/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // Class to generate correlated Heavy Flavor hadron pairs (one or several pairs // per event) using paramtrized kinematics of quark pairs from some generator // and quark fragmentation functions. // Is a generalisation of AliGenParam class for correlated pairs of hadrons. // In this version quark pairs and fragmentation functions are obtained from // Pythia6.124 using 100K events generated with kCharmppMNRwmi&kBeautyppMNRwmi // in pp collisions at 14 TeV. // Decays are performed by Pythia. Used AliRoot version: v4-04-Release // Author: S. Grigoryan, LPC Clermont-Fd & YerPhI, Smbat.Grigoryan@cern.ch // July 07: added quarks in the stack (B. Vulpescu) //------------------------------------------------------------------------- // How it works (for the given flavor): // // 1) Reads QQbar kinematical grid from the Input file and generates // quark pairs according to the weights of the cells. // It is a 5D grid in y1,y2,pt1,pt2 and deltaphi, with occupancy weights // of the cells obtained from Pythia (see details in GetQuarkPair). // 2) Reads "soft" and "hard" fragmentation functions (12 2D-histograms each, // for 12 pt bins) from the Input file, applies to quarks and produces hadrons // (only lower states, with proportions of species obtained from Pythia). // Fragmentation functions are the same for all hadron species and depend // on 2 variables - light cone energy-momentum fractions: // z1=(E_H + Pz_H)/(E_Q + Pz_Q), z2=(E_H - Pz_H)/(E_Q - Pz_Q). // "soft" & "hard" FFs correspond to "slower" & "faster" quark of a pair // (see details in GetHadronPair). // 3) Decays the hadrons and saves all the particles in the event stack in the // following order: HF hadron from Q, then its decay products, then HF hadron // from Qbar, then its decay productes, then next HF hadon pair (if any) // in the same way, etc... // 4) It is fast, e.g., generates the same number of events with a beauty pair // ~15 times faster than AliGenPythia with kBeautyppMNRwmi (w/o tracking) // // An Input file for each quark flavor is included in EVGEN/dataCorrHF/ // One can use also user-defined Input files. // // More details could be found in my presentation at DiMuonNet Workshop, Dec 2006: // http://www-dapnia.cea.fr/Sphn/Alice/DiMuonNet // and will be published in an Internal Note. // //------------------------------------------------------------------------- // How to use it: // // add the following typical lines in Config.C /* if (!strcmp(option,"corr")) { // Example for correlated charm or beauty hadron pair production // AliGenCorrHF *gener = new AliGenCorrHF(1, 4); // for charm, 1 pair per event AliGenCorrHF *gener = new AliGenCorrHF(1, 5); // for beauty, 1 pair per event gener->SetMomentumRange(0,9999); gener->SetCutOnChild(0); // 1/0 means cuts on children enable/disable gener->SetChildThetaRange(171.0,178.0); gener->SetOrigin(0,0,0); //vertex position gener->SetSigma(0,0,0); //Sigma in (X,Y,Z) (cm) on IP position gener->SetForceDecay(kSemiMuonic); gener->SetTrackingFlag(0); gener->Init(); } */ // and in aliroot do e.g. gAlice->Run(10,"Config.C") to produce 10 events. // One can include AliGenCorrHF in an AliGenCocktail generator. //-------------------------------------------------------------------------- #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliGenCorrHF.h" #include "AliLog.h" #include "AliConst.h" #include "AliDecayer.h" #include "AliMC.h" #include "AliRun.h" #include "AliGenEventHeader.h" ClassImp(AliGenCorrHF) //Begin_Html /* */ //End_Html Double_t AliGenCorrHF::fgdph[19] = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180}; Double_t AliGenCorrHF::fgy[31] = {-10,-7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, -2.5, -2,- 1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 10}; Double_t AliGenCorrHF::fgpt[33] = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.6, 7.2, 7.8, 8.4, 9, 9.6, 10.3, 11.1, 12, 13.1, 14.3, 15.6, 17.1, 19, 21, 24, 28, 35, 50, 100}; Int_t AliGenCorrHF::fgnptbins = 12; Double_t AliGenCorrHF::fgptbmin[12] = {0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 9}; Double_t AliGenCorrHF::fgptbmax[12] = {0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 9, 100}; Double_t* AliGenCorrHF::fgIntegral = 0; //____________________________________________________________ AliGenCorrHF::AliGenCorrHF(): fFileName(0), fFile(0), fQuark(0), fBias(0.), fTrials(0), fDecayer(0) { // Default constructor } //____________________________________________________________ AliGenCorrHF::AliGenCorrHF(Int_t npart, Int_t param): AliGenMC(npart), fFileName(0), fFile(0), fQuark(param), fBias(0.), fTrials(0), // fDecayer(new AliDecayerPythia()) fDecayer(0) { // Constructor using number of particles, quark type & default InputFile // if (fQuark != 5) fQuark = 4; fFileName = "$ALICE_ROOT/EVGEN/dataCorrHF/CharmppMNRwmiCorr100K.root"; if (fQuark == 5) fFileName = "$ALICE_ROOT/EVGEN/dataCorrHF/BeautyppMNRwmiCorr100K.root"; fName = "Default"; fTitle= "Generator for correlated pairs of HF hadrons"; fChildSelect.Set(5); for (Int_t i=0; i<5; i++) fChildSelect[i]=0; SetForceDecay(); SetCutOnChild(); SetChildMomentumRange(); SetChildPtRange(); SetChildPhiRange(); SetChildThetaRange(); } //___________________________________________________________________ AliGenCorrHF::AliGenCorrHF(char* tname, Int_t npart, Int_t param): AliGenMC(npart), fFileName(tname), fFile(0), fQuark(param), fBias(0.), fTrials(0), // fDecayer(new AliDecayerPythia()) fDecayer(0) { // Constructor using number of particles, quark type & user-defined InputFile // if (fQuark != 5) fQuark = 4; fName = "UserDefined"; fTitle= "Generator for correlated pairs of HF hadrons"; fChildSelect.Set(5); for (Int_t i=0; i<5; i++) fChildSelect[i]=0; SetForceDecay(); SetCutOnChild(); SetChildMomentumRange(); SetChildPtRange(); SetChildPhiRange(); SetChildThetaRange(); } //____________________________________________________________ AliGenCorrHF::~AliGenCorrHF() { // Destructor delete fFile; } //____________________________________________________________ void AliGenCorrHF::Init() { // Initialisation AliInfo(Form(" QQbar kinematics and fragm. functions from: %s",fFileName.Data() )); fFile = TFile::Open(fFileName.Data()); if(!fFile->IsOpen()){ AliError(Form("Could not open file %s",fFileName.Data() )); } ComputeIntegral(fFile); fParentWeight = 1./fNpart; // fNpart is number of HF-hadron pairs // particle decay related initialization if (gMC) fDecayer = gMC->GetDecayer(); fDecayer->SetForceDecay(fForceDecay); fDecayer->Init(); // AliGenMC::Init(); } //____________________________________________________________ void AliGenCorrHF::Generate() { // // Generate fNpart of correlated HF hadron pairs per event // in the the desired theta and momentum windows (phi = 0 - 2pi). // // Reinitialize decayer fDecayer->SetForceDecay(fForceDecay); fDecayer->Init(); // Float_t polar[3]= {0,0,0}; // Polarisation of the parent particle (for GEANT tracking) Float_t origin0[3]; // Origin of the generated parent particle (for GEANT tracking) Float_t pt, pl, ptot; // Transverse, logitudinal and total momenta of the parent particle Float_t phi, theta; // Phi and theta spherical angles of the parent particle momentum Float_t p[3], pc[3], och[3];// Momentum, polarisation and origin of the children particles from lujet Int_t nt, i, j, ipa, ihadron[2], iquark[2]; Float_t wgtp, wgtch, random[6]; Float_t pq[2][3]; // Momenta of the two quarks Int_t ntq[2] = {-1, -1}; Double_t tanhy2, qm = 0; Double_t dphi=0, ptq[2], yq[2], pth[2], plh[2], ph[2], phih[2], phiq[2]; for (i=0; i<2; i++) { ptq[i] =0; yq[i] =0; pth[i] =0; plh[i] =0; phih[i] =0; phiq[i] =0; ihadron[i] =0; iquark[i] =0; } // same quarks mass as in the fragmentation functions if (fQuark == 4) qm = 1.20; else qm = 4.75; static TClonesArray *particles; // if(!particles) particles = new TClonesArray("TParticle",1000); TDatabasePDG *pDataBase = TDatabasePDG::Instance(); // // Calculating vertex position per event for (j=0;j<3;j++) origin0[j]=fOrigin[j]; if(fVertexSmear==kPerEvent) { Vertex(); for (j=0;j<3;j++) origin0[j]=fVertex[j]; } ipa=0; // Generating fNpart particles fNprimaries = 0; while (ipa<2*fNpart) { GetQuarkPair(fFile, fgIntegral, yq[0], yq[1], ptq[0], ptq[1], dphi); GetHadronPair(fFile, fQuark, yq[0], yq[1], ptq[0], ptq[1], ihadron[0], ihadron[1], plh[0], plh[1], pth[0], pth[1]); // Cuts from AliGenerator // Cut on theta theta=TMath::ATan2(pth[0],plh[0]); if(thetafThetaMax) continue; theta=TMath::ATan2(pth[1],plh[1]); if(thetafThetaMax) continue; // Cut on momentum ph[0]=TMath::Sqrt(pth[0]*pth[0]+plh[0]*plh[0]); if (ph[0]fPMax) continue; ph[1]=TMath::Sqrt(pth[1]*pth[1]+plh[1]*plh[1]); if (ph[1]fPMax) continue; // Add the quarks in the stack phiq[0] = Rndm()*k2PI; if (Rndm() < 0.5) { phiq[1] = phiq[0] + dphi*kDegrad; } else { phiq[1] = phiq[0] - dphi*kDegrad; } if (phiq[1] > k2PI) phiq[1] -= k2PI; if (phiq[1] < 0 ) phiq[1] += k2PI; // quarks pdg iquark[0] = +fQuark; iquark[1] = -fQuark; // px and py TVector2 qvect1 = TVector2(); TVector2 qvect2 = TVector2(); qvect1.SetMagPhi(ptq[0],phiq[0]); qvect2.SetMagPhi(ptq[1],phiq[1]); pq[0][0] = qvect1.Px(); pq[0][1] = qvect1.Py(); pq[1][0] = qvect2.Px(); pq[1][1] = qvect2.Py(); // pz tanhy2 = TMath::TanH(yq[0]); tanhy2 *= tanhy2; pq[0][2] = TMath::Sqrt((ptq[0]*ptq[0]+qm*qm)*tanhy2/(1-tanhy2)); pq[0][2] = TMath::Sign((Double_t)pq[0][2],yq[0]); tanhy2 = TMath::TanH(yq[1]); tanhy2 *= tanhy2; pq[1][2] = TMath::Sqrt((ptq[1]*ptq[1]+qm*qm)*tanhy2/(1-tanhy2)); pq[1][2] = TMath::Sign((Double_t)pq[1][2],yq[1]); // Here we assume that |phi_H1 - phi_H2| = |phi_Q1 - phi_Q2| = dphi // which is a good approximation for heavy flavors in Pythia // ... moreover, same phi angles as for the quarks ... phih[0] = phiq[0]; phih[1] = phiq[1]; for (Int_t ihad = 0; ihad < 2; ihad++) { while(1) { // // particle type Int_t iPart = ihadron[ihad]; fChildWeight=(fDecayer->GetPartialBranchingRatio(iPart))*fParentWeight; wgtp=fParentWeight; wgtch=fChildWeight; TParticlePDG *particle = pDataBase->GetParticle(iPart); Float_t am = particle->Mass(); phi = phih[ihad]; pt = pth[ihad]; pl = plh[ihad]; ptot=TMath::Sqrt(pt*pt+pl*pl); p[0]=pt*TMath::Cos(phi); p[1]=pt*TMath::Sin(phi); p[2]=pl; if(fVertexSmear==kPerTrack) { Rndm(random,6); for (j=0;j<3;j++) { origin0[j]= fOrigin[j]+fOsigma[j]*TMath::Cos(2*random[2*j]*TMath::Pi())* TMath::Sqrt(-2*TMath::Log(random[2*j+1])); } } // Looking at fForceDecay : // if fForceDecay != none Primary particle decays using // AliPythia and children are tracked by GEANT // // if fForceDecay == none Primary particle is tracked by GEANT // (In the latest, make sure that GEANT actually does all the decays you want) // if (fForceDecay != kNoDecay) { // Using lujet to decay particle Float_t energy=TMath::Sqrt(ptot*ptot+am*am); TLorentzVector pmom(p[0], p[1], p[2], energy); fDecayer->Decay(iPart,&pmom); // // select decay particles Int_t np=fDecayer->ImportParticles(particles); // Selecting GeometryAcceptance for particles fPdgCodeParticleforAcceptanceCut; if (fGeometryAcceptance) if (!CheckAcceptanceGeometry(np,particles)) continue; Int_t ncsel=0; Int_t* pFlag = new Int_t[np]; Int_t* pParent = new Int_t[np]; Int_t* pSelected = new Int_t[np]; Int_t* trackIt = new Int_t[np]; for (i=0; i1) { TParticle* iparticle = (TParticle *) particles->At(0); Int_t ipF, ipL; for (i = 1; iAt(i); Int_t kf = iparticle->GetPdgCode(); Int_t ks = iparticle->GetStatusCode(); // flagged particle if (pFlag[i] == 1) { ipF = iparticle->GetFirstDaughter(); ipL = iparticle->GetLastDaughter(); if (ipF > 0) for (j=ipF-1; j .3 mum) if (ks != 1) { //TParticlePDG *particle = pDataBase->GetParticle(kf); Double_t lifeTime = fDecayer->GetLifetime(kf); //Double_t mass = particle->Mass(); //Double_t width = particle->Width(); if (lifeTime > (Double_t) fMaxLifeTime) { ipF = iparticle->GetFirstDaughter(); ipL = iparticle->GetLastDaughter(); if (ipF > 0) for (j=ipF-1; jPx(); pc[1]=iparticle->Py(); pc[2]=iparticle->Pz(); Bool_t childok = KinematicSelection(iparticle, 1); if(childok) { pSelected[i] = 1; ncsel++; } else { ncsel=-1; break; } // child kine cuts } else { pSelected[i] = 1; ncsel++; } // if child selection } // select muon } // decay particle loop } // if decay products Int_t iparent; if ((fCutOnChild && ncsel >0) || !fCutOnChild){ ipa++; // // Parent // quark PushTrack(0, -1, iquark[ihad], pq[ihad], origin0, polar, 0, kPPrimary, nt, wgtp); KeepTrack(nt); ntq[ihad] = nt; // hadron PushTrack(0, ntq[ihad], iPart, p, origin0, polar, 0, kPDecay, nt, wgtp); pParent[0] = nt; KeepTrack(nt); fNprimaries++; // // Decay Products // for (i = 1; i < np; i++) { if (pSelected[i]) { TParticle* iparticle = (TParticle *) particles->At(i); Int_t kf = iparticle->GetPdgCode(); Int_t ipa = iparticle->GetFirstMother()-1; och[0] = origin0[0]+iparticle->Vx()/10; och[1] = origin0[1]+iparticle->Vy()/10; och[2] = origin0[2]+iparticle->Vz()/10; pc[0] = iparticle->Px(); pc[1] = iparticle->Py(); pc[2] = iparticle->Pz(); if (ipa > -1) { iparent = pParent[ipa]; } else { iparent = -1; } PushTrack(fTrackIt*trackIt[i], iparent, kf, pc, och, polar, 0, kPDecay, nt, wgtch); pParent[i] = nt; KeepTrack(nt); fNprimaries++; } // Selected } // Particle loop } // Decays by Lujet particles->Clear(); if (pFlag) delete[] pFlag; if (pParent) delete[] pParent; if (pSelected) delete[] pSelected; if (trackIt) delete[] trackIt; } // kinematic selection else // nodecay option, so parent will be tracked by GEANT (pions, kaons, eta, omegas, baryons) { gAlice->GetMCApp()-> PushTrack(fTrackIt,-1,iPart,p,origin0,polar,0,kPPrimary,nt,wgtp); ipa++; fNprimaries++; } break; } // while(1) } // hadron pair loop } // event loop SetHighWaterMark(nt); AliGenEventHeader* header = new AliGenEventHeader("CorrHF"); header->SetPrimaryVertex(fVertex); header->SetNProduced(fNprimaries); AddHeader(header); } //____________________________________________________________________________________ Int_t AliGenCorrHF::IpCharm(TRandom* ran) { // Composition of lower state charm hadrons, containing a c-quark Float_t random; Int_t ip; // +- 411,421,431,4122,4132,4232,4332 random = ran->Rndm(); // Rates from Pythia6.214 using 100Kevents with kPyCharmppMNRwmi at 14 TeV. if (random < 0.6027) { ip=421; } else if (random < 0.7962) { ip=411; } else if (random < 0.9127) { ip=431; } else if (random < 0.9899) { ip=4122; } else if (random < 0.9948) { ip=4132; } else if (random < 0.9999) { ip=4232; } else { ip=4332; } return ip; } Int_t AliGenCorrHF::IpBeauty(TRandom* ran) { // Composition of lower state beauty hadrons, containing a b-quark Float_t random; Int_t ip; // +- 511,521,531,5122,5132,5232,5332 random = ran->Rndm(); // Rates from Pythia6.214 using 100Kevents with kPyBeautyppMNRwmi at 14 TeV. // B-Bbar mixing will be done by Pythia at the decay point if (random < 0.3965) { ip=-511; } else if (random < 0.7930) { ip=-521; } else if (random < 0.9112) { ip=-531; } else if (random < 0.9887) { ip=5122; } else if (random < 0.9943) { ip=5132; } else if (random < 0.9999) { ip=5232; } else { ip=5332; } return ip; } //____________________________________________________________________________________ Double_t AliGenCorrHF::ComputeIntegral(TFile* fG) // needed by GetQuarkPair { // Read QQbar kinematical 5D grid's cell occupancy weights Int_t cell[6]; // cell[6]={wght,iy1,iy2,ipt1,ipt2,idph} TTree* tG = (TTree*) fG->Get("tGqq"); tG->GetBranch("cell")->SetAddress(&cell); Int_t nbins = tG->GetEntries(); // delete previously computed integral (if any) if(fgIntegral) delete [] fgIntegral; fgIntegral = new Double_t[nbins+1]; fgIntegral[0] = 0; Int_t bin; for(bin=0;binGetEvent(bin); fgIntegral[bin+1] = fgIntegral[bin] + cell[0]; } // Normalize integral to 1 if (fgIntegral[nbins] == 0 ) { return 0; } for (bin=1;bin<=nbins;bin++) fgIntegral[bin] /= fgIntegral[nbins]; return fgIntegral[nbins]; } //____________________________________________________________________________________ void AliGenCorrHF::GetQuarkPair(TFile* fG, Double_t* fInt, Double_t &y1, Double_t &y2, Double_t &pt1, Double_t &pt2, Double_t &dphi) // modification of ROOT's TH3::GetRandom3 for 5D { // Read QQbar kinematical 5D grid's cell coordinates Int_t cell[6]; // cell[6]={wght,iy1,iy2,ipt1,ipt2,idph} TTree* tG = (TTree*) fG->Get("tGqq"); tG->GetBranch("cell")->SetAddress(&cell); Int_t nbins = tG->GetEntries(); Double_t rand[6]; gRandom->RndmArray(6,rand); Int_t ibin = TMath::BinarySearch(nbins,fInt,rand[0]); tG->GetEvent(ibin); y1 = fgy[cell[1]] + (fgy[cell[1]+1]-fgy[cell[1]])*rand[1]; y2 = fgy[cell[2]] + (fgy[cell[2]+1]-fgy[cell[2]])*rand[2]; pt1 = fgpt[cell[3]] + (fgpt[cell[3]+1]-fgpt[cell[3]])*rand[3]; pt2 = fgpt[cell[4]] + (fgpt[cell[4]+1]-fgpt[cell[4]])*rand[4]; dphi = fgdph[cell[5]]+ (fgdph[cell[5]+1]-fgdph[cell[5]])*rand[5]; } //____________________________________________________________________________________ void AliGenCorrHF::GetHadronPair(TFile* fG, Int_t idq, Double_t y1, Double_t y2, Double_t pt1, Double_t pt2, Int_t &id3, Int_t &id4, Double_t &pz3, Double_t &pz4, Double_t &pt3, Double_t &pt4) { // Generate a hadron pair Int_t (*fIpParaFunc )(TRandom*);//Pointer to particle type parametrisation function fIpParaFunc = IpCharm; Double_t mq = 1.2; // c & b quark masses (used in AliPythia) if (idq == 5) { fIpParaFunc = IpBeauty; mq = 4.75; } Double_t z11, z12, z21, z22, pz1, pz2, e1, e2, mh, ptemp, rand[2]; char tag[100]; TH2F *h2h[12], *h2s[12]; // hard & soft Fragmentation Functions for (Int_t ipt = 0; iptGet(tag); sprintf(tag,"h2s_pt%d",ipt); h2s[ipt] = (TH2F*) fG->Get(tag); } if (y1*y2 < 0) { for (Int_t ipt = 0; ipt= fgptbmin[ipt] && pt1 < fgptbmax[ipt]) h2h[ipt]->GetRandom2(z11, z21); if(pt2 >= fgptbmin[ipt] && pt2 < fgptbmax[ipt]) h2h[ipt]->GetRandom2(z12, z22); } } else { if (TMath::Abs(y1) > TMath::Abs(y2)) { for (Int_t ipt = 0; ipt= fgptbmin[ipt] && pt1 < fgptbmax[ipt]) h2h[ipt]->GetRandom2(z11, z21); if(pt2 >= fgptbmin[ipt] && pt2 < fgptbmax[ipt]) h2s[ipt]->GetRandom2(z12, z22); } } else { for (Int_t ipt = 0; ipt= fgptbmin[ipt] && pt1 < fgptbmax[ipt]) h2s[ipt]->GetRandom2(z11, z21); if(pt2 >= fgptbmin[ipt] && pt2 < fgptbmax[ipt]) h2h[ipt]->GetRandom2(z12, z22); } } } gRandom->RndmArray(2,rand); ptemp = TMath::Sqrt(pt1*pt1 + mq*mq); pz1 = ptemp*TMath::SinH(y1); e1 = ptemp*TMath::CosH(y1); ptemp = TMath::Sqrt(pt2*pt2 + mq*mq); pz2 = ptemp*TMath::SinH(y2); e2 = ptemp*TMath::CosH(y2); id3 = fIpParaFunc(gRandom); mh = TDatabasePDG::Instance()->GetParticle(id3)->Mass(); ptemp = z11*z21*(e1*e1-pz1*pz1) - mh*mh; pt3 = (idq-3)*rand[0]; // some smearing at low pt, try better if (ptemp > 0) pt3 = TMath::Sqrt(ptemp); if (pz1 > 0) pz3 = (z11*(e1 + pz1) - z21*(e1 - pz1)) / 2; else pz3 = (z21*(e1 + pz1) - z11*(e1 - pz1)) / 2; e1 = TMath::Sqrt(pz3*pz3 + pt3*pt3 + mh*mh); id4 = - fIpParaFunc(gRandom); mh = TDatabasePDG::Instance()->GetParticle(id4)->Mass(); ptemp = z12*z22*(e2*e2-pz2*pz2) - mh*mh; pt4 = (idq-3)*rand[1]; // some smearing at low pt, try better if (ptemp > 0) pt4 = TMath::Sqrt(ptemp); if (pz2 > 0) pz4 = (z12*(e2 + pz2) - z22*(e2 - pz2)) / 2; else pz4 = (z22*(e2 + pz2) - z12*(e2 - pz2)) / 2; e2 = TMath::Sqrt(pz4*pz4 + pt4*pt4 + mh*mh); // small corr. instead of using Frag. Func. depending on yQ (in addition to ptQ) Float_t ycorr = 0.2, y3, y4; gRandom->RndmArray(2,rand); y3 = 0.5 * TMath::Log((e1 + pz3 + 1.e-13)/(e1 - pz3 + 1.e-13)); y4 = 0.5 * TMath::Log((e2 + pz4 + 1.e-13)/(e2 - pz4 + 1.e-13)); if(TMath::Abs(y3)0.5) { ptemp = TMath::Sqrt(e1*e1 - pz3*pz3); y3 = 4*(1 - 2*rand[1]); pz3 = ptemp*TMath::SinH(y3); pz4 = pz3; } }