#ifndef ALIEMCALTrigger_H #define ALIEMCALTrigger_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //___________________________________________________________ // Class for trigger analysis. // // -- Author: Gustavo Conesa & Yves Schutz (IFIC, SUBATECH, CERN) // Digits are grouped in TRU's (Trigger Units). A TRU consist of 384 cells // ordered fNTRUPhi x fNTRUEta matrix. The algorithm searches all possible // 2x2 and nxn (n multiple of 4) crystal combinations per each TRU, adding the // digits amplitude and finding the maximum. It is found is maximum is isolated. // Maxima are transformed in adc time samples. Each time bin is compared to the // trigger threshold until it is larger and then, triggers are set. // Thresholds need to be fixed. // Last 2 modules are half size in Phi, I considered that the number // of TRU is maintained for the last modules but final decision has not // been taken. If different, then this must to be changed. // Usage: // // //Inside the event loop // AliEMCALTrigger *tr = new AliEMCALTrigger();//Init Trigger // tr->SetL0Threshold(100); // tr->SetL1JetLowPtThreshold(1000); // tr->SetL1JetMediumPtThreshold(10000); // tr->SetL1JetHighPtThreshold(20000); // .... // tr->Trigger(); //Execute Trigger // tr->Print(""); //Print data members after calculation. // //*-- Author: Gustavo Conesa & Yves Schutz (IFIC, SUBATECH, CERN) // --- ROOT system --- class TClonesArray ; #include "TMatrixD.h" // --- AliRoot header files --- #include "AliTriggerDetector.h" class AliEMCALGeometry ; class AliEMCALTrigger : public AliTriggerDetector { public: AliEMCALTrigger() ; // ctor AliEMCALTrigger(const AliEMCALTrigger & trig) ; // cpy ctor virtual ~AliEMCALTrigger(); //virtual dtor virtual void CreateInputs(); //Define trigger inputs for Central Trigger Processor void Print(const Option_t * opt ="") const ; virtual void Trigger(); //Make EMCAL trigger //assignment operator for coding convention const AliEMCALTrigger & operator = (const AliEMCALTrigger & ) {return *this;} //Getters Float_t Get2x2MaxAmplitude() const { return f2x2MaxAmp ; } Float_t GetnxnMaxAmplitude() const { return fnxnMaxAmp ; } Int_t Get2x2CellPhi() const { return f2x2CellPhi ; } Int_t GetnxnCellPhi() const { return fnxnCellPhi ; } Int_t Get2x2CellEta() const { return f2x2CellEta ; } Int_t GetnxnCellEta() const { return fnxnCellEta ; } Int_t Get2x2SuperModule() const { return f2x2SM ; } Int_t GetnxnSuperModule() const { return fnxnSM ; } Int_t * GetADCValuesLowGainMax2x2Sum() { return fADCValuesLow2x2; } Int_t * GetADCValuesHighGainMax2x2Sum() { return fADCValuesHigh2x2; } Int_t * GetADCValuesLowGainMaxnxnSum() { return fADCValuesLownxn; } Int_t * GetADCValuesHighGainMaxnxnSum() { return fADCValuesHighnxn; } Float_t GetL0Threshold() const { return fL0Threshold ; } Float_t GetL1JetLowPtThreshold() const { return fL1JetLowPtThreshold ; } Float_t GetL1JetMediumPtThreshold() const { return fL1JetMediumPtThreshold ; } Float_t GetL1JetHighPtThreshold() const { return fL1JetHighPtThreshold ; } Int_t GetPatchSize() const { return fPatchSize ; } Int_t GetIsolPatchSize() const { return fIsolPatchSize ; } Float_t Get2x2AmpOutOfPatch() const { return f2x2AmpOutOfPatch ; } Float_t GetnxnAmpOutOfPatch() const { return fnxnAmpOutOfPatch ; } Float_t Get2x2AmpOutOfPatchThres() const { return f2x2AmpOutOfPatchThres ; } Float_t GetnxnAmpOutOfPatchThres() const { return fnxnAmpOutOfPatchThres ; } Bool_t Is2x2Isol() const { return fIs2x2Isol ; } Bool_t IsnxnIsol() const { return fIsnxnIsol ; } Bool_t IsSimulation() const { return fSimulation ; } Bool_t IsIsolatedInSuperModule() const { return fIsolateInSuperModule ; } //Setters void SetDigitsList(TClonesArray * digits) {fDigitsList = digits ; } void SetL0Threshold(Int_t amp) {fL0Threshold = amp; } void SetL1JetLowPtThreshold(Int_t amp) {fL1JetLowPtThreshold = amp; } void SetL1JetMediumPtThreshold(Int_t amp) {fL1JetMediumPtThreshold = amp; } void SetL1JetHighPtThreshold(Int_t amp) {fL1JetHighPtThreshold = amp; } void SetPatchSize(Int_t ps) {fPatchSize = ps ; } void SetIsolPatchSize(Int_t ps) {fIsolPatchSize = ps ; } void Set2x2AmpOutOfPatchThres(Float_t th) { f2x2AmpOutOfPatchThres = th; } void SetnxnAmpOutOfPatchThres(Float_t th) { fnxnAmpOutOfPatchThres = th; } void SetSimulation(Bool_t sim ) {fSimulation = sim ; } void SetIsolateInSuperModule(Bool_t isol ) {fIsolateInSuperModule = isol ; } private: void FillTRU(const TClonesArray * digits, TClonesArray * ampmatrix, TClonesArray * ampmatrixsmod, TClonesArray * timeRmatrix); Bool_t IsPatchIsolated(Int_t iPatchType, const TClonesArray * ampmods, const Int_t imod, const Int_t mtru, const Float_t maxamp, const Int_t maxphi, const Int_t maxeta) ; void MakeSlidingCell(const TClonesArray * amptrus, const TClonesArray * timeRtrus,const Int_t supermod, TMatrixD &max2, TMatrixD &maxn) ; void SetTriggers(const TClonesArray * amptrus,const Int_t iSM, const TMatrixD &max2, const TMatrixD &maxn) ; private: AliEMCALGeometry *fGeom; Float_t f2x2MaxAmp ; //! Maximum 2x2 added amplitude (not overlapped) Int_t f2x2CellPhi ; //! upper right cell, row(phi) Int_t f2x2CellEta ; //! and column(eta) Int_t f2x2SM ; //! Super Module where maximum is found Float_t fnxnMaxAmp ; //! Maximum nxn added amplitude (overlapped) Int_t fnxnCellPhi ; //! upper right cell, row(phi) Int_t fnxnCellEta ; //! and column(eta) Int_t fnxnSM ; //! Super Module where maximum is found Int_t* fADCValuesHighnxn ; //! Sampled ADC high gain values for the nxn crystals amplitude sum Int_t* fADCValuesLownxn ; //! " low gain " Int_t* fADCValuesHigh2x2 ; //! " high gain " 2x2 " Int_t* fADCValuesLow2x2 ; //! " low gaing " " TClonesArray* fDigitsList ; //Array of digits Float_t fL0Threshold ; //! L0 trigger energy threshold Float_t fL1JetLowPtThreshold ; //! L1 Low pT trigger energy threshold Float_t fL1JetMediumPtThreshold ; //! L1 Medium pT trigger energy threshold Float_t fL1JetHighPtThreshold ; //! L1 High pT trigger energy threshold Int_t fPatchSize; //! Trigger patch factor, to be multiplied to 2x2 cells // 0 means 2x2, 1 means 4x4, 2 means 6x6 ... Int_t fIsolPatchSize ; // Isolation patch size, number of rows or columns to add to // the 2x2 or nxn maximum amplitude patch. // 1 means a patch around max amplitude of 2x2 of 4x4 and around // max ampl patch of 4x4 of 8x8 Float_t f2x2AmpOutOfPatch; // Amplitude in isolation cone minus maximum amplitude of the reference patch Float_t fnxnAmpOutOfPatch; Float_t f2x2AmpOutOfPatchThres; // Threshold to select a trigger as isolated on f2x2AmpOutOfPatch value Float_t fnxnAmpOutOfPatchThres; Float_t fIs2x2Isol; // Patch is isolated if f2x2AmpOutOfPatchThres threshold is passed Float_t fIsnxnIsol ; Bool_t fSimulation ; //! Flag to do the trigger during simulation or reconstruction Bool_t fIsolateInSuperModule; //! Flag to isolate trigger patch in SuperModule or in TRU acceptance ClassDef(AliEMCALTrigger,0) } ; #endif //ALIEMCALTrigger_H