//#include #include #include #include "AliConst.h" #include "AliLog.h" #include "AliGenMUONLMR.h" #include "AliMC.h" #include "AliRun.h" #include "AliGenEventHeader.h" ClassImp(AliGenMUONLMR) AliGenMUONLMR::AliGenMUONLMR () : AliGenMC(), fNMuMin(2), fGenSingleProc(-1), fCosTheta(0), fRhoLineShape(0), fHMultMu(0), fHNProc(0) { // // default constructor // // initialize pt and y distributions according to a fit to // Pythia simulation at sqrt(s) = 7 TeV printf ("Using AliGenMUONLMR as generator\n"); for (Int_t ipart=0; ipart < fgkNpart; ipart++) fScaleMult[ipart] = 1; fScaleMult[kPionLMR] = 0; // set pion multiplicity to zero fScaleMult[kKaonLMR] = 0; // set kaon multiplicity to zero Int_t pdg[7] = {211, 321, 221, 113, 223, 333, 331}; char* fptname[7] = {"fPtPion","fPtKaon","fPtEta","fPtRho","fPtOmega","fPtPhi","fPtEtaPrime"}; char* fyname[7] = {"fYPion","fYKaon","fYEta","fYRho","fYOmega","fYPhi","fYEtaPrime"}; char* fnname[7] = {"fMultPion","fMultKaon","fMultEta","fMultRho","fMultOmega","fMultPhi","fMultEtaPrime"}; char* fdname[2] = {"fDecPion","fDecKaon"}; Double_t ptparam[7][3] = { {1,0.427,2.52}, // pions from Pythia {1,0.58,2.57}, // kaons from Pythia {1,0.641,2.62}, // eta from Pythia {1,1.2,2.5}, // rho+omega from ALICE muon {1,1.2,2.5}, // rho+omega from ALICE muon {1,1.03,2.5}, // phi from ALICE muon {1,0.72,2.5}}; // etaPrime from Pythia Double_t yparam[7][3] = { {1, 0.8251, 3.657}, // pions from pythia {1, 1.83, 2.698}, // kaons from pythia {1, 1.169, 3.282}, // eta from pythia {1, 1.234, 3.264}, // rho from pythia {1, 1.311, 3.223}, // omega from pythia {1, 2.388, 2.129}, // phi from pythia {1, 1.13,3.3}}; // eta prime from pythia // multiplicity parameters from pythia Double_t nparam[7][9] = { {353.582, 6.76263, 1.66979, 998.445, 9.73281, 12.6704, 175.187, 29.08, 40.2531}, {1.e4, 0.2841, 0,0,0,0,0,0,0}, {1.e4, 0.2647, 0,0,0,0,0,0,0}, {7055, 0.1786, 0,0,0,0,0,0,0}, {7500, 0.1896, 0,0,0,0,0,0,0}, {5.e04, 1.167, 0,0,0,0,0,0,0}, {2.9e04,0.714, 0,0,0,0,0,0,0}}; Double_t ctau[2] = {7.8045, 3.712}; for (Int_t i=0; iSetParameters(nparam[i][0],nparam[i][1]); } else { fMult[i] = new TF1(fnname[i],"gaus(0)+gaus(3)+gaus(6)",0,150); for (Int_t j=0; j<9; j++) fMult[i]->SetParameter(j,nparam[i][j]); } fPt[i] = new TF1(fptname[i],AliGenMUONLMR::PtDistr,0,20,3); fPt[i]->SetParameters(ptparam[i][0], ptparam[i][1], ptparam[i][2]); fY[i] = new TF1(fyname[i],AliGenMUONLMR::YDistr,-10,10,3); fY[i]->SetParameters(yparam[i][0], yparam[i][1], yparam[i][2]); } for(Int_t i = 0; i<2; i++){ fDecay[i] = new TF1(fdname[i],"exp(-x/[0])",0,150); fDecay[i]->SetParameter(0,ctau[i]); } for (Int_t ipart = 0; ipart < fgkNpart; ipart++) { fParticle[ipart] = new TParticle(); fParticle[ipart]->SetPdgCode(fPDG[ipart]); } TDatabasePDG *pdgdb = TDatabasePDG::Instance(); Double_t mumass = pdgdb->GetParticle(13)->Mass(); fMu[0] = new TParticle(); fMu[0]->SetPdgCode(-13); fMu[0]->SetCalcMass(mumass); fMu[1] = new TParticle(); fMu[1]->SetPdgCode(13); fMu[1]->SetCalcMass(mumass); // function for polarized theta distributions fCosTheta = new TF1 ("fCosTheta","1+[0]*x*x",-1,1); fCosTheta->SetParameter(0,1); // Dalitz decays Int_t nbins = 1000; Double_t xmin = 0, xmax = 2; fDalitz[0] = new TH1F("hDalitzEta","",nbins,xmin,xmax); fDalitz[1] = new TH1F("hDalitzOmega","",nbins,xmin,xmax); fDalitz[2] = new TH1F("hDalitzEtaPrime","",nbins,xmin,xmax); Double_t meta = pdgdb->GetParticle("eta")->Mass(); Double_t momega = pdgdb->GetParticle("omega")->Mass(); Double_t metaPrime = pdgdb->GetParticle("eta'")->Mass(); Double_t mpi0 = pdgdb->GetParticle("pi0")->Mass(); Double_t md3 = 0, mres = 0; for (Int_t index = 0; index < 3; index++) { if (index == 0) { mres = meta; md3 = 0; } else if (index == 1) { mres = momega; md3 = mpi0; } else if (index == 2) { mres = metaPrime; md3 = 0; } Double_t delta = md3 * md3 / (mres * mres); Double_t epsilon = mumass * mumass / (mres * mres); Int_t nbins0 = fDalitz[index]->GetNbinsX(); Double_t xmin0 = fDalitz[index]->GetXaxis()->GetXmin(); Double_t deltax = fDalitz[index]->GetBinWidth(1); Double_t xd = xmin0 - deltax/2.; for (Int_t ibin = 0; ibin< nbins0; ibin++) { Double_t dalval = 0; xd += deltax; if (xd > 4. *epsilon) { Double_t bracket = TMath::Power(1. + xd/(1. - delta),2) - 4. * xd / ((1. - delta) * (1. - delta)); if (bracket > 0) { dalval = TMath::Power(bracket,1.5) /xd * TMath::Sqrt(1 - 4 * epsilon / xd) * (1 + 2 * epsilon / xd) * FormFactor(xd * mres * mres, index); fDalitz[index]->Fill(xd,dalval); } } } } fRhoLineShape = new TF1("fRhoLineShape",RhoLineShapeNew,0,2,2); fHMultMu = new TH1D("fHMultMu","Muon multiplicity",20,-0.5,19.5); fHNProc = new TH1D("fHNProc","Number of gen. evts. per process in 4 pi",9,-0.5,8.5); } //----------------------------------------------------------- AliGenMUONLMR::~AliGenMUONLMR() { // Default destructor for (Int_t i=0; i<7; i++) { delete fPt[i]; delete fY[i]; delete fMult[i]; delete fParticle[i]; } for (Int_t i=0; i<2; i++) { delete fDecay[i]; delete fMu[i]; } for (Int_t i=0; i<3; i++) delete fDalitz[i]; delete fCosTheta; fCosTheta = 0; delete fRhoLineShape; fRhoLineShape = 0; delete fHMultMu; fHMultMu = 0; delete fHNProc; fHNProc = 0; } //----------------------------------------------------------- void AliGenMUONLMR::FinishRun(){ // save some histograms to an output file Int_t nbins = fHNProc->GetNbinsX(); for (Int_t ibin=1; ibin <= nbins; ibin++) printf ("ibin = %d nEvProc = %g\n", ibin,fHNProc->GetBinContent(ibin)); TFile *fout = new TFile("AliGenMUONLMR_histos.root","recreate"); fHMultMu->Write(); fHNProc->Write(); fout->Close(); } //----------------------------------------------------------- Double_t AliGenMUONLMR::YDistr(Double_t *px, Double_t *par){ // function for rapidity distribution: plateau at par[0] + // gaussian tails centered at par[1] and with par[2]=sigma Double_t x = TMath::Abs(px[0]); Double_t func = 0; if (xGetRandom()*fScaleMult[idRes[iproc]]); } else { if (iproc==fGenSingleProc) { mult[iproc] = 1; BR[iproc] = 1; } else { mult[iproc] = 0; BR[iproc] = 0; } } } if (fGenSingleProc == -1) { mult[1] = mult[0]; mult[4] = mult[3]; } for (Int_t iproc = 0; iproc < nproc; iproc++) { // printf ("Multiplicity for process %d is %d\n",iproc,mult[iproc]); for (Int_t imult=0; imultRndm() < BR[iproc]) { fHNProc->Fill(iproc); Int_t ipart = idRes[iproc]; pt = fPt[ipart]->GetRandom(); y = fY[ipart]->GetRandom(); phi = gRandom->Rndm() * 2 * TMath::Pi(); mass = pdg->GetParticle(fPDG[ipart])->Mass(); px = pt * TMath::Cos(phi); py = pt * TMath::Sin(phi); mt = TMath::Sqrt(pt * pt + mass * mass); pz = mt * TMath::SinH(y); ene = mt * TMath::CosH(y); mother = fParticle[ipart]; mother->SetMomentum(px,py,pz,ene); mother->SetCalcMass(mass); if (!KinematicSelection(mother,0)) continue; Bool_t hasDecayed = kTRUE; if (idDec[iproc] == 0) Decay2Body(mother); else if (idDec[iproc] == 1) DalitzDecay(mother); else DecayPiK(mother,hasDecayed); if (!hasDecayed) continue; Bool_t isMu0Acc = KinematicSelection(fMu[0],1); Bool_t isMu1Acc = KinematicSelection(fMu[1],1); Bool_t isMuFromPiKAcc = kTRUE; if (idDec[iproc] == 2) isMuFromPiKAcc = (mother->GetPdgCode()>0) ? isMu0Acc : isMu1Acc; // mother if ((idDec[iproc] < 2 && (isMu0Acc || isMu1Acc)) || (idDec[iproc] == 2 && isMuFromPiKAcc)) { pdgPushed[npartPushed] = mother->GetPdgCode(); pxPushed[npartPushed] = mother->Px(); pyPushed[npartPushed] = mother->Py(); pzPushed[npartPushed] = mother->Pz(); ePushed[npartPushed] = mother->Energy(); npartPushed++; if (isMu0Acc && (idDec[iproc] < 2 || mother->GetPdgCode() > 0)) { pdgPushed[npartPushed] = fMu[0]->GetPdgCode(); pxPushed[npartPushed] = fMu[0]->Px(); pyPushed[npartPushed] = fMu[0]->Py(); pzPushed[npartPushed] = fMu[0]->Pz(); ePushed[npartPushed] = fMu[0]->Energy(); npartPushed++; nmuons++; } if (isMu1Acc && (idDec[iproc] < 2 || mother->GetPdgCode() < 0)) { pdgPushed[npartPushed] = fMu[1]->GetPdgCode(); pxPushed[npartPushed] = fMu[1]->Px(); pyPushed[npartPushed] = fMu[1]->Py(); pzPushed[npartPushed] = fMu[1]->Pz(); ePushed[npartPushed] = fMu[1]->Energy(); npartPushed++; nmuons++; } } } // end if BR } // end loop on multiplicity } // end loop on process fHMultMu->Fill(nmuons); } // keep on generating until at least a muon is created in the event Int_t ntmother = 0, ntchild =0; for (Int_t ipart = 0; ipart < npartPushed; ipart++) { if (TMath::Abs(pdgPushed[ipart]) != 13) { // particle is not a muon, hence it's a mother PushTrack(0,-1,pdgPushed[ipart], pxPushed[ipart],pyPushed[ipart],pzPushed[ipart],ePushed[ipart], origin0[0],origin0[1],origin0[2],0., polar[0],polar[1],polar[2], kPPrimary,ntmother,1,11); KeepTrack(ntmother); } else { PushTrack(1,ntmother,pdgPushed[ipart], pxPushed[ipart],pyPushed[ipart],pzPushed[ipart],ePushed[ipart], origin0[0],origin0[1],origin0[2],0., polar[0],polar[1],polar[2], kPDecay,ntchild,1,1); KeepTrack(ntchild); } } SetHighWaterMark(ntchild); AliGenEventHeader* header = new AliGenEventHeader("LMR"); header->SetPrimaryVertex(fVertex); header->SetNProduced(fNprimaries); AddHeader(header); } //------------------------------------------------------------------ void AliGenMUONLMR::Decay2Body(TParticle *mother){ // performs decay in two muons of the low mass resonances Double_t md1 = fMu[0]->GetMass(); Int_t pdg = mother->GetPdgCode(); Double_t mres =0; // if mother is a rho, extract the mass from its line shape // otherwise consider the resonance mass if (pdg == 113) mres = fRhoLineShape->GetRandom(); else mres = mother->GetCalcMass(); // while (mres < md1 + md2) mres = fDsigmaDm[res]->GetRandom(); // energies and momenta in rest frame Double_t e1 = mres / 2.; Double_t p1 = TMath::Sqrt((e1 + md1)*(e1 - md1)); // orientation in decaying particle rest frame Double_t costheta = gRandom->Rndm() * 2 - 1; Double_t sintheta = TMath::Sqrt((1. + costheta)*(1. - costheta)); Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); Double_t px1 = p1 * sintheta * TMath::Cos(phi); Double_t py1 = p1 * sintheta * TMath::Sin(phi); Double_t pz1 = p1 * costheta; // boost muons into lab frame TLorentzVector vmother, v1, v2; // TLorentzVector boosted1, boosted2; vmother.SetPxPyPzE(mother->Px(),mother->Py(),mother->Pz(),mother->Energy()); v1.SetPxPyPzE(px1,py1,pz1,e1); v2.SetPxPyPzE(-px1,-py1,-pz1,e1); TVector3 betaParent = (1./vmother.E())*vmother.Vect(); // beta = p/E v1.Boost(betaParent); v2.Boost(betaParent); // TLorentzVector vtot = v1 + v2; // printf ("mother: %g %g %g %g\n",vmother.Px(), vmother.Py(), vmother.Pz(), vmother.E()); // printf ("vtot : %g %g %g %g\n",vtot.Px(), vtot.Py(), vtot.Pz(), vtot.E()); fMu[0]->SetMomentum(v1.Px(),v1.Py(),v1.Pz(),v1.E()); fMu[1]->SetMomentum(v2.Px(),v2.Py(),v2.Pz(),v2.E()); } //------------------------------------------------------------------ void AliGenMUONLMR::DecayPiK(TParticle *mother, Bool_t &hasDecayed){ // performs decays of pions and kaons Double_t md1 = fMu[0]->GetMass(); // extract the mass from the resonance's line shape Double_t mres = mother->GetMass(); // choose the pi/k sign, assuming 50% probabilities for both signs Int_t sign = (gRandom->Rndm() > 0.5) ? 1 : -1; mother->SetPdgCode(sign * TMath::Abs(mother->GetPdgCode())); // energies and momenta in rest frame Double_t e1 = (mres*mres + md1*md1)/(2*mres); Double_t p1 = TMath::Sqrt((e1 + md1)*(e1 - md1)); // orientation in decaying particle rest frame Double_t costheta = gRandom->Rndm() * 2 - 1; Double_t sintheta = TMath::Sqrt((1. + costheta)*(1. - costheta)); Double_t phi = 2. * TMath::Pi() * gRandom->Rndm(); Double_t px1 = p1 * sintheta * TMath::Cos(phi); Double_t py1 = p1 * sintheta * TMath::Sin(phi); Double_t pz1 = p1 * costheta; // boost muons into lab frame TLorentzVector vmother, v1; vmother.SetPxPyPzE(mother->Px(),mother->Py(),mother->Pz(),mother->Energy()); v1.SetPxPyPzE(px1,py1,pz1,e1); TVector3 betaParent = (1./vmother.E())*vmother.Vect(); // beta = p/E v1.Boost(betaParent); if (mother->GetPdgCode()>0) fMu[0]->SetMomentum(v1.Px(),v1.Py(),v1.Pz(),v1.E()); else fMu[1]->SetMomentum(v1.Px(),v1.Py(),v1.Pz(),v1.E()); Int_t idmother = 0; if (TMath::Abs(mother->GetPdgCode())== 211) { idmother = 0; } else if (TMath::Abs(mother->GetPdgCode())== 321) { idmother = 1; } else { AliWarning("Mother particle is not a pion or kaon \n"); } Double_t gammaRes = mother->Energy()/mres; Double_t zResCM = fDecay[idmother]->GetRandom(); Double_t zResLab = gammaRes*zResCM; if(zResLab > 0.938) hasDecayed = 0; // 0.938: distance from IP to absorber + lambda_i else hasDecayed = 1; } //------------------------------------------------------------------- void AliGenMUONLMR::DalitzDecay(TParticle *mother){ // // perform dalitz decays of eta, omega and etaprime // //in the rest frame of the virtual photon: Double_t mres = mother->GetCalcMass(); Double_t mumass = fMu[0]->GetMass(); Double_t md3 = 0; // unless differently specified, third particle is a photon if (mother->GetPdgCode() == 223) md3 = 0.134977; // if mother is an omega, third particle is a pi0 Int_t index = 0; if (TMath::Abs(mother->GetPdgCode())== 221) { // eta index = 0; } else if (TMath::Abs(mother->GetPdgCode())== 223) { // omega index = 1; } else if (mother->GetPdgCode() == 331) { // eta' index = 2; } else { AliWarning("Mother particle is not a eta, eta' or omega \n"); } Int_t flag = 0; Double_t xd=0, mvirt2=0; Double_t countIt = 0; while (flag==0) { xd = fDalitz[index]->GetRandom(); mvirt2 = xd * mres * mres; // mass of virtual photon // check kinematics if (mres - md3 > TMath::Sqrt(mvirt2) && TMath::Sqrt(mvirt2)/2. > mumass) flag=1; if (++countIt>1E11) { mvirt2 = mres * mres * 0.998; break; } } // // Generate muons in virtual photon rest frame. // z axis is the virt. photon direction (before boost) // Double_t e1 = TMath::Sqrt(mvirt2)/2.; // energy of mu1 in the virtual photon frame Double_t psquare = (e1 + mumass)*(e1 - mumass); if (psquare<0) { printf("Error in AliGenMUONLMR::DalitzDecay: sqrt of psquare = %f put to 0\n",psquare); psquare = 0; } Double_t p1 = TMath::Sqrt(psquare); //theta angle between the pos. muon and the virtual photon Double_t costheta = fCosTheta->GetRandom(); if (costheta>1) costheta = 1; if (costheta<-1) costheta = -1; Double_t sintheta = TMath::Sqrt((1. + costheta)*(1. - costheta)); Double_t phi = 2 * TMath::Pi() * gRandom->Rndm(); Double_t sinphi = TMath::Sin(phi); Double_t cosphi = TMath::Cos(phi); // fill 4-vectors of leptons in the virtual photon frame Double_t px1 = p1*sintheta*cosphi; Double_t py1 = p1*sintheta*sinphi; Double_t pz1 = p1*costheta; Double_t px2 = -p1*sintheta*cosphi; Double_t py2 = -p1*sintheta*sinphi; Double_t pz2 = -p1*costheta; Double_t e2 = e1; fMu[0]->SetMomentum(px1,py1,pz1,e1); fMu[1]->SetMomentum(px2,py2,pz2,e2); // calculate components of non-dilepton in CMS of parent resonance Double_t e3 = (mres * mres + md3 * md3 - mvirt2) / (2.*mres); Double_t psquare3 = (e3 + md3)*(e3 - md3); if (psquare3<0) { printf("Error in AliGenMUONLMR::DalitzDecay: sqrt of psquare3 = %f put to 0\n",psquare3); psquare3 = 0; } Double_t p3 = TMath::Sqrt(psquare3); Double_t costheta2 = 2.* gRandom->Rndm() - 1.; // angle between virtual photon and resonance if (costheta2>1) costheta2 = 1; if (costheta2<-1) costheta2 = -1; Double_t sintheta2 = TMath::Sqrt((1. + costheta2)*(1. - costheta2)); Double_t phi2 = 2 * TMath::Pi() * gRandom->Rndm(); Double_t sinphi2 = TMath::Sin(phi2); Double_t cosphi2 = TMath::Cos(phi2); Double_t px3 = p3*sintheta2*cosphi2; Double_t py3 = p3*sintheta2*sinphi2; Double_t pz3 = p3*costheta2; TLorentzVector v3(px3,py3,pz3,e3); sintheta2 = -sintheta2; cosphi2 = -cosphi2; sinphi2 = -sinphi2; Double_t px1new = px1*costheta2*cosphi2 - py1*sinphi2 + pz1*sintheta2*cosphi2; Double_t py1new = px1*costheta2*sinphi2 + py1*cosphi2 + pz1*sintheta2*sinphi2; Double_t pz1new =-px1*sintheta2 + pz1*costheta2; Double_t px2new = px2*costheta2*cosphi2 - py2*sinphi2 + pz2*sintheta2*cosphi2; Double_t py2new = px2*costheta2*sinphi2 + py2*cosphi2 + pz2*sintheta2*sinphi2; Double_t pz2new =-px2*sintheta2 + pz2*costheta2; fMu[0]->SetMomentum(px1new,py1new,pz1new,e1); fMu[1]->SetMomentum(px2new,py2new,pz2new,e2); Double_t evirt = mres - e3; Double_t pxvirt = -px3; Double_t pyvirt = -py3; Double_t pzvirt = -pz3; TLorentzVector vvirt(pxvirt,pyvirt,pzvirt,evirt); TVector3 betaVirt = (1./evirt) * vvirt.Vect(); // virtual photon beta in res frame TLorentzVector v1(px1,py1,pz1,e1); TLorentzVector v2(px2,py2,pz2,e2); // boost the muons in the frame where the resonance is at rest v1.Boost(betaVirt); v2.Boost(betaVirt); // boost muons and third particle in lab frame TLorentzVector vmother(mother->Px(), mother->Py(), mother->Pz(), mother->Energy()); TVector3 resBetaLab = (1./vmother.E())*vmother.Vect(); // eta beta in lab frame v1.Boost(resBetaLab); v2.Boost(resBetaLab); v3.Boost(resBetaLab); vvirt.Boost(resBetaLab); fMu[0]->SetMomentum(v1.Px(),v1.Py(),v1.Pz(),v1.E()); fMu[1]->SetMomentum(v2.Px(),v2.Py(),v2.Pz(),v2.E()); // part3->SetMomentum(v3.Px(),v3.Py(),v3.Pz(),v3.E()); // TLorentzVector vtot = v1 + v2 + v3; // TLorentzVector vdimu = v1 + v2; // printf ("mother: %g %g %g %g\n",vmother.Px(), vmother.Py(), vmother.Pz(), vmother.E()); // printf ("vtot : %g %g %g %g\n",vtot.Px(), vtot.Py(), vtot.Pz(), vtot.E()); // printf ("vvirt : %g %g %g %g\n",vvirt.Px(), vvirt.Py(), vvirt.Pz(), vvirt.E()); // printf ("vdimu : %g %g %g %g\n",vdimu.Px(), vdimu.Py(), vdimu.Pz(), vdimu.E()); } //------------------------------------------------------------------ Double_t AliGenMUONLMR::FormFactor(Double_t q2, Int_t decay){ // Calculates the form factor for Dalitz decays A->B+l+l // Returns: |F(q^2)|^2 // // References: L.G. Landsberg, Physics Reports 128 No.6 (1985) 301-376. Double_t ff2, mass2; Double_t n2, n4, m2; // Lepton-G Double_t lambda2inv = 0; switch (decay) { case 0: // eta -> mu mu gamma // eta -> l+ l- gamma: pole approximation lambda2inv = 1.95; mass2 = fParticle[kEtaLMR]->GetMass() * fParticle[kEtaLMR]->GetMass(); if (q2 < mass2) ff2 = TMath::Power(1./(1.-lambda2inv*q2),2); else ff2 = 0; break; case 1: // omega -> mu mu pi0 // omega -> l+ l- pi0: pole approximation mass2 = fParticle[kOmegaLMR]->GetMass() * fParticle[kOmegaLMR]->GetMass(); lambda2inv = 2.26; if (q2 < mass2) ff2 = TMath::Power(1./(1.-lambda2inv*q2),2); else ff2 = 0; break; case 2: // etaPrime -> mu mu gamma mass2 = fParticle[kEtaPrimeLMR]->GetMass() * fParticle[kEtaPrimeLMR]->GetMass(); // eta' -> l+ l- gamma: Breit-Wigner fitted to data n2 = 0.764 * 0.764; n4 = n2 * n2; m2 = 0.1020 * 0.1020; if (q2 < mass2) ff2 = n4 / (TMath::Power(n2-q2,2) + m2 * n2); else ff2 = 0; break; default: printf ("FormFactor: Decay not found\n"); return 0; break; } return ff2; } //____________________________________________________________ Double_t AliGenMUONLMR::RhoLineShapeNew(Double_t *x, Double_t* /*para*/){ //new parameterization implemented by Hiroyuki Sako (GSI) Double_t mass = *x; double r, GammaTot; Double_t mRho = TDatabasePDG::Instance()->GetParticle("rho0")->Mass(); Double_t mPi = TDatabasePDG::Instance()->GetParticle("pi0")->Mass(); Double_t mMu = TDatabasePDG::Instance()->GetParticle("mu-")->Mass(); Double_t Gamma0 = TDatabasePDG::Instance()->GetParticle("rho0")->Width(); const double Norm = 0.0744416*1.01; // 0.0744416 at m = 0.72297 // is the max number with Norm=1 (for rho) double mThreshold = 2.*mPi; const double T = 0.170; // Assumption of pi+ temperature [GeV/c^2] //const double T = 0.11; // Taken from fit to pi+ temperature [GeV/c^2] // with Reference: LEBC-EHS collab., Z. Phys. C 50 (1991) 405 if (mass < mThreshold) { r = 0.; return r; } double k = sqrt(0.25*mass*mass-(mThreshold/2)*(mThreshold/2)); double k0 = sqrt(0.25*mRho*mRho-(mThreshold/2)*(mThreshold/2)); GammaTot = (k/k0)*(k/k0)*(k/k0)*(mRho/mass)*(mRho/mass)*Gamma0; double FormFactor2 = 1/((mass*mass-mRho*mRho)*(mass*mass-mRho*mRho)+ mass*mass*GammaTot*GammaTot); r = pow(mass,1.5)*pow((1-mThreshold*mThreshold/(mass*mass)),1.5)* ((mass*mass+2*mMu*mMu)/(mass*mass))*(pow((mass*mass-4*mMu*mMu),0.5)/mass)*FormFactor2 *exp(-mass/T)/Norm; return r; }