/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //_________________________________________________________________________ // Base class for the cluster unfolding algorithm //*-- Author: Adam Matyja (SUBATECH) // Based on unfolding in clusterizerv1 done by Cynthia Hadjidakis //-- Unfolding for eta~0: Cynthia Hadjidakis - still in AliEMCALCLusterizerv1 //-- Unfolding extension for whole EMCAL: Adam Matyja (SUBATECH & INP PAN) // // unfolds the clusters having several local maxima. ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- #include "TClonesArray.h" #include #include // --- Standard library --- #include // --- AliRoot header files --- #include "AliEMCALUnfolding.h" #include "AliEMCALGeometry.h" #include "AliRunLoader.h" #include "AliRun.h" #include "AliEMCAL.h" #include "AliEMCALRecParam.h" #include "AliEMCALRecPoint.h" #include "AliEMCALDigit.h" #include "AliEMCALReconstructor.h" #include "AliLog.h" #include "AliCDBManager.h" class AliCDBStorage; #include "AliCDBEntry.h" Double_t AliEMCALUnfolding::fgSSPars[8]={0.9262,3.365,1.548,0.1625,-0.4195,0.,0.,2.332}; Double_t AliEMCALUnfolding::fgPar5[3]={12.31,-0.007381,-0.06936}; Double_t AliEMCALUnfolding::fgPar6[3]={0.05452,0.0001228,0.001361}; ClassImp(AliEMCALUnfolding) //____________________________________________________________________________ AliEMCALUnfolding::AliEMCALUnfolding(): fNumberOfECAClusters(0), fECALocMaxCut(0), fThreshold(0.01),//10 MeV fGeom(NULL), fRecPoints(NULL), fDigitsArr(NULL) { // ctor with the indication of the file where header Tree and digits Tree are stored Init() ; } //____________________________________________________________________________ AliEMCALUnfolding::AliEMCALUnfolding(AliEMCALGeometry* geometry): fNumberOfECAClusters(0), fECALocMaxCut(0), fThreshold(0.01),//10 MeV fGeom(geometry), fRecPoints(NULL), fDigitsArr(NULL) { // ctor with the indication of the file where header Tree and digits Tree are stored // use this contructor to avoid usage of Init() which uses runloader // change needed by HLT - MP if (!fGeom) { AliFatal("AliEMCALUnfolding: Geometry not initialized."); } } //____________________________________________________________________________ AliEMCALUnfolding::AliEMCALUnfolding(AliEMCALGeometry* geometry,Float_t ECALocMaxCut,Double_t *SSPars,Double_t *Par5,Double_t *Par6): fNumberOfECAClusters(0), fECALocMaxCut(ECALocMaxCut), fThreshold(0.01),//10 MeV fGeom(geometry), fRecPoints(NULL), fDigitsArr(NULL) { // ctor with the indication of the file where header Tree and digits Tree are stored // use this contructor to avoid usage of Init() which uses runloader // change needed by HLT - MP if (!fGeom) { AliFatal("AliEMCALUnfolding: Geometry not initialized."); } Int_t i=0; for (i = 0; i < 8; i++) fgSSPars[i] = SSPars[i]; for (i = 0; i < 3; i++) { fgPar5[i] = Par5[i]; fgPar6[i] = Par6[i]; } } //____________________________________________________________________________ void AliEMCALUnfolding::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of EMCAL tasks AliRunLoader *rl = AliRunLoader::Instance(); if (rl && rl->GetAliRun()){ AliEMCAL* emcal = dynamic_cast(rl->GetAliRun()->GetDetector("EMCAL")); if(emcal)fGeom = emcal->GetGeometry(); } if(!fGeom) fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName()); AliDebug(1,Form("geom %p",fGeom)); if(!gMinuit) gMinuit = new TMinuit(100) ; } //____________________________________________________________________________ AliEMCALUnfolding::~AliEMCALUnfolding() { // dtor } //____________________________________________________________________________ void AliEMCALUnfolding::SetInput(Int_t numberOfECAClusters,TObjArray *recPoints,TClonesArray *digitsArr) { // //Set input for unfolding purposes SetNumberOfECAClusters(numberOfECAClusters); SetRecPoints(recPoints); SetDigitsArr(digitsArr); } //____________________________________________________________________________ void AliEMCALUnfolding::MakeUnfolding() { // Unfolds clusters using the shape of an ElectroMagnetic shower // Performs unfolding of all clusters //cout<<"fNumberOfECAClusters "< 0){ if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader") ; //Int_t nModulesToUnfold = fGeom->GetNCells(); Int_t numberofNotUnfolded = fNumberOfECAClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliEMCALRecPoint * recPoint = dynamic_cast( fRecPoints->At(index) ) ; if(recPoint){ Int_t nMultipl = recPoint->GetMultiplicity() ; AliEMCALDigit ** maxAt = new AliEMCALDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = recPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fECALocMaxCut,fDigitsArr) ; //cout<<"nMax "< 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 if(UnfoldClusterV2(recPoint, nMax, maxAt, maxAtEnergy) ){ fRecPoints->Remove(recPoint); fRecPoints->Compress() ;//is it really needed index-- ; fNumberOfECAClusters-- ; numberofNotUnfolded-- ; } } else{ recPoint->SetNExMax(1) ; //Only one local maximum } delete[] maxAt ; delete[] maxAtEnergy ; } else AliError("RecPoint NULL"); //end of check if recPoint exist } // rec point loop }//end of check fNumberOfECAClusters // End of Unfolding of clusters } //____________________________________________________________________________ Bool_t AliEMCALUnfolding::UnfoldClusterV2(AliEMCALRecPoint * iniTower, Int_t nMax, AliEMCALDigit ** maxAt, Float_t * maxAtEnergy) { // Extended to whole EMCAL //**************************** part 1 ******************************************* // Performs the unfolding of a cluster with nMax overlapping showers //cout<<"unfolding check here part 1"<GetEnergy()); Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; //cout<<"number of parameters "<SetNExMax(-1) ; delete[] fitparameters ; return kFALSE; } // for(Int_t iii=0;iiiSetNExMax(1) ; delete[] fitparameters ; return kFALSE; } } //**************************** part 2 ******************************************* // create unfolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with // fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy // deposition // cout<<"unfolding check here part 2"<GetMultiplicity() ; // cout<<"cluster multiplicity "<GetMultiplicity() <GetDigitsList() ; Int_t iSupMod = 0 ; Int_t iTower = 0 ; Int_t iIphi = 0 ; Int_t iIeta = 0 ; Int_t iphi = 0 ;//x direction Int_t ieta = 0 ;//z direstion Int_t iparam = 0 ; Int_t iDigit = 0 ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++) { digit = dynamic_cast( fDigitsArr->At(digitsList[iDigit] ) ) ; if(digit) { fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); EvalParsPhiDependence(digit->GetId(),fGeom); efit[iDigit] = 0.; iparam = 0; while(iparam < nPar ) { xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; // cout<<" xpar from fit "<GetEnergiesList() ; Float_t ratio = 0. ;//0 -> 0. changed Float_t eDigit = 0. ; Int_t nSplittedClusters=(Int_t)nPar/3; Float_t * correctedEnergyList = new Float_t[nDigits*nSplittedClusters]; //above - temporary table with energies after unfolding. //the order is following: //first cluster , //second cluster , etc. //**************************** sub-part 3.1 ************************************* //here we check if energy of the cell in the cluster after unfolding is above threshold. //If not the energy from a given cell in the cluster is divided in correct proportions //in accordance to the other clusters and added to them and set to 0. // cout<<"unfolding check here part 3.1"<( fDigitsArr->At( digitsList[iDigit] ) ) ; if(digit) { fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); EvalParsPhiDependence(digit->GetId(),fGeom); // cout<<"iparam "< 0. changed Int_t maximumIndex=0; Bool_t isAnyBelowThreshold=kFALSE; // Float_t Threshold=0.01; Float_t * energyFraction = new Float_t[nSplittedClusters]; Int_t iparam2 = 0 ; for(iDigit = 0 ; iDigit < nDigits ; iDigit++) { isAnyBelowThreshold=kFALSE; maximumEne=0.;//0 -> 0. changed for(iparam = 0 ; iparam < nPar ; iparam+=3) { if(correctedEnergyList[iparam/3*nDigits+iDigit] < fThreshold ) isAnyBelowThreshold = kTRUE; if(correctedEnergyList[iparam/3*nDigits+iDigit] > maximumEne) { maximumEne = correctedEnergyList[iparam/3*nDigits+iDigit]; maximumIndex = iparam; } }//end of loop over clusters after unfolding if(!isAnyBelowThreshold) continue; //no cluster-cell below threshold //printf("Correct E cell %f < %f, org Digit index %d, e = %f\n",correctedEnergyList[iparam/3*nDigits+iDigit],fThreshold,iDigit, energiesList[iDigit]); //if( energiesList[iDigit] < correctedEnergyList[iparam/3*nDigits+iDigit]) printf("\t What? \n"); //cout<<" Correct E cell "<= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters) ; //add recpoint (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ; recPoint = dynamic_cast( fRecPoints->At(fNumberOfECAClusters) ) ; if(recPoint){//recPoint preseent -> good recPoint->SetNExMax(nSplittedClusters) ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++) { digit = dynamic_cast( fDigitsArr->At( digitsList[iDigit] ) ) ; if(digit && correctedEnergyList[iparam/3*nDigits+iDigit]>0. ){ // cout<<"idigit,nMax"<AddDigit( *digit, correctedEnergyList[iparam/3*nDigits+iDigit], kFALSE ) ; //FIXME, need to study the shared case } else { AliDebug(1,Form("NULL digit part3.3 or NULL energy=%f",correctedEnergyList[iparam/3*nDigits+iDigit])); //cout<<"nDigits "<GetMultiplicity()==0){//recpoint exists but no digits associated -> remove from list delete (*fRecPoints)[fNumberOfECAClusters]; //cout<<"size fRecPoints before "<GetSize()<RemoveAt(fNumberOfECAClusters); //cout<<"size fRecPoints after "<GetSize()< very good increase number of clusters fNumberOfECAClusters++ ; } } else {//recPoint empty -> remove from list AliError("NULL RecPoint"); //protection from recpoint with no digits // cout<<"multi rec "<GetMultiplicity()<GetMultiplicity()==0) { delete (*fRecPoints)[fNumberOfECAClusters]; //cout<<"size fRecPoints before "<GetSize()<RemoveAt(fNumberOfECAClusters); //cout<<"size fRecPoints after "<GetSize()<SetNExMax(-1) ; delete[] fitparameters ; return kFALSE; } // create unfolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with // fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy // deposition Int_t nDigits = iniTower->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ;//new fitted energy in cells Float_t xpar=0.,zpar=0.,epar=0. ;//center of gravity in cell units AliEMCALDigit * digit = 0 ; Int_t * digitsList = iniTower->GetDigitsList() ; Int_t iSupMod = 0 ; Int_t iTower = 0 ; Int_t iIphi = 0 ; Int_t iIeta = 0 ; Int_t iphi = 0 ;//x direction Int_t ieta = 0 ;//z direstion Int_t iparam = 0 ; Int_t iDigit = 0 ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At(digitsList[iDigit] ) ) ; if(digit){ fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); EvalParsPhiDependence(digit->GetId(),fGeom); efit[iDigit] = 0.; iparam = 0; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; efit[iDigit] += epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ; } } else AliError("Digit NULL!"); }//digit loop // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed between new clusters proportionally // to its contribution to efit Float_t * energiesList = iniTower->GetEnergiesList() ; Float_t ratio = 0 ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; AliEMCALRecPoint * recPoint = 0 ; if(fNumberOfECAClusters >= fRecPoints->GetSize()) fRecPoints->Expand(2*fNumberOfECAClusters) ; //add recpoint (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ; recPoint = dynamic_cast( fRecPoints->At(fNumberOfECAClusters) ) ; if(recPoint){ fNumberOfECAClusters++ ; recPoint->SetNExMax((Int_t)nPar/3) ; Float_t eDigit = 0. ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( fDigitsArr->At( digitsList[iDigit] ) ) ; if(digit){ fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); EvalParsPhiDependence(digit->GetId(),fGeom); if(efit[iDigit]==0) continue;//just for sure ratio = epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) / efit[iDigit] ; eDigit = energiesList[iDigit] * ratio ; recPoint->AddDigit( *digit, eDigit, kFALSE ) ; //FIXME, need to study the shared case } else AliError("NULL digit"); }//digit loop } else AliError("NULL RecPoint"); }//while delete[] fitparameters ; delete[] efit ; return kTRUE; } //____________________________________________________________________________ Bool_t AliEMCALUnfolding::FindFitV2(AliEMCALRecPoint * recPoint, AliEMCALDigit ** maxAt, const Float_t* maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the // positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 // electromagnetic showers if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader"); if(!gMinuit) gMinuit = new TMinuit(100) ;//max 100 parameters gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliEMCALUnfolding::UnfoldingChiSquareV2) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(recPoint,0) ; toMinuit->AddAt(fDigitsArr,1) ; toMinuit->AddAt(fGeom,2) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliEMCALDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; Int_t iSupMod = 0 ; Int_t iTower = 0 ; Int_t iIphi = 0 ; Int_t iIeta = 0 ; Int_t iphi = 0 ;//x direction Int_t ieta = 0 ;//z direstion for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; if(digit==0) AliError("energy of digit = 0!"); fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); Float_t energy = maxAtEnergy[iDigit] ; //gMinuit->mnparm(index, "x", iphi, 0.1, 0, 0, ierflg) ;//original gMinuit->mnparm(index, "x", iphi, 0.05, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %d", iphi ) ; toMinuit->Clear(); delete toMinuit ; return kFALSE; } //gMinuit->mnparm(index, "z", ieta, 0.1, 0, 0, ierflg) ;//original gMinuit->mnparm(index, "z", ieta, 0.05, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %d", ieta) ; toMinuit->Clear(); delete toMinuit ; return kFALSE; } //gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ;//original gMinuit->mnparm(index, "Energy", energy , 0.001*energy, 0., 5.*energy, ierflg) ;//was 0.05 index++ ; if(ierflg != 0){ Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ; toMinuit->Clear(); delete toMinuit ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; // The number of function call slightly depends on it. // Double_t p1 = 1.0 ;// par to gradient Double_t p2 = 0.0 ; // Double_t p3 = 3.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls // gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5);//was 5 gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings //gMinuit->mnexcm("SET PRI", &p3 , 3, ierflg) ; // printouts gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize //gMinuit->mnexcm("MINI", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found AliDebug(1,"EMCAL Unfolding Fit not converged, cluster abandoned " ) ; toMinuit->Clear(); delete toMinuit ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err = 0. ; Double_t val = 0. ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } toMinuit->Clear(); delete toMinuit ; return kTRUE; } //____________________________________________________________________________ Double_t AliEMCALUnfolding::ShowerShapeV2(Double_t x, Double_t y) { // extended to whole EMCAL // Shape of the shower // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r = fgSSPars[7]*TMath::Sqrt(x*x+y*y); Double_t rp1 = TMath::Power(r, fgSSPars[1]) ; Double_t rp5 = TMath::Power(r, fgSSPars[5]) ; Double_t shape = fgSSPars[0]*TMath::Exp( -rp1 * (1. / (fgSSPars[2] + fgSSPars[3] * rp1) + fgSSPars[4] / (1 + fgSSPars[6] * rp5) ) ) ; return shape ; } //____________________________________________________________________________ void AliEMCALUnfolding::UnfoldingChiSquareV2(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = dynamic_cast( gMinuit->GetObjectFit() ) ; if(toMinuit){ AliEMCALRecPoint * recPoint = dynamic_cast( toMinuit->At(0) ) ; TClonesArray * digits = dynamic_cast( toMinuit->At(1) ) ; // A bit buggy way to get an access to the geometry // To be revised! AliEMCALGeometry *geom = dynamic_cast(toMinuit->At(2)); if(recPoint && digits && geom){ Int_t * digitsList = recPoint->GetDigitsList() ; Int_t nOdigits = recPoint->GetDigitsMultiplicity() ; Float_t * energiesList = recPoint->GetEnergiesList() ; fret = 0. ; Int_t iparam = 0 ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit = 0. ; AliEMCALDigit * digit ; Int_t iDigit ; Int_t iSupMod = 0 ; Int_t iTower = 0 ; Int_t iIphi = 0 ; Int_t iIeta = 0 ; Int_t iphi = 0 ;//x direction Int_t ieta = 0 ;//z direstion for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { if(energiesList[iDigit]==0) continue; digit = dynamic_cast( digits->At( digitsList[iDigit] ) ); if(digit){ geom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); geom->GetCellPhiEtaIndexInSModule(iSupMod,iTower, iIphi, iIeta,iphi,ieta); EvalParsPhiDependence(digit->GetId(),geom); if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0. ; while(iParam < nPar ){ Double_t dx = ((Float_t)iphi - x[iParam]) ; iParam++ ; Double_t dz = ((Float_t)ieta - x[iParam]) ; iParam++ ; efit += x[iParam] * ShowerShapeV2(dx,dz) ; iParam++ ; } Double_t sum = 2. * (efit - energiesList[iDigit]) / energiesList[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; Double_t dr = fgSSPars[7]*TMath::Sqrt( ((Float_t)iphi - xpar) * ((Float_t)iphi - xpar) + ((Float_t)ieta - zpar) * ((Float_t)ieta - zpar) ); Double_t shape = sum * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ; Double_t rp1 = TMath::Power(dr, fgSSPars[1]) ; Double_t rp5 = TMath::Power(dr, fgSSPars[5]) ; Double_t deriv = -2 * TMath::Power(dr,fgSSPars[1]-2.) * fgSSPars[7] * fgSSPars[7] * (fgSSPars[1] * ( 1/(fgSSPars[2]+fgSSPars[3]*rp1) + fgSSPars[4]/(1+fgSSPars[6]*rp5) ) - (fgSSPars[1]*fgSSPars[3]*rp1/( (fgSSPars[2]+fgSSPars[3]*rp1)*(fgSSPars[2]+fgSSPars[3]*rp1) ) + fgSSPars[4]*fgSSPars[5]*fgSSPars[6]*rp5/( (1+fgSSPars[6]*rp5)*(1+fgSSPars[6]*rp5) ) ) ); //Double_t deriv =-1.33 * TMath::Power(dr,0.33)*dr * ( 1.57 / ( (1.57 + 0.0860 * r133) * (1.57 + 0.0860 * r133) ) // - 0.55 / (1 + 0.000563 * r669) / ( (1 + 0.000563 * r669) * (1 + 0.000563 * r669) ) ) ; Grad[iParam] += epar * shape * deriv * ((Float_t)iphi - xpar) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * ((Float_t)ieta - zpar) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; efit += epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ; } fret += (efit-energiesList[iDigit])*(efit-energiesList[iDigit])/energiesList[iDigit] ; // Here we assume, that sigma = sqrt(E) } else printf("AliEMCALUnfoding::UnfoldingChiSquareV2 - NULL digit!, nPar %d \n", nPar); // put nPar here to cheat coverity and rule checker } // digit loop } // recpoint, digits and geom not NULL }// List is not NULL } //____________________________________________________________________________ void AliEMCALUnfolding::SetShowerShapeParams(Double_t *pars){ for(UInt_t i=0;i<7;++i) fgSSPars[i]=pars[i]; if(pars[2]==0. && pars[3]==0.) fgSSPars[2]=1.;//to avoid dividing by 0 } //____________________________________________________________________________ void AliEMCALUnfolding::SetPar5(Double_t *pars){ for(UInt_t i=0;i<3;++i) fgPar5[i]=pars[i]; } //____________________________________________________________________________ void AliEMCALUnfolding::SetPar6(Double_t *pars){ for(UInt_t i=0;i<3;++i) fgPar6[i]=pars[i]; } //____________________________________________________________________________ void AliEMCALUnfolding::EvalPar5(Double_t phi){ // //Evaluate the 5th parameter of the shower shape function //phi in degrees range (-10,10) // //fSSPars[5] = 12.31 - phi*0.007381 - phi*phi*0.06936; fgSSPars[5] = fgPar5[0] + phi * fgPar5[1] + phi*phi * fgPar5[2]; } //____________________________________________________________________________ void AliEMCALUnfolding::EvalPar6(Double_t phi){ // //Evaluate the 6th parameter of the shower shape function //phi in degrees range (-10,10) // //fSSPars[6] = 0.05452 + phi*0.0001228 + phi*phi*0.001361; fgSSPars[6] = fgPar6[0] + phi * fgPar6[1] + phi*phi * fgPar6[2]; } //____________________________________________________________________________ void AliEMCALUnfolding::EvalParsPhiDependence(Int_t absId, const AliEMCALGeometry *geom){ // // calculate params p5 and p6 depending on the phi angle in global coordinate // for the cell with given absId index // Double_t etaGlob = 0.;//eta in global c.s. - unused Double_t phiGlob = 0.;//phi in global c.s. in radians geom->EtaPhiFromIndex(absId, etaGlob, phiGlob); phiGlob*=180./TMath::Pi(); phiGlob-=90.; phiGlob-= (Double_t)((Int_t)geom->GetSuperModuleNumber(absId)/2 * 20); EvalPar5(phiGlob); EvalPar6(phiGlob); }