpdigit; } if (!digit) { // no digit existed for this tower; create one if (lowGain) amp = Int_t(fHighLowGainFactor * amp); Int_t idigit = digitsArr->GetEntries(); new((*digitsArr)[idigit]) AliEMCALDigit( -1, -1, id, amp, time, idigit) ; } else { // a digit already exists, check range // (use high gain if signal < cut value, otherwise low gain) if (lowGain) { // new digit is low gain if (digit->GetAmp() > fgkOverflowCut) { // use if stored digit is out of range digit->SetAmp(Int_t(fHighLowGainFactor * amp)); digit->SetTime(time); } } else if (amp < fgkOverflowCut) { // new digit is high gain; use if not out of range digit->SetAmp(amp); digit->SetTime(time); } } } //____________________________________________________________________________ void AliEMCALRawUtils::FitRaw(TGraph * gSig, TF1* signalF, Float_t & amp, Float_t & time) const { // Fits the raw signal time distribution; from AliEMCALGetter amp = time = 0. ; Double_t ped = 0; Int_t nPed = 0; for (Int_t index = 0; index < fNPedSamples; index++) { Double_t ttime, signal; gSig->GetPoint(index, ttime, signal) ; if (signal > 0) { ped += signal; nPed++; } } if (nPed > 0) ped /= nPed; else { AliWarning("Could not determine pedestal"); ped = 10; // put some small value as first guess } Int_t maxFound = 0; Int_t iMax = 0; Float_t max = -1; Float_t maxFit = gSig->GetN(); Float_t minAfterSig = 9999; Int_t tminAfterSig = gSig->GetN(); Int_t nPedAfterSig = 0; Int_t plateauWidth = 0; Int_t plateauStart = 9999; Float_t cut = 0.3; for (Int_t i=fNPedSamples; i < gSig->GetN(); i++) { Double_t ttime, signal; gSig->GetPoint(i, ttime, signal) ; if (!maxFound && signal > max) { iMax = i; max = signal; } else if ( max > ped + fNoiseThreshold ) { maxFound = 1; minAfterSig = signal; tminAfterSig = i; } if (maxFound) { if ( signal < minAfterSig) { minAfterSig = signal; tminAfterSig = i; } if (i > tminAfterSig + 5) { // Two close peaks; end fit at minimum maxFit = tminAfterSig; break; } if ( signal < cut*max){ //stop fit at 30% amplitude(avoid the pulse shape falling edge) maxFit = i; break; } if ( signal < ped + fNoiseThreshold) nPedAfterSig++; if (nPedAfterSig >= 5) { // include 5 pedestal bins after peak maxFit = i; break; } } //Add check on plateau if (signal >= fgkRawSignalOverflow - fNoiseThreshold) { if(plateauWidth == 0) plateauStart = i; plateauWidth++; } } if(plateauWidth > 0) { for(int j = 0; j < plateauWidth; j++) { //Note, have to remove the same point N times because after each //remove, the positions of all subsequent points have shifted down gSig->RemovePoint(plateauStart); } } if ( max - ped > fNoiseThreshold ) { // else its noise AliDebug(2,Form("Fitting max %d ped %d", max, ped)); signalF->SetRange(0,maxFit); if(max-ped > 50) signalF->SetParLimits(2,1,3); signalF->SetParameter(4, ped) ; signalF->SetParameter(1, iMax); signalF->SetParameter(0, max); gSig->Fit(signalF, "QROW"); // Note option 'W': equal errors on all points amp = signalF->GetParameter(0); time = signalF->GetParameter(1)*GetRawFormatTimeBinWidth() - fgTimeTrigger; } return; } //__________________________________________________________________ Double_t AliEMCALRawUtils::RawResponseFunction(Double_t *x, Double_t *par) { // Matches version used in 2007 beam test // // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // // t' = (t - t0 + tau) / tau // F = A * t**N * exp( N * ( 1 - t) ) for t >= 0 // F = 0 for t < 0 // // parameters: // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] // Double_t signal ; Double_t tau =par[2]; Double_t n =par[3]; Double_t ped = par[4]; Double_t xx = ( x[0] - par[1] + tau ) / tau ; if (xx <= 0) signal = ped ; else { signal = ped + par[0] * TMath::Power(xx , n) * TMath::Exp(n * (1 - xx )) ; } return signal ; } //__________________________________________________________________ Bool_t AliEMCALRawUtils::RawSampledResponse( const Double_t dtime, const Double_t damp, Int_t * adcH, Int_t * adcL) const { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliEMCAL::RawResponseFunction Bool_t lowGain = kFALSE ; // A: par[0] // Amplitude = peak value // t0: par[1] // tau: par[2] // N: par[3] // ped: par[4] TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeBins(), 5); signalF.SetParameter(0, damp) ; signalF.SetParameter(1, (dtime + fgTimeTrigger)/fgTimeBinWidth) ; signalF.SetParameter(2, fTau) ; signalF.SetParameter(3, fOrder); signalF.SetParameter(4, fgPedestalValue); for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { Double_t signal = signalF.Eval(iTime) ; //According to Terry Awes, 13-Apr-2008 //add gaussian noise in quadrature to each sample //Double_t noise = gRandom->Gaus(0.,fgFEENoise); //signal = sqrt(signal*signal + noise*noise); adcH[iTime] = static_cast(signal + 0.5) ; if ( adcH[iTime] > fgkRawSignalOverflow ){ // larger than 10 bits adcH[iTime] = fgkRawSignalOverflow ; lowGain = kTRUE ; } signal /= fHighLowGainFactor; adcL[iTime] = static_cast(signal + 0.5) ; if ( adcL[iTime] > fgkRawSignalOverflow) // larger than 10 bits adcL[iTime] = fgkRawSignalOverflow ; } return lowGain ; }