/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // // Class for trigger analysis. // Digits are grouped in TRU's (Trigger Units). A TRU consists of 384 // cells ordered fNTRUPhi x fNTRUEta. The algorithm searches all possible 2x2 // and nxn (n is a multiple of 2) cell combinations per each TRU, adding the // digits amplitude and finding the maximum. If found, look if it is isolated. // Maxima are transformed in ADC time samples. Each time bin is compared to the trigger // threshold until it is larger and then, triggers are set. Thresholds need to be fixed. // Thresholds need to be fixed. Last 2 modules are half size in Phi, I considered // that the number of TRU is maintained for the last modules but decision not taken. // If different, then this must be changed. // Usage: // // //Inside the event loop // AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger // tr->SetL0Threshold(100); //Arbitrary threshold values // tr->SetL1JetLowPtThreshold(1000); // tr->SetL1JetMediumPtThreshold(10000); // tr->SetL1JetHighPtThreshold(20000); // ... // tr->Trigger(); //Execute Trigger // tr->Print(""); //Print results // //*-- Author: Gustavo Conesa & Yves Schutz (IFIC, CERN) ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- // --- ALIROOT system --- #include "AliRun.h" #include "AliRunLoader.h" #include "AliTriggerInput.h" #include "AliEMCAL.h" #include "AliEMCALLoader.h" #include "AliEMCALDigit.h" #include "AliEMCALTrigger.h" #include "AliEMCALGeometry.h" ClassImp(AliEMCALTrigger) //______________________________________________________________________ AliEMCALTrigger::AliEMCALTrigger() : AliTriggerDetector(), f2x2MaxAmp(-1), f2x2CellPhi(-1), f2x2CellEta(-1), f2x2SM(0), fnxnMaxAmp(-1), fnxnCellPhi(-1), fnxnCellEta(-1), fnxnSM(0), fADCValuesHighnxn(0),fADCValuesLownxn(0), fADCValuesHigh2x2(0),fADCValuesLow2x2(0), fDigitsList(0), fL0Threshold(100),fL1JetLowPtThreshold(200), fL1JetMediumPtThreshold(500), fL1JetHighPtThreshold(1000), fNTRU(3), fNTRUEta(3), fNTRUPhi(1), fNCellsPhi(24), fNCellsEta(16), fPatchSize(1), fIsolPatchSize(1), f2x2AmpOutOfPatch(-1), fnxnAmpOutOfPatch(-1), f2x2AmpOutOfPatchThres(100000), fnxnAmpOutOfPatchThres(100000), fIs2x2Isol(kFALSE), fIsnxnIsol(kFALSE), fSimulation(kTRUE), fIsolateInSuperModule(kTRUE) { //ctor fADCValuesHighnxn = 0x0; //new Int_t[fTimeBins]; fADCValuesLownxn = 0x0; //new Int_t[fTimeBins]; fADCValuesHigh2x2 = 0x0; //new Int_t[fTimeBins]; fADCValuesLow2x2 = 0x0; //new Int_t[fTimeBins]; SetName("EMCAL"); CreateInputs(); //Print("") ; } //____________________________________________________________________________ AliEMCALTrigger::AliEMCALTrigger(const AliEMCALTrigger & trig) : AliTriggerDetector(trig), f2x2MaxAmp(trig.f2x2MaxAmp), f2x2CellPhi(trig.f2x2CellPhi), f2x2CellEta(trig.f2x2CellEta), f2x2SM(trig.f2x2SM), fnxnMaxAmp(trig.fnxnMaxAmp), fnxnCellPhi(trig.fnxnCellPhi), fnxnCellEta(trig.fnxnCellEta), fnxnSM(trig.fnxnSM), fADCValuesHighnxn(trig.fADCValuesHighnxn), fADCValuesLownxn(trig.fADCValuesLownxn), fADCValuesHigh2x2(trig.fADCValuesHigh2x2), fADCValuesLow2x2(trig.fADCValuesLow2x2), fDigitsList(trig.fDigitsList), fL0Threshold(trig.fL0Threshold), fL1JetLowPtThreshold(trig.fL1JetLowPtThreshold), fL1JetMediumPtThreshold(trig.fL1JetMediumPtThreshold), fL1JetHighPtThreshold(trig.fL1JetHighPtThreshold), fNTRU(trig.fNTRU), fNTRUEta(trig.fNTRUEta), fNTRUPhi(trig.fNTRUPhi), fNCellsPhi(trig.fNCellsPhi), fNCellsEta(trig.fNCellsEta), fPatchSize(trig.fPatchSize), fIsolPatchSize(trig.fIsolPatchSize), f2x2AmpOutOfPatch(trig.f2x2AmpOutOfPatch), fnxnAmpOutOfPatch(trig.fnxnAmpOutOfPatch), f2x2AmpOutOfPatchThres(trig.f2x2AmpOutOfPatchThres), fnxnAmpOutOfPatchThres(trig.fnxnAmpOutOfPatchThres), fIs2x2Isol(trig.fIs2x2Isol), fIsnxnIsol(trig.fIsnxnIsol), fSimulation(trig.fSimulation), fIsolateInSuperModule(trig.fIsolateInSuperModule) { // cpy ctor } //---------------------------------------------------------------------- void AliEMCALTrigger::CreateInputs() { // inputs // Do not create inputs again!! if( fInputs.GetEntriesFast() > 0 ) return; fInputs.AddLast( new AliTriggerInput( "EMCAL_L0", "EMCAL L0", 0x02 ) ); fInputs.AddLast( new AliTriggerInput( "EMCAL_JetHPt_L1","EMCAL Jet High Pt L1", 0x04 ) ); fInputs.AddLast( new AliTriggerInput( "EMCAL_JetMPt_L1","EMCAL Jet Medium Pt L1", 0x08 ) ); fInputs.AddLast( new AliTriggerInput( "EMCAL_JetLPt_L1","EMCAL Jet Low Pt L1", 0x016 ) ); } //____________________________________________________________________________ Bool_t AliEMCALTrigger::IsPatchIsolated(Int_t iPatchType, const TClonesArray * ampmatrixes, const Int_t iSM, const Int_t mtru, const Float_t maxamp, const Int_t maxphi, const Int_t maxeta) { //Calculate if the maximum patch found is isolated, find amplitude around maximum (2x2 or nxn) patch, //inside isolation patch . iPatchType = 0 means calculation for 2x2 patch, //iPatchType = 1 means calculation for nxn patch. //In the next table there is an example of the different options of patch size and isolation patch size: // Patch Size (fPatchSize) // 0 1 2 // fIsolPatchSize 2x2 (not overlap) 4x4 (overlapped) 6x6(overlapped) ... // 1 4x4 8x8 10x10 // 2 6x6 12x12 14x14 // 3 8x8 16x16 18x18 Bool_t b = kFALSE; Float_t amp = 0; //Get matrix of TRU or Module with maximum amplitude patch. Int_t itru = mtru+iSM*fNTRU ; //number of tru, min 0 max 8*5. TMatrixD * ampmatrix = 0x0; Int_t colborder = 0; Int_t rowborder = 0; if(fIsolateInSuperModule){ ampmatrix = dynamic_cast(ampmatrixes->At(iSM)) ; rowborder = fNCellsPhi*fNTRUPhi; colborder = fNCellsEta*fNTRUEta; AliDebug(2,"Isolate trigger in Module"); } else{ ampmatrix = dynamic_cast(ampmatrixes->At(itru)) ; rowborder = fNCellsPhi; colborder = fNCellsEta; AliDebug(2,"Isolate trigger in TRU"); } //Define patch cells Int_t isolcells = fIsolPatchSize*(1+iPatchType); Int_t ipatchcells = 2*(1+fPatchSize*iPatchType); Int_t minrow = maxphi - isolcells; Int_t mincol = maxeta - isolcells; Int_t maxrow = maxphi + isolcells + ipatchcells; Int_t maxcol = maxeta + isolcells + ipatchcells; AliDebug(2,Form("Number of added Isol Cells %d, Patch Size %d",isolcells, ipatchcells)); AliDebug(2,Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); if(minrow < 0 || mincol < 0 || maxrow > rowborder || maxcol > colborder){ AliDebug(1,Form("Out of Module/TRU range, cannot isolate patch")); return kFALSE; } //Add amplitudes in all isolation patch for(Int_t irow = minrow ; irow < maxrow; irow ++) for(Int_t icol = mincol ; icol < maxcol ; icol ++) amp += (*ampmatrix)(irow,icol); AliDebug(2,Form("Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); if(amp < maxamp){ AliError(Form("Bad sum: Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); return kFALSE; } else amp-=maxamp; //Calculate energy in isolation patch that do not comes from maximum patch. AliDebug(2, Form("Maximum amplitude %f, Out of patch %f",maxamp, amp)); //Fill isolation amplitude data member and say if patch is isolated. if(iPatchType == 0){ //2x2 case f2x2AmpOutOfPatch = amp; if(amp < f2x2AmpOutOfPatchThres) b=kTRUE; } else if(iPatchType == 1){ //nxn case fnxnAmpOutOfPatch = amp; if(amp < fnxnAmpOutOfPatchThres) b=kTRUE; } return b; } //____________________________________________________________________________ void AliEMCALTrigger::MakeSlidingCell(const TClonesArray * amptrus, const TClonesArray * timeRtrus, const Int_t isupermod,TMatrixD *ampmax2, TMatrixD *ampmaxn){ //Sums energy of all possible 2x2 (L0) and nxn (L1) cells per each TRU. //Fast signal in the experiment is given by 2x2 cells, //for this reason we loop inside the TRU cells by 2. //Declare and initialize variables Int_t nCellsPhi = fNCellsPhi;//geom->GetNPhi()*2/geom->GetNTRUPhi() ; if(isupermod > 9) nCellsPhi = nCellsPhi / 2 ; //Half size SM. Not Final. // 12(tow)*2(cell)/1 TRU, cells in Phi in one TRU Int_t nCellsEta = fNCellsEta ;//geom->GetNEta()*2/geom->GetNTRUEta() ; // 24(mod)*2(tower)/3 TRU, cells in Eta in one TRU //Int_t nTRU = geom->GeNTRU();//3 TRU per super module Float_t amp2 = 0 ; Float_t ampn = 0 ; for(Int_t i = 0; i < 4; i++){ for(Int_t j = 0; j < fNTRU; j++){ (*ampmax2)(i,j) = -1; (*ampmaxn)(i,j) = -1; } } //Create matrix that will contain 2x2 amplitude sums //used to calculate the nxn sums TMatrixD * tru2x2 = new TMatrixD(nCellsPhi/2,nCellsEta/2) ; for(Int_t i = 0; i < nCellsPhi/2; i++) for(Int_t j = 0; j < nCellsEta/2; j++) (*tru2x2)(i,j) = -1; //Loop over all TRUS in a supermodule for(Int_t itru = 0 + isupermod * fNTRU ; itru < (isupermod+1)*fNTRU ; itru++) { TMatrixD * amptru = dynamic_cast(amptrus->At(itru)) ; TMatrixD * timeRtru = dynamic_cast(timeRtrus->At(itru)) ; Int_t mtru = itru-isupermod*fNTRU ; //Number of TRU in Supermodule //Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) for(Int_t irow = 0 ; irow < nCellsPhi; irow += 2){ for(Int_t icol = 0 ; icol < nCellsEta ; icol += 2){ amp2 = (*amptru)(irow,icol)+(*amptru)(irow+1,icol)+ (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); //Fill matrix with added 2x2 cells for use in nxn sums (*tru2x2)(irow/2,icol/2) = amp2 ; //Select 2x2 maximum sums to select L0 if(amp2 > (*ampmax2)(0,mtru)){ (*ampmax2)(0,mtru) = amp2 ; (*ampmax2)(1,mtru) = irow; (*ampmax2)(2,mtru) = icol; } } } //Find most recent time in the selected 2x2 cell (*ampmax2)(3,mtru) = 1 ; Int_t row2 = static_cast ((*ampmax2)(1,mtru)); Int_t col2 = static_cast ((*ampmax2)(2,mtru)); for(Int_t i = 0; i<2; i++){ for(Int_t j = 0; j<2; j++){ if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ if((*timeRtru)(row2+i,col2+j) < (*ampmax2)(3,mtru) ) (*ampmax2)(3,mtru) = (*timeRtru)(row2+i,col2+j); } } } //Sliding nxn, add nxn amplitudes (OVERLAP) if(fPatchSize > 0){ for(Int_t irow = 0 ; irow < nCellsPhi/2; irow++){ for(Int_t icol = 0 ; icol < nCellsEta/2 ; icol++){ ampn = 0; if( (irow+fPatchSize) < nCellsPhi/2 && (icol+fPatchSize) < nCellsEta/2){//Avoid exit the TRU for(Int_t i = 0 ; i <= fPatchSize ; i++) for(Int_t j = 0 ; j <= fPatchSize ; j++) ampn += (*tru2x2)(irow+i,icol+j); //Select nxn maximum sums to select L1 if(ampn > (*ampmaxn)(0,mtru)){ (*ampmaxn)(0,mtru) = ampn ; (*ampmaxn)(1,mtru) = irow*2; (*ampmaxn)(2,mtru) = icol*2; } } } } //Find most recent time in selected nxn cell (*ampmaxn)(3,mtru) = 1 ; Int_t rown = static_cast ((*ampmaxn)(1,mtru)); Int_t coln = static_cast ((*ampmaxn)(2,mtru)); for(Int_t i = 0; i<4*fPatchSize; i++){ for(Int_t j = 0; j<4*fPatchSize; j++){ if( (rown+i) < nCellsPhi && (coln+j) < nCellsEta/2){//Avoid exit the TRU if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ if((*timeRtru)(rown+i,coln+j) < (*ampmaxn)(3,mtru) ) (*ampmaxn)(3,mtru) = (*timeRtru)(rown+i,coln+j); } } } } } else { (*ampmaxn)(0,mtru) = (*ampmax2)(0,mtru); (*ampmaxn)(1,mtru) = (*ampmax2)(1,mtru); (*ampmaxn)(2,mtru) = (*ampmax2)(2,mtru); (*ampmaxn)(3,mtru) = (*ampmax2)(3,mtru); } } } //____________________________________________________________________________ void AliEMCALTrigger::Print(const Option_t * opt) const { //Prints main parameters if(! opt) return; AliTriggerInput* in = 0x0 ; printf( " Maximum Amplitude after Sliding Cell, \n") ; printf( " -2x2 cells sum (not overlapped): %10.2f, in Super Module %d\n", f2x2MaxAmp,f2x2SM) ; printf( " -2x2 from row %d to row %d and from column %d to column %d\n", f2x2CellPhi, f2x2CellPhi+2, f2x2CellEta, f2x2CellEta+2) ; printf( " -2x2 Isolation Patch %d x %d, Amplitude out of 2x2 patch is %f, threshold %f, Isolated? %d \n", 2*fIsolPatchSize+2, 2*fIsolPatchSize+2, f2x2AmpOutOfPatch, f2x2AmpOutOfPatchThres,static_cast (fIs2x2Isol)) ; if(fPatchSize > 0){ printf( " Patch Size, n x n: %d x %d cells\n",2*(fPatchSize+1), 2*(fPatchSize+1)); printf( " -nxn cells sum (overlapped) : %10.2f, in Super Module %d\n", fnxnMaxAmp,fnxnSM) ; printf( " -nxn from row %d to row %d and from column %d to column %d\n", fnxnCellPhi, fnxnCellPhi+4*fPatchSize, fnxnCellEta, fnxnCellEta+4*fPatchSize) ; printf( " -nxn Isolation Patch %d x %d, Amplitude out of nxn patch is %f, threshold %f, Isolated? %d \n", 4*fIsolPatchSize+2*(fPatchSize+1),4*fIsolPatchSize+2*(fPatchSize+1) , fnxnAmpOutOfPatch, fnxnAmpOutOfPatchThres,static_cast (fIsnxnIsol) ) ; } printf( " Isolate in SuperModule? %d\n", fIsolateInSuperModule) ; printf( " Threshold for LO %10.2f\n", fL0Threshold) ; in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_L0" ); if(in->GetValue()) printf( " *** EMCAL LO is set ***\n") ; printf( " Jet Low Pt Threshold for L1 %10.2f\n", fL1JetLowPtThreshold) ; in = (AliTriggerInput*)fInputs.FindObject( "EMCAL_JetLPt_L1" ); if(in->GetValue()) printf( " *** EMCAL Jet Low Pt for L1 is set ***\n") ; printf( " Jet Medium Pt Threshold for L1 %10.2f\n", fL1JetMediumPtThreshold) ; in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_JetMPt_L1" ); if(in->GetValue()) printf( " *** EMCAL Jet Medium Pt for L1 is set ***\n") ; printf( " Jet High Pt Threshold for L1 %10.2f\n", fL1JetHighPtThreshold) ; in = (AliTriggerInput*) fInputs.FindObject( "EMCAL_JetHPt_L1" ); if(in->GetValue()) printf( " *** EMCAL Jet High Pt for L1 is set ***\n") ; } //____________________________________________________________________________ void AliEMCALTrigger::SetTriggers(const TClonesArray * ampmatrix,const Int_t iSM, const TMatrixD *ampmax2, const TMatrixD *ampmaxn, const AliEMCALGeometry *geom) { //Checks the 2x2 and nxn maximum amplitude per each TRU and //compares with the different L0 and L1 triggers thresholds Float_t max2[] = {-1,-1,-1,-1} ; Float_t maxn[] = {-1,-1,-1,-1} ; Int_t mtru2 = -1 ; Int_t mtrun = -1 ; //Find maximum summed amplitude of all the TRU //in a Super Module for(Int_t i = 0 ; i < fNTRU ; i++){ if(max2[0] < (*ampmax2)(0,i) ){ max2[0] = (*ampmax2)(0,i) ; // 2x2 summed max amplitude max2[1] = (*ampmax2)(1,i) ; // corresponding phi position in TRU max2[2] = (*ampmax2)(2,i) ; // corresponding eta position in TRU max2[3] = (*ampmax2)(3,i) ; // corresponding most recent time mtru2 = i ; } if(maxn[0] < (*ampmaxn)(0,i) ){ maxn[0] = (*ampmaxn)(0,i) ; // nxn summed max amplitude maxn[1] = (*ampmaxn)(1,i) ; // corresponding phi position in TRU maxn[2] = (*ampmaxn)(2,i) ; // corresponding eta position in TRU maxn[3] = (*ampmaxn)(3,i) ; // corresponding most recent time mtrun = i ; } } //--------Set max amplitude if larger than in other Super Modules------------ Float_t maxtimeR2 = -1 ; Float_t maxtimeRn = -1 ; AliRunLoader *rl = AliRunLoader::GetRunLoader(); AliRun * gAlice = rl->GetAliRun(); AliEMCAL * emcal = (AliEMCAL*)gAlice->GetDetector("EMCAL"); Int_t nTimeBins = emcal->GetRawFormatTimeBins() ; //Set max of 2x2 amplitudes and select L0 trigger if(max2[0] > f2x2MaxAmp ){ f2x2MaxAmp = max2[0] ; f2x2SM = iSM ; maxtimeR2 = max2[3] ; geom->GetCellPhiEtaIndexInSModuleFromTRUIndex(mtru2, static_cast(max2[1]), static_cast(max2[2]), f2x2CellPhi,f2x2CellEta) ; //Isolated patch? if(fIsolateInSuperModule) fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, f2x2CellPhi,f2x2CellEta) ; else fIs2x2Isol = IsPatchIsolated(0, ampmatrix, iSM, mtru2, f2x2MaxAmp, static_cast(max2[1]), static_cast(max2[2])) ; //Transform digit amplitude in Raw Samples fADCValuesLow2x2 = new Int_t[nTimeBins]; fADCValuesHigh2x2 = new Int_t[nTimeBins]; emcal->RawSampledResponse(maxtimeR2, f2x2MaxAmp, fADCValuesHigh2x2, fADCValuesLow2x2) ; //Set Trigger Inputs, compare ADC time bins until threshold is attained //Set L0 for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHigh2x2[i] >= fL0Threshold || fADCValuesLow2x2[i] >= fL0Threshold){ SetInput("EMCAL_L0") ; break; } } } //------------Set max of nxn amplitudes and select L1 trigger--------- if(maxn[0] > fnxnMaxAmp ){ fnxnMaxAmp = maxn[0] ; fnxnSM = iSM ; maxtimeRn = maxn[3] ; geom->GetCellPhiEtaIndexInSModuleFromTRUIndex(mtrun, static_cast(maxn[1]), static_cast(maxn[2]), fnxnCellPhi,fnxnCellEta) ; //Isolated patch? if(fIsolateInSuperModule) fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, fnxnCellPhi, fnxnCellEta) ; else fIsnxnIsol = IsPatchIsolated(1, ampmatrix, iSM, mtrun, fnxnMaxAmp, static_cast(maxn[1]), static_cast(maxn[2])) ; //Transform digit amplitude in Raw Samples fADCValuesHighnxn = new Int_t[nTimeBins]; fADCValuesLownxn = new Int_t[nTimeBins]; emcal->RawSampledResponse(maxtimeRn, fnxnMaxAmp, fADCValuesHighnxn, fADCValuesLownxn) ; //Set Trigger Inputs, compare ADC time bins until threshold is attained //SetL1 Low for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetLowPtThreshold || fADCValuesLownxn[i] >= fL1JetLowPtThreshold){ SetInput("EMCAL_JetLPt_L1") ; break; } } //SetL1 Medium for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetMediumPtThreshold || fADCValuesLownxn[i] >= fL1JetMediumPtThreshold){ SetInput("EMCAL_JetMPt_L1") ; break; } } //SetL1 High for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetHighPtThreshold || fADCValuesLownxn[i] >= fL1JetHighPtThreshold){ SetInput("EMCAL_JetHPt_L1") ; break; } } } } //____________________________________________________________________________ void AliEMCALTrigger::Trigger() { //Main Method to select triggers. AliRunLoader *rl = AliRunLoader::GetRunLoader(); AliEMCALLoader *emcalLoader = dynamic_cast (rl->GetDetectorLoader("EMCAL")); rl->LoadgAlice(); //Neede by calls to AliRun in SetTriggers //Load EMCAL Geometry AliEMCALGeometry * geom = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL"))->GetGeometry(); if (geom==0) AliFatal("Did not get geometry from EMCALLoader"); //Define parameters Int_t nSuperModules = geom->GetNumberOfSuperModules() ; //12 SM in EMCAL fNTRU = geom->GetNTRU(); //3 TRU per super module fNTRUEta = geom->GetNTRUEta(); //3 TRU in eta per super module fNTRUPhi = geom->GetNTRUPhi(); //1 TRU in phi per super module fNCellsPhi = geom->GetNPhi()*2/geom->GetNTRUPhi() ; fNCellsEta = geom->GetNEta()*2/geom->GetNTRUEta() ; //Intialize data members each time the trigger is called in event loop f2x2MaxAmp = -1; f2x2CellPhi = -1; f2x2CellEta = -1; fnxnMaxAmp = -1; fnxnCellPhi = -1; fnxnCellEta = -1; //Take the digits list if simulation if(fSimulation){ rl->LoadDigits("EMCAL"); fDigitsList = emcalLoader->Digits() ; } if(!fDigitsList) AliFatal("Digits not found !") ; //Take the digits list //Fill TRU Matrix TClonesArray * amptrus = new TClonesArray("TMatrixD",1000); TClonesArray * ampsmods = new TClonesArray("TMatrixD",1000); TClonesArray * timeRtrus = new TClonesArray("TMatrixD",1000); geom->FillTRU(fDigitsList, amptrus, ampsmods, timeRtrus) ; //Do Cell Sliding and select Trigger //Initialize varible that will contain maximum amplitudes and //its corresponding cell position in eta and phi, and time. TMatrixD * ampmax2 = new TMatrixD(4,fNTRU) ; TMatrixD * ampmaxn = new TMatrixD(4,fNTRU) ; for(Int_t iSM = 0 ; iSM < nSuperModules ; iSM++) { //Do 2x2 and nxn sums, select maximums. MakeSlidingCell(amptrus, timeRtrus, iSM, ampmax2, ampmaxn); //Set the trigger if(fIsolateInSuperModule) SetTriggers(ampsmods,iSM,ampmax2,ampmaxn,geom) ; if(!fIsolateInSuperModule) SetTriggers(amptrus,iSM,ampmax2,ampmaxn,geom) ; } //Print(); }