/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // // Class for trigger analysis. // Digits are grouped in TRU's (Trigger Units). A TRU consists of 384 // modules ordered fNTRUPhi x fNTRUEta. The algorithm searches all possible 2x2 // and nxn (n is a multiple of 2) cell combinations per each TRU, adding the // digits amplitude and finding the maximum. If found, look if it is isolated. // Maxima are transformed in ADC time samples. Each time bin is compared to the trigger // threshold until it is larger and then, triggers are set. Thresholds need to be fixed. // Thresholds need to be fixed. Last 2 modules are half size in Phi, I considered // that the number of TRU is maintained for the last modules but decision not taken. // If different, then this must be changed. // Usage: // // //Inside the event loop // AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger // tr->SetL0Threshold(100); //Arbitrary threshold values // tr->SetL1GammaLowPtThreshold(1000); // tr->SetL1GammaMediumPtThreshold(10000); // tr->SetL1GammaHighPtThreshold(20000); // ... // tr->Trigger(); //Execute Trigger // tr->Print(""); //Print results // //*-- Author: Gustavo Conesa & Yves Schutz (IFIC, CERN) ////////////////////////////////////////////////////////////////////////////// #include // --- ROOT system --- #include #include #include #include // --- ALIROOT system --- #include "AliRun.h" #include "AliRunLoader.h" #include "AliTriggerInput.h" #include "AliEMCAL.h" #include "AliEMCALLoader.h" #include "AliEMCALDigit.h" #include "AliEMCALTrigger.h" #include "AliEMCALGeometry.h" #include "AliEMCALRawUtils.h" #include "AliLog.h" #include "AliCaloConstants.h" #include "AliEMCALRawResponse.h" using namespace CALO; ClassImp(AliEMCALTrigger) TString AliEMCALTrigger::fgNameOfJetTriggers("EMCALJetTriggerL1"); //______________________________________________________________________ AliEMCALTrigger::AliEMCALTrigger() : AliTriggerDetector(), fGeom(0), f2x2MaxAmp(-1), f2x2ModulePhi(-1), f2x2ModuleEta(-1), f2x2SM(0), fnxnMaxAmp(-1), fnxnModulePhi(-1), fnxnModuleEta(-1), fnxnSM(0), fADCValuesHighnxn(0),fADCValuesLownxn(0), fADCValuesHigh2x2(0),fADCValuesLow2x2(0), fDigitsList(0), fL0Threshold(100),fL1GammaLowPtThreshold(200), fL1GammaMediumPtThreshold(500), fL1GammaHighPtThreshold(1000), fPatchSize(1), fIsolPatchSize(1), f2x2AmpOutOfPatch(-1), fnxnAmpOutOfPatch(-1), f2x2AmpOutOfPatchThres(100000), fnxnAmpOutOfPatchThres(100000), fIs2x2Isol(kFALSE), fIsnxnIsol(kFALSE), fSimulation(kTRUE), fIsolateInSuperModule(kTRUE), fTimeKey(kFALSE), fAmpTrus(0),fTimeRtrus(0),fAmpSMods(0), fTriggerPosition(6), fTriggerAmplitudes(4), fNJetPatchPhi(3), fNJetPatchEta(3), fNJetThreshold(3), fL1JetThreshold(0), fJetMaxAmp(0), fAmpJetMatrix(0), fJetMatrixE(0), fAmpJetMax(6,1), fVZER0Mult(0.) { //ctor fADCValuesHighnxn = 0x0; //new Int_t[fTimeBins]; fADCValuesLownxn = 0x0; //new Int_t[fTimeBins]; fADCValuesHigh2x2 = 0x0; //new Int_t[fTimeBins]; fADCValuesLow2x2 = 0x0; //new Int_t[fTimeBins]; SetName("EMCAL"); // Define jet threshold - can not change from outside now // fNJetThreshold = 7; // For MB Pythia suppression fNJetThreshold = 10; // Hijing fL1JetThreshold = new Double_t[fNJetThreshold]; if(fNJetThreshold == 7) { fL1JetThreshold[0] = 5./0.0153; fL1JetThreshold[1] = 8./0.0153; fL1JetThreshold[2] = 10./0.0153; fL1JetThreshold[3] = 12./0.0153; fL1JetThreshold[4] = 13./0.0153; fL1JetThreshold[5] = 14./0.0153; fL1JetThreshold[6] = 15./0.0153; } else if(fNJetThreshold == 10) { Double_t thGev[10]={5.,8.,10., 12., 13.,14.,15., 17., 20., 25.}; for(Int_t i=0; iDelete(); delete fAmpTrus;} if(fTimeRtrus) {fTimeRtrus->Delete(); delete fTimeRtrus;} if(fAmpSMods) {fAmpSMods->Delete(); delete fAmpSMods;} if(fAmpJetMatrix) delete fAmpJetMatrix; if(fJetMatrixE) delete fJetMatrixE; if(fL1JetThreshold) delete [] fL1JetThreshold; } //---------------------------------------------------------------------- void AliEMCALTrigger::CreateInputs() { // inputs // Do not create inputs again!! if( fInputs.GetEntriesFast() > 0 ) return; // Second parameter should be detector name = "EMCAL" TString det("EMCAL"); // Apr 29, 2008 fInputs.AddLast( new AliTriggerInput( det+"_L0", det, 0x02) ); fInputs.AddLast( new AliTriggerInput( det+"_GammaHPt_L1", det, 0x04 ) ); fInputs.AddLast( new AliTriggerInput( det+"_GammaMPt_L1", det, 0x08 ) ); fInputs.AddLast( new AliTriggerInput( det+"_GammaLPt_L1", det, 0x016 ) ); fInputs.AddLast( new AliTriggerInput( det+"_JetHPt_L1", det, 0x032 ) ); fInputs.AddLast( new AliTriggerInput( det+"_JetMPt_L1", det, 0x048 ) ); fInputs.AddLast( new AliTriggerInput( det+"_JetLPt_L1", det, 0x064 ) ); if(fNJetThreshold<=0) return; // Jet Trigger(s) UInt_t level = 0x032; for(Int_t i=0; iGetNTRU(); //number of tru, min 0 max 3*12=36. TMatrixD * ampmatrix = 0x0; Int_t colborder = 0; Int_t rowborder = 0; static int keyPrint = 0; if(keyPrint) AliDebug(2,Form(" IsPatchIsolated : iSM %i mtru %i itru %i maxphi %i maxeta %i \n", iSM, mtru, itru, maxphi, maxeta)); if(fIsolateInSuperModule){ // ? ampmatrix = dynamic_cast(ampmatrixes->At(iSM)) ; rowborder = fGeom->GetNPhi(); colborder = fGeom->GetNZ(); AliDebug(2,"Isolate trigger in Module"); } else{ ampmatrix = dynamic_cast(ampmatrixes->At(itru)) ; rowborder = fGeom->GetNModulesInTRUPhi(); colborder = fGeom->GetNModulesInTRUEta(); AliDebug(2,"Isolate trigger in TRU"); } if(iSM>9) rowborder /= 2; // half size in phi if(!ampmatrixes || !ampmatrix){ AliError("Could not recover the matrix with the amplitudes"); return kFALSE; } //Define patch modules - what is this ?? Int_t isolmodules = fIsolPatchSize*(1+iPatchType); Int_t ipatchmodules = 2*(1+fPatchSize*iPatchType); Int_t minrow = maxphi - isolmodules; Int_t mincol = maxeta - isolmodules; Int_t maxrow = maxphi + isolmodules + ipatchmodules; Int_t maxcol = maxeta + isolmodules + ipatchmodules; minrow = minrow<0?0 :minrow; mincol = mincol<0?0 :mincol; maxrow = maxrow>rowborder?rowborder :maxrow; maxcol = maxcol>colborder?colborder :maxcol; //printf("%s\n",Form("Number of added Isol Modules %d, Patch Size %d",isolmodules, ipatchmodules)); //printf("%s\n",Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); // AliDebug(2,Form("Number of added Isol Modules %d, Patch Size %d",isolmodules, ipatchmodules)); //AliDebug(2,Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); //Add amplitudes in all isolation patch Float_t amp = 0.; for(Int_t irow = minrow ; irow < maxrow; irow ++) for(Int_t icol = mincol ; icol < maxcol ; icol ++) amp += (*ampmatrix)(irow,icol); AliDebug(2,Form("Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); if(amp < maxamp){ // AliError(Form("Bad sum: Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); // ampmatrix->Print(); return kFALSE; } else { amp-=maxamp; //Calculate energy in isolation patch that do not comes from maximum patch. } AliDebug(2, Form("Maximum amplitude %f, Out of patch %f",maxamp, amp)); //Fill isolation amplitude data member and say if patch is isolated. if(iPatchType == 0){ //2x2 case f2x2AmpOutOfPatch = amp; if(amp < f2x2AmpOutOfPatchThres) b=kTRUE; } else if(iPatchType == 1){ //nxn case fnxnAmpOutOfPatch = amp; if(amp < fnxnAmpOutOfPatchThres) b=kTRUE; } if(keyPrint) AliDebug(2,Form(" IsPatchIsolated - OUT \n")); return b; } /* //____________________________________________________________________________ void AliEMCALTrigger::MakeSlidingCell(const TClonesArray * amptrus, const TClonesArray * timeRtrus, const Int_t isupermod,TMatrixD &max2, TMatrixD &maxn){ //Sums energy of all possible 2x2 (L0) and nxn (L1) modules per each TRU. //Fast signal in the experiment is given by 2x2 modules, //for this reason we loop inside the TRU modules by 2. //Declare and initialize variables Int_t nCellsPhi = fGeom->GetNCellsInTRUPhi(); if(isupermod > 9) nCellsPhi = nCellsPhi / 2 ; //Half size SM. Not Final. // 12(tow)*2(cell)/1 TRU, cells in Phi in one TRU Int_t nCellsEta = fGeom->GetNCellsInTRUEta(); Int_t nTRU = fGeom->GetNTRU(); // 24(mod)*2(tower)/3 TRU, cells in Eta in one TRU //Int_t nTRU = geom->GeNTRU();//3 TRU per super module Float_t amp2 = 0 ; Float_t ampn = 0 ; for(Int_t i = 0; i < 4; i++){ for(Int_t j = 0; j < nTRU; j++){ ampmax2(i,j) = -1; ampmaxn(i,j) = -1; } } //Create matrix that will contain 2x2 amplitude sums //used to calculate the nxn sums TMatrixD tru2x2(nCellsPhi/2,nCellsEta/2) ; for(Int_t i = 0; i < nCellsPhi/2; i++) for(Int_t j = 0; j < nCellsEta/2; j++) tru2x2(i,j) = -1; //Loop over all TRUS in a supermodule for(Int_t itru = 0 + isupermod * nTRU ; itru < (isupermod+1)*nTRU ; itru++) { TMatrixD * amptru = dynamic_cast(amptrus->At(itru)) ; TMatrixD * timeRtru = dynamic_cast(timeRtrus->At(itru)) ; Int_t mtru = itru-isupermod*nTRU ; //Number of TRU in Supermodule //Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) for(Int_t irow = 0 ; irow < nCellsPhi; irow += 2){ for(Int_t icol = 0 ; icol < nCellsEta ; icol += 2){ amp2 = (*amptru)(irow,icol)+(*amptru)(irow+1,icol)+ (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); //Fill matrix with added 2x2 cells for use in nxn sums tru2x2(irow/2,icol/2) = amp2 ; //Select 2x2 maximum sums to select L0 if(amp2 > ampmax2(0,mtru)){ ampmax2(0,mtru) = amp2 ; ampmax2(1,mtru) = irow; ampmax2(2,mtru) = icol; } } } //Find most recent time in the selected 2x2 cell ampmax2(3,mtru) = 1 ; Int_t row2 = static_cast (ampmax2(1,mtru)); Int_t col2 = static_cast (ampmax2(2,mtru)); for(Int_t i = 0; i<2; i++){ for(Int_t j = 0; j<2; j++){ if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ if((*timeRtru)(row2+i,col2+j) < ampmax2(3,mtru) ) ampmax2(3,mtru) = (*timeRtru)(row2+i,col2+j); } } } //Sliding nxn, add nxn amplitudes (OVERLAP) if(fPatchSize > 0){ for(Int_t irow = 0 ; irow < nCellsPhi/2; irow++){ for(Int_t icol = 0 ; icol < nCellsEta/2 ; icol++){ ampn = 0; if( (irow+fPatchSize) < nCellsPhi/2 && (icol+fPatchSize) < nCellsEta/2){//Avoid exit the TRU for(Int_t i = 0 ; i <= fPatchSize ; i++) for(Int_t j = 0 ; j <= fPatchSize ; j++) ampn += tru2x2(irow+i,icol+j); //Select nxn maximum sums to select L1 if(ampn > ampmaxn(0,mtru)){ ampmaxn(0,mtru) = ampn ; ampmaxn(1,mtru) = irow*2; ampmaxn(2,mtru) = icol*2; } } } } //Find most recent time in selected nxn cell ampmaxn(3,mtru) = 1 ; Int_t rown = static_cast (ampmaxn(1,mtru)); Int_t coln = static_cast (ampmaxn(2,mtru)); for(Int_t i = 0; i<4*fPatchSize; i++){ for(Int_t j = 0; j<4*fPatchSize; j++){ if( (rown+i) < nCellsPhi && (coln+j) < nCellsEta){//Avoid exit the TRU if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ if((*timeRtru)(rown+i,coln+j) < ampmaxn(3,mtru) ) ampmaxn(3,mtru) = (*timeRtru)(rown+i,coln+j); } } } } } else { ampmaxn(0,mtru) = ampmax2(0,mtru); ampmaxn(1,mtru) = ampmax2(1,mtru); ampmaxn(2,mtru) = ampmax2(2,mtru); ampmaxn(3,mtru) = ampmax2(3,mtru); } } } */ //____________________________________________________________________________ void AliEMCALTrigger::MakeSlidingTowers(const TClonesArray * amptrus, const TClonesArray * timeRtrus, const Int_t isupermod,TMatrixD &max2, TMatrixD &maxn){ // Output from module (2x2 cells from one module) Int_t nModulesPhi = fGeom->GetNModulesInTRUPhi(); // now 4 modules (3 div in phi) if(isupermod > 9) nModulesPhi = nModulesPhi / 2 ; // Half size SM. Not Final. // Int_t nModulesEta = fGeom->GetNModulesInTRUEta(); // now 24 modules (no division in eta) Int_t nTRU = fGeom->GetNTRU(); static int keyPrint = 0; if(keyPrint) AliDebug(2,Form("MakeSlidingTowers : nTRU %i nModulesPhi %i nModulesEta %i ", nTRU, nModulesPhi, nModulesEta )); Float_t amp2 = 0 ; Float_t ampn = 0 ; for(Int_t i = 0; i < 4; i++){ for(Int_t j = 0; j < nTRU; j++){ ampmax2(i,j) = ampmaxn(i,j) = -1; } } // Create matrix that will contain 2x2 amplitude sums // used to calculate the nxn sums TMatrixD tru2x2(nModulesPhi/2,nModulesEta/2); // Loop over all TRUS in a supermodule for(Int_t itru = 0 + isupermod * nTRU ; itru < (isupermod+1)*nTRU ; itru++) { TMatrixD * amptru = dynamic_cast(amptrus->At(itru)) ; TMatrixD * timeRtru = dynamic_cast(timeRtrus->At(itru)) ; Int_t mtru = itru - isupermod*nTRU ; // Number of TRU in Supermodule !! if(!amptru || !timeRtru){ AliError("Amplitude or Time TRU matrix not available") return; } // Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) for(Int_t irow = 0 ; irow < nModulesPhi; irow +=2){ for(Int_t icol = 0 ; icol < nModulesEta ; icol +=2){ amp2 = (*amptru)(irow,icol) +(*amptru)(irow+1,icol)+ (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); //Fill matrix with added 2x2 towers for use in nxn sums tru2x2(irow/2,icol/2) = amp2 ; //Select 2x2 maximum sums to select L0 if(amp2 > ampmax2(0,mtru)){ ampmax2(0,mtru) = amp2 ; ampmax2(1,mtru) = irow; ampmax2(2,mtru) = icol; } } } ampmax2(3,mtru) = 0.; if(GetTimeKey()) { // Find most recent time in the selected 2x2 towers Int_t row2 = static_cast (ampmax2(1,mtru)); Int_t col2 = static_cast (ampmax2(2,mtru)); for(Int_t i = 0; i<2; i++){ for(Int_t j = 0; j<2; j++){ if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ if((*timeRtru)(row2+i,col2+j) > ampmax2(3,mtru) ) ampmax2(3,mtru) = (*timeRtru)(row2+i,col2+j); // max time } } } } //Sliding nxn, add nxn amplitudes (OVERLAP) if(fPatchSize > 0){ for(Int_t irow = 0 ; irow < nModulesPhi/2; irow++){ for(Int_t icol = 0 ; icol < nModulesEta/2; icol++){ ampn = 0; if( (irow+fPatchSize) < nModulesPhi/2 && (icol+fPatchSize) < nModulesEta/2){ //Avoid exit the TRU for(Int_t i = 0 ; i <= fPatchSize ; i++) for(Int_t j = 0 ; j <= fPatchSize ; j++) ampn += tru2x2(irow+i,icol+j); //Select nxn maximum sums to select L1 if(ampn > ampmaxn(0,mtru)){ ampmaxn(0,mtru) = ampn ; ampmaxn(1,mtru) = irow; ampmaxn(2,mtru) = icol; } } } } ampmaxn(3,mtru) = 0.; // Was 1 , I don't know why if(GetTimeKey()) { //Find most recent time in selected nxn cell Int_t rown = static_cast (ampmaxn(1,mtru)); Int_t coln = static_cast (ampmaxn(2,mtru)); for(Int_t i = 0; i<4*fPatchSize; i++){ for(Int_t j = 0; j<4*fPatchSize; j++){ if( (rown+i) < nModulesPhi && (coln+j) < nModulesEta){//Avoid exit the TRU if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ if((*timeRtru)(rown+i,coln+j) > ampmaxn(3,mtru) ) ampmaxn(3,mtru) = (*timeRtru)(rown+i,coln+j); // max time } } } } } } else { // copy 2x2 to nxn ampmaxn(0,mtru) = ampmax2(0,mtru); ampmaxn(1,mtru) = ampmax2(1,mtru); ampmaxn(2,mtru) = ampmax2(2,mtru); ampmaxn(3,mtru) = ampmax2(3,mtru); } } if(keyPrint) AliDebug(2,Form(" : MakeSlidingTowers -OUt \n")); } //____________________________________________________________________________ void AliEMCALTrigger::Print(const Option_t * opt) const { //Prints main parameters if(! opt) return; AliTriggerInput* in = 0x0 ; AliInfo(Form(" fSimulation %i (input option) : #digits %i\n", fSimulation, fDigitsList->GetEntries())); AliInfo(Form(" fTimeKey %i \n ", fTimeKey)); AliInfo(Form("\t Maximum Amplitude after Sliding Cell, \n")) ; AliInfo(Form("\t -2x2 cells sum (not overlapped): %10.2f, in Super Module %d\n", f2x2MaxAmp,f2x2SM)) ; AliInfo(Form("\t -2x2 from row %d to row %d and from column %d to column %d\n", f2x2ModulePhi, f2x2ModulePhi+2, f2x2ModuleEta, f2x2ModuleEta+2)); AliInfo(Form("\t -2x2 Isolation Patch %d x %d, Amplitude out of 2x2 patch is %f, threshold %f, Isolated? %d \n", 2*fIsolPatchSize+2, 2*fIsolPatchSize+2, f2x2AmpOutOfPatch, f2x2AmpOutOfPatchThres,static_cast (fIs2x2Isol))); if(fPatchSize > 0){ AliInfo(Form("\t Patch Size, n x n: %d x %d cells\n",2*(fPatchSize+1), 2*(fPatchSize+1))); AliInfo(Form("\t -nxn cells sum (overlapped) : %10.2f, in Super Module %d\n", fnxnMaxAmp,fnxnSM)); AliInfo(Form("\t -nxn from row %d to row %d and from column %d to column %d\n", fnxnModulePhi, fnxnModulePhi+4*fPatchSize, fnxnModuleEta, fnxnModuleEta+4*fPatchSize)) ; AliInfo(Form("\t -nxn Isolation Patch %d x %d, Amplitude out of nxn patch is %f, threshold %f, Isolated? %d \n", 4*fIsolPatchSize+2*(fPatchSize+1),4*fIsolPatchSize+2*(fPatchSize+1) , fnxnAmpOutOfPatch, fnxnAmpOutOfPatchThres,static_cast (fIsnxnIsol) )); } AliInfo(Form("\t Isolate in SuperModule? %d\n", fIsolateInSuperModule)) ; AliInfo(Form("\t Threshold for LO %10.2f\n", fL0Threshold)); in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_L0" ); if(in->GetValue()) AliInfo(Form("\t *** EMCAL LO is set ***\n")); AliInfo(Form("\t Gamma Low Pt Threshold for L1 %10.2f\n", fL1GammaLowPtThreshold)); in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_GammaLPt_L1" ); if(in->GetValue()) AliInfo(Form("\t *** EMCAL Gamma Low Pt for L1 is set ***\n")); AliInfo(Form("\t Gamma Medium Pt Threshold for L1 %10.2f\n", fL1GammaMediumPtThreshold)); in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_GammaMPt_L1" ); if(in->GetValue()) AliInfo(Form("\t *** EMCAL Gamma Medium Pt for L1 is set ***\n")); AliInfo(Form("\t Gamma High Pt Threshold for L1 %10.2f\n", fL1GammaHighPtThreshold)); in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_GammaHPt_L1" ); if(in->GetValue()) AliInfo(Form("\t *** EMCAL Gamma High Pt for L1 is set ***\n")) ; } //____________________________________________________________________________ void AliEMCALTrigger::SetTriggers(const TClonesArray * ampmatrix,const Int_t iSM, const TMatrixD &max2, const TMatrixD &maxn) { //Checks the 2x2 and nxn maximum amplitude per each TRU and //compares with the different L0 and L1 triggers thresholds Float_t max2[] = {-1,-1,-1,-1} ; Float_t maxn[] = {-1,-1,-1,-1} ; Int_t mtru2 = -1 ; Int_t mtrun = -1 ; Int_t nTRU = fGeom->GetNTRU(); //Find maximum summed amplitude of all the TRU //in a Super Module for(Int_t i = 0 ; i < nTRU ; i++){ if(max2[0] < ampmax2(0,i) ){ max2[0] = ampmax2(0,i) ; // 2x2 summed max amplitude max2[1] = ampmax2(1,i) ; // corresponding phi position in TRU max2[2] = ampmax2(2,i) ; // corresponding eta position in TRU max2[3] = ampmax2(3,i) ; // corresponding most recent time mtru2 = i ; } if(maxn[0] < ampmaxn(0,i) ){ maxn[0] = ampmaxn(0,i) ; // nxn summed max amplitude maxn[1] = ampmaxn(1,i) ; // corresponding phi position in TRU maxn[2] = ampmaxn(2,i) ; // corresponding eta position in TRU maxn[3] = ampmaxn(3,i) ; // corresponding most recent time mtrun = i ; } } //--------Set max amplitude if larger than in other Super Modules------------ Float_t maxtimeR2 = -1 ; Float_t maxtimeRn = -1 ; static AliEMCALRawUtils rawUtil; // Int_t nTimeBins = rawUtil.GetRawFormatTimeBins() ; Int_t nTimeBins = TIMEBINS; //changed by PTH //Set max of 2x2 amplitudes and select L0 trigger if(max2[0] > f2x2MaxAmp ){ // if(max2[0] > 5) printf(" L0 : iSM %i: max2[0] %5.0f : max2[3] %5.0f (maxtimeR2) \n", // iSM, max2[0], max2[3]); f2x2MaxAmp = max2[0] ; f2x2SM = iSM ; maxtimeR2 = max2[3] ; fGeom->GetModulePhiEtaIndexInSModuleFromTRUIndex(mtru2, static_cast(max2[1]), static_cast(max2[2]), f2x2ModulePhi,f2x2ModuleEta); //Isolated patch? if(fIsolateInSuperModule) fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, f2x2ModulePhi,f2x2ModuleEta) ; else fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, static_cast(max2[1]), static_cast(max2[2])) ; if(GetTimeKey()) { //Transform digit amplitude in Raw Samples if (fADCValuesLow2x2 == 0) { fADCValuesLow2x2 = new Int_t[nTimeBins]; fADCValuesHigh2x2 = new Int_t[nTimeBins]; } //printf(" maxtimeR2 %12.5e (1)\n", maxtimeR2); // rawUtil.RawSampledResponse(maxtimeR2 * AliEMCALRawUtils::GetRawFormatTimeBin(), // f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; // rawUtil.RawSampledResponse(maxtimeR2*TIMEBINMAX/TIMEBINS, // f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; AliEMCALRawResponse::RawSampledResponse( maxtimeR2*TIMEBINMAX/TIMEBINS, f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; // Set Trigger Inputs, compare ADC time bins until threshold is attained // Set L0 for(Int_t i = 0 ; i < nTimeBins ; i++){ // printf(" fADCValuesHigh2x2[%i] %i : %i \n", i, fADCValuesHigh2x2[i], fADCValuesLow2x2[i]); if(fADCValuesHigh2x2[i] >= fL0Threshold || fADCValuesLow2x2[i] >= fL0Threshold){ SetInput("EMCAL_L0") ; break; } } } else { // Nov 5 - no analysis of time information if(f2x2MaxAmp >= fL0Threshold) { // should add the low amp too SetInput("EMCAL_L0"); } } } //------------Set max of nxn amplitudes and select L1 trigger--------- if(maxn[0] > fnxnMaxAmp ){ fnxnMaxAmp = maxn[0] ; fnxnSM = iSM ; maxtimeRn = maxn[3] ; fGeom->GetModulePhiEtaIndexInSModuleFromTRUIndex(mtrun, static_cast(maxn[1]), static_cast(maxn[2]), fnxnModulePhi,fnxnModuleEta) ; //Isolated patch? if(fIsolateInSuperModule) fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, fnxnModulePhi, fnxnModuleEta) ; else fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, static_cast(maxn[1]), static_cast(maxn[2])) ; if(GetTimeKey()) { //Transform digit amplitude in Raw Samples if (fADCValuesLownxn == 0) { fADCValuesHighnxn = new Int_t[nTimeBins]; fADCValuesLownxn = new Int_t[nTimeBins]; } // rawUtil.RawSampledResponse(maxtimeRn * AliEMCALRawUtils::GetRawFormatTimeBin(), // fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; //rawUtil.RawSampledResponse(maxtimeRn*TIMEBINMAX/TIMEBINS, // fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; AliEMCALRawResponse::RawSampledResponse (maxtimeRn*TIMEBINMAX/TIMEBINS, fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; //Set Trigger Inputs, compare ADC time bins until threshold is attained //SetL1 Low for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1GammaLowPtThreshold || fADCValuesLownxn[i] >= fL1GammaLowPtThreshold){ SetInput("EMCAL_GammaLPt_L1") ; break; } } //SetL1 Medium for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1GammaMediumPtThreshold || fADCValuesLownxn[i] >= fL1GammaMediumPtThreshold){ SetInput("EMCAL_GammaMPt_L1") ; break; } } //SetL1 High for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1GammaHighPtThreshold || fADCValuesLownxn[i] >= fL1GammaHighPtThreshold){ SetInput("EMCAL_GammaHPt_L1") ; break; } } } else { // Nov 5 - no analysis of time information if(fnxnMaxAmp >= fL1GammaLowPtThreshold) { // should add the low amp too SetInput("EMCAL_GammaLPt_L1") ; //SetL1 Low } if(fnxnMaxAmp >= fL1GammaMediumPtThreshold) { // should add the low amp too SetInput("EMCAL_GammaMPt_L1") ; //SetL1 Medium } if(fnxnMaxAmp >= fL1GammaHighPtThreshold) { // should add the low amp too SetInput("EMCAL_GammaHPt_L1") ; //SetL1 High } } } } //____________________________________________________________________________ void AliEMCALTrigger::FillTRU(const TClonesArray * digits, TClonesArray * ampmatrix, TClonesArray * ampmatrixsmod, TClonesArray * timeRmatrix) { // Orders digits ampitudes list in fNTRU TRUs (384 cells) per supermodule. // Each TRU is a TMatrixD, and they are kept in TClonesArrays. The number of // TRU in phi is fNTRUPhi, and the number of TRU in eta is fNTRUEta. // Last 2 modules are half size in Phi, I considered that the number of TRU // is maintained for the last modules but decision not taken. If different, // then this must be changed. Also fill a matrix with all amplitudes in supermodule for isolation studies. // Initilize and declare variables // List of TRU matrices initialized to 0. // printf(" AliEMCALTrigger::FillTRU() started : # digits %i\n", digits->GetEntriesFast()); // Nov 2, 2007. // One input per EMCAL module so size of matrix is reduced by 4 (2x2 division case) Int_t nPhi = fGeom->GetNPhi(); Int_t nZ = fGeom->GetNZ(); Int_t nTRU = fGeom->GetNTRU(); // Int_t nTRUPhi = fGeom->GetNTRUPhi(); Int_t nModulesPhi = fGeom->GetNModulesInTRUPhi(); Int_t nModulesPhi2 = fGeom->GetNModulesInTRUPhi(); Int_t nModulesEta = fGeom->GetNModulesInTRUEta(); // printf(" AliEMCALTrigger::FillTRU() nTRU %i nTRUPhi %i : nModulesPhi %i nModulesEta %i \n", // nTRU, nTRUPhi, nModulesPhi, nModulesEta); Int_t id = -1; Float_t amp = -1; Float_t timeR = -1; Int_t iSupMod = -1; Int_t nModule = -1; Int_t nIphi = -1; Int_t nIeta = -1; Int_t iphi = -1; Int_t ieta = -1; // iphim, ietam - module indexes in SM Int_t iphim = -1; Int_t ietam = -1; //List of TRU matrices initialized to 0. Int_t nSup = fGeom->GetNumberOfSuperModules(); for(Int_t k = 0; k < nTRU*nSup; k++){ TMatrixD amptrus(nModulesPhi,nModulesEta) ; TMatrixD timeRtrus(nModulesPhi,nModulesEta) ; // Do we need to initialise? I think TMatrixD does it by itself... for(Int_t i = 0; i < nModulesPhi; i++){ for(Int_t j = 0; j < nModulesEta; j++){ amptrus(i,j) = 0.0; timeRtrus(i,j) = 0.0; } } new((*ampmatrix)[k]) TMatrixD(amptrus) ; new((*timeRmatrix)[k]) TMatrixD(timeRtrus) ; } // List of Modules matrices initialized to 0. for(Int_t k = 0; k < nSup ; k++){ int mphi = nPhi; // if(nSup>9) mphi = nPhi/2; // the same size TMatrixD ampsmods( mphi, nZ); for(Int_t i = 0; i < mphi; i++){ for(Int_t j = 0; j < nZ; j++){ ampsmods(i,j) = 0.0; } } new((*ampmatrixsmod)[k]) TMatrixD(ampsmods) ; } AliEMCALDigit * dig ; //Digits loop to fill TRU matrices with amplitudes. for(Int_t idig = 0 ; idig < digits->GetEntriesFast() ; idig++){ dig = dynamic_cast(digits->At(idig)) ; if(dig){ amp = Float_t(dig->GetAmplitude()); // Energy of the digit (arbitrary units) id = dig->GetId() ; // Id label of the cell timeR = dig->GetTimeR() ; // Earliest time of the digit if(amp<=0.0) AliDebug(1,Form(" id %i amp %f \n", id, amp)); // printf(" FILLTRU : timeR %10.5e time %10.5e : amp %10.5e \n", timeR, dig->GetTime(), amp); // Get eta and phi cell position in supermodule Bool_t bCell = fGeom->GetCellIndex(id, iSupMod, nModule, nIphi, nIeta) ; if(!bCell) AliError(Form("%i Wrong cell id number %i ", idig, id)) ; fGeom->GetCellPhiEtaIndexInSModule(iSupMod,nModule,nIphi, nIeta,iphi,ieta); // iphim, ietam - module indexes in SM fGeom->GetModuleIndexesFromCellIndexesInSModule(iSupMod,iphi,ieta, iphim, ietam, nModule); //if(iSupMod >9) //printf("iSupMod %i nModule %i iphi %i ieta %i iphim %i ietam %i \n", //iSupMod,nModule, iphi, ieta, iphim, ietam); // Check to which TRU in the supermodule belongs the cell. // Supermodules are divided in a TRU matrix of dimension // (fNTRUPhi,fNTRUEta). // Each TRU is a cell matrix of dimension (nModulesPhi,nModulesEta) // First calculate the row and column in the supermodule // of the TRU to which the cell belongs. Int_t row = iphim / nModulesPhi; Int_t col = ietam / nModulesEta; //Calculate label number of the TRU Int_t itru = fGeom->GetAbsTRUNumberFromNumberInSm(row, col, iSupMod); //Fill TRU matrix with cell values TMatrixD * amptrus = dynamic_cast(ampmatrix->At(itru)) ; TMatrixD * timeRtrus = dynamic_cast(timeRmatrix->At(itru)) ; if(!amptrus || !timeRtrus){ AliError("Could not recover the TRU matrix with amplitudes or times"); } else{ //Calculate row and column of the module inside the TRU with number itru Int_t irow = iphim - row * nModulesPhi; if(iSupMod > 9) irow = iphim - row * nModulesPhi2; // size of matrix the same Int_t icol = ietam - col * nModulesEta; (*amptrus)(irow,icol) += amp ; if((*timeRtrus)(irow,icol) <0.0 || (*timeRtrus)(irow,icol) <= timeR){ // ?? (*timeRtrus)(irow,icol) = timeR ; } } //printf(" ieta %i iphi %i iSM %i || col %i row %i : itru %i -> amp %f\n", // ieta, iphi, iSupMod, col, row, itru, amp); //####################SUPERMODULE MATRIX ################## TMatrixD * ampsmods = dynamic_cast(ampmatrixsmod->At(iSupMod)) ; if(!ampsmods){ AliError("Could not recover the matrix per SM"); continue; } (*ampsmods)(iphim,ietam) += amp ; // printf(" id %i iphim %i ietam %i SM %i : irow %i icol %i itru %i : amp %6.0f\n", //id, iphim, ietam, iSupMod, irow, icol, itru, amp); } else AliError("Could not recover the digit"); } //assert(0); //printf(" AliEMCALTrigger::FillTRU() is ended \n"); } //____________________________________________________________________________ void AliEMCALTrigger::Trigger() { //Main Method to select triggers. TH1::AddDirectory(0); AliRunLoader *runLoader = AliRunLoader::Instance(); AliEMCALLoader *emcalLoader = 0; if(runLoader) { emcalLoader = dynamic_cast(runLoader->GetDetectorLoader("EMCAL")); } //Load EMCAL Geometry if (runLoader && runLoader->GetAliRun()){ AliEMCAL* emcal = dynamic_cast(runLoader->GetAliRun()->GetDetector("EMCAL")); if(emcal)fGeom = emcal->GetGeometry(); } if (!fGeom) fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); if (!fGeom) AliFatal("Did not get geometry from EMCALLoader"); //Define parameters Int_t nSuperModules = fGeom->GetNumberOfSuperModules() ; //12 SM in EMCAL Int_t nTRU = fGeom->GetNTRU(); // 3 TRU per super module //Intialize data members each time the trigger is called in event loop f2x2MaxAmp = -1; f2x2ModulePhi = -1; f2x2ModuleEta = -1; fnxnMaxAmp = -1; fnxnModulePhi = -1; fnxnModuleEta = -1; // Take the digits list if simulation if(fSimulation && runLoader && emcalLoader){ // works than run seperate macros runLoader->LoadDigits("EMCAL"); fDigitsList = emcalLoader->Digits() ; runLoader->LoadSDigits("EMCAL"); } // Digits list should be set by method SetDigitsList(TClonesArray * digits) if(!fDigitsList) AliFatal("Digits not found !") ; //Take the digits list // Delete old if unzero if(fAmpTrus) {fAmpTrus->Delete(); delete fAmpTrus;} if(fTimeRtrus) {fTimeRtrus->Delete(); delete fTimeRtrus;} if(fAmpSMods) {fAmpSMods->Delete(); delete fAmpSMods;} // Fill TRU and SM matrix fAmpTrus = new TClonesArray("TMatrixD",nTRU); fAmpTrus->SetName("AmpTrus"); fTimeRtrus = new TClonesArray("TMatrixD",nTRU); fTimeRtrus->SetName("TimeRtrus"); fAmpSMods = new TClonesArray("TMatrixD",nSuperModules); fAmpSMods->SetName("AmpSMods"); FillTRU(fDigitsList, fAmpTrus, fAmpSMods, fTimeRtrus); // Jet stuff - only one case, no freedom here if(fGeom->GetNEtaSubOfTRU() == 6) { if(fAmpJetMatrix) {delete fAmpJetMatrix; fAmpJetMatrix=0;} if(fJetMatrixE) {delete fJetMatrixE; fJetMatrixE=0;} fAmpJetMatrix = new TMatrixD(17,12); // 17-phi(row), 12-eta(col) fJetMatrixE = new TH2F("fJetMatrixE"," E of max patch in (#phi,#eta)", 17, 80.*TMath::DegToRad(), (180.+20.*2/3.)*TMath::DegToRad(), 12, -0.7, 0.7); for(Int_t row=0; rowGetNrows(); row++) { for(Int_t col=0; colGetNcols(); col++) { (*fAmpJetMatrix)(row,col) = 0.; } } FillJetMatrixFromSMs(fAmpSMods, fAmpJetMatrix, fGeom); } if(!CheckConsistentOfMatrixes()) assert(0); // Do Tower Sliding and select Trigger // Initialize varible that will contain maximum amplitudes and // its corresponding tower position in eta and phi, and time. TMatrixD ampmax2(4,nTRU) ; // 0-max amp, 1-irow, 2-icol, 3-timeR TMatrixD ampmaxn(4,nTRU) ; for(Int_t iSM = 0 ; iSM < nSuperModules ; iSM++) { //Do 2x2 and nxn sums, select maximums. MakeSlidingTowers(fAmpTrus, fTimeRtrus, iSM, ampmax2, ampmaxn); // Set the trigger if(fIsolateInSuperModule) // here some discripency between tru and SM SetTriggers(fAmpSMods,iSM,ampmax2,ampmaxn) ; if(!fIsolateInSuperModule) SetTriggers(fAmpTrus,iSM,ampmax2,ampmaxn) ; } // Do patch sliding and select Jet Trigger // 0-max amp-meanFromVZERO(if), 1-irow, 2-icol, 3-timeR, // 4-max amp , 5-meanFromVZERO (Nov 25, 2007) // fAmpJetMax(6,1) MakeSlidingPatch((*fAmpJetMatrix), fNJetPatchPhi, fAmpJetMax); // no timing information here //Print(); // fDigitsList = 0; } //____________________________________________________________________________ void AliEMCALTrigger::GetTriggerInfo(TArrayF &triggerPosition, TArrayF &triggerAmplitudes) const { // Template - should be defined; Nov 5, 2007 triggerPosition[0] = 0.; triggerAmplitudes[0] = 0.; } //____________________________________________________________________________ void AliEMCALTrigger::FillJetMatrixFromSMs(TClonesArray *ampmatrixsmod, TMatrixD* jetMat, AliEMCALGeometry *g) { // Nov 5, 2007 // Fill matrix for jet trigger from SM matrixes of modules // static int keyPrint = 0; if(ampmatrixsmod==0 || jetMat==0 || g==0) return; Double_t amp = 0.0, ampSum=0.0; Int_t nEtaModSum = g->GetNZ() / g->GetNEtaSubOfTRU(); // should be 4 Int_t nPhiModSum = g->GetNPhi() / g->GetNTRUPhi(); // should be 4 if(keyPrint) AliDebug(2,Form("%s",Form(" AliEMCALTrigger::FillJetMatrixFromSMs | nEtaModSum %i : nPhiModSum %i \n", nEtaModSum, nPhiModSum))); Int_t jrow=0, jcol=0; // indexes of jet matrix Int_t nEtaSM=0, nPhiSM=0; for(Int_t iSM=0; iSMGetEntries(); iSM++) { TMatrixD * ampsmods = dynamic_cast(ampmatrixsmod->At(iSM)); if(!ampsmods) return; Int_t nrow = ampsmods->GetNrows(); Int_t ncol = ampsmods->GetNcols(); //printf("%s",Form(" ######## SM %i : nrow %i : ncol %i ##### \n", iSM, nrow, ncol)); for(Int_t row=0; row0.0) { if(keyPrint) AliDebug(2,Form("%s",Form(" ** nPhiSm %i : nEtaSM %i : row %2.2i : col %2.2i -> ", nPhiSM, nEtaSM, row, col))); if(nEtaSM == 0) { // positive Z jrow = 3*nPhiSM + row/nPhiModSum; jcol = 6 + col / nEtaModSum; } else { // negative Z if(iSM<=9) jrow = 3*nPhiSM + 2 - row/nPhiModSum; else jrow = 3*nPhiSM + 1 - row/nPhiModSum; // half size jcol = 5 - col / nEtaModSum; } if(keyPrint) AliDebug(2,Form("%s",Form(" jrow %2.2i : jcol %2.2i : amp %f (jetMat) \n", jrow, jcol, amp))); (*jetMat)(jrow,jcol) += amp; ampSum += amp; // For controling } else if(amp<0.0) { AliDebug(1,Form(" jrow %2.2i : jcol %2.2i : amp %f (jetMat: amp<0) \n", jrow, jcol, amp)); assert(0); } } } } // cycle on SM if(ampSum <= 0.0) AliDebug(1,Form("ampSum %f (<=0.0) ", ampSum)); } //____________________________________________________________________________ void AliEMCALTrigger::MakeSlidingPatch(const TMatrixD &jm, const Int_t nPatchSize, TMatrixD &JetMax) { // Sliding patch : nPatchSize x nPatchSize (OVERLAP) static int keyPrint = 0; if(keyPrint) AliDebug(2,Form(" AliEMCALTrigger::MakeSlidingPatch() was started \n")); Double_t ampCur = 0.0, e=0.0; ampJetMax(0,0) = 0.0; ampJetMax(3,0) = 0.0; // unused now ampJetMax(4,0) = ampJetMax(5,0) = 0.0; for(Int_t row=0; rowGetNrows(); row ++) { for(Int_t col=0; colGetNcols(); col++) { ampCur = 0.; // check on patch size if( (row+nPatchSize-1) < fAmpJetMatrix->GetNrows() && (col+nPatchSize-1) < fAmpJetMatrix->GetNcols()){ for(Int_t i = 0 ; i < nPatchSize ; i++) { for(Int_t j = 0 ; j < nPatchSize ; j++) { ampCur += jm(row+i, col+j); } } // end cycle on patch if(ampCur > ampJetMax(0,0)){ ampJetMax(0,0) = ampCur; ampJetMax(1,0) = row; ampJetMax(2,0) = col; } } // check on patch size } } if(keyPrint) AliDebug(2,Form(" ampJetMax %i row %2i->%2i col %2i->%2i \n", Int_t(ampJetMax(0,0)), Int_t(ampJetMax(1,0)), Int_t(ampJetMax(1,0))+nPatchSize-1, Int_t(ampJetMax(2,0)), Int_t(ampJetMax(2,0))+nPatchSize-1)); Double_t eCorrJetMatrix=0.0; if(fVZER0Mult > 0.0) { // Correct patch energy (adc) and jet patch matrix energy Double_t meanAmpBG = GetMeanEmcalPatchEnergy(Int_t(fVZER0Mult), nPatchSize)/0.0153; ampJetMax(4,0) = ampJetMax(0,0); ampJetMax(5,0) = meanAmpBG; Double_t eCorr = ampJetMax(0,0) - meanAmpBG; AliDebug(2,Form(" ampJetMax(0,0) %f meanAmpBG %f eCorr %f : ampJetMax(4,0) %f \n", ampJetMax(0,0), meanAmpBG, eCorr, ampJetMax(5,0))); ampJetMax(0,0) = eCorr; // -- eCorrJetMatrix = GetMeanEmcalEnergy(Int_t(fVZER0Mult)) / 208.; } // Fill patch energy matrix for(int row=Int_t(ampJetMax(1,0)); row 0.0) { // BG subtraction case e -= eCorrJetMatrix; fJetMatrixE->SetBinContent(row+1, col+1, e); } else if(e > 0.0) { fJetMatrixE->SetBinContent(row+1, col+1, e); } } } // PrintJetMatrix(); // Set the jet trigger(s), multiple threshold now, Nov 19,2007 for(Int_t i=0; i= fL1JetThreshold[i]) { SetInput(GetNameOfJetTrigger(i)); } } } //____________________________________________________________________________ Double_t AliEMCALTrigger::GetEmcalSumAmp() const { // Return sum of amplidutes from EMCal // Used calibration coefficeint for transition to energy return fAmpJetMatrix >0 ?fAmpJetMatrix->Sum() :0.0; } //____________________________________________________________________________ void AliEMCALTrigger::PrintJetMatrix() const { // fAmpJetMatrix : (17,12); // 17-phi(row), 12-eta(col) if(fAmpJetMatrix == 0) return; AliInfo(Form("\n #### jetMatrix : (%i,%i) ##### \n ", fAmpJetMatrix->GetNrows(), fAmpJetMatrix->GetNcols())); PrintMatrix(*fAmpJetMatrix); } //____________________________________________________________________________ void AliEMCALTrigger::PrintAmpTruMatrix(Int_t ind) const { // Print matrix with TRU patches TMatrixD * tru = dynamic_cast(fAmpTrus->At(ind)); if(tru == 0) return; AliInfo(Form("\n #### Amp TRU matrix(%i) : (%i,%i) ##### \n ", ind, tru->GetNrows(), tru->GetNcols())); PrintMatrix(*tru); } //____________________________________________________________________________ void AliEMCALTrigger::PrintAmpSmMatrix(Int_t ind) const { // Print matrix with SM amplitudes TMatrixD * sm = dynamic_cast(fAmpSMods->At(ind)); if(sm == 0) return; AliInfo(Form("\n #### Amp SM matrix(%i) : (%i,%i) ##### \n ", ind, sm->GetNrows(), sm->GetNcols())); PrintMatrix(*sm); } //____________________________________________________________________________ void AliEMCALTrigger::PrintMatrix(const TMatrixD &mat) const { //Print matrix object for(Int_t col=0; colGetEntries(); i++) { TMatrixD * sm = dynamic_cast(fAmpSMods->At(i)); if(sm) { smCur = sm->Sum(); sumSM += smCur; sumTruInSM = 0.0; for(Int_t itru=0; itru<3; itru++) { // Cycle on tru inside SM Int_t ind = 3*i + itru; TMatrixD *tru = dynamic_cast(fAmpTrus->At(ind)); if(tru) { truSum = tru->Sum(); sumTruInSM += truSum; } } sumTru += sumTruInSM; if(sumTruInSM != smCur) { AliDebug(1,Form(" sm %i : smCur %f -> sumTruInSM %f \n", i, smCur, sumTruInSM)); return kFALSE; } } } Double_t sumJetMat = fAmpJetMatrix->Sum(); if(pri || TMath::Abs(sumSM-sumTru)>0.0001 || TMath::Abs(sumSM-sumJetMat) > 0.0001) AliDebug(1,Form(" sumSM %f : sumTru %f : sumJetMat %f \n", sumSM, sumTru, sumJetMat)); if(TMath::Abs(sumSM - sumTru)>0.0001 || TMath::Abs(sumSM-sumJetMat) > 0.0001) return kFALSE; else return kTRUE; } //____________________________________________________________________________ void AliEMCALTrigger::Browse(TBrowser* b) { //Browse. if(&fInputs) b->Add(&fInputs); if(fAmpTrus) b->Add(fAmpTrus); if(fTimeRtrus) b->Add(fTimeRtrus); if(fAmpSMods) b->Add(fAmpSMods); if(fAmpJetMatrix) b->Add(fAmpJetMatrix); if(fJetMatrixE) b->Add(fJetMatrixE); // if(c) b->Add(c); }