/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.17 2002/11/07 09:06:10 morsch J/Psi and Upsilon pt and y distributions from R. Vogt 2002 added. Revision 1.16 2002/10/14 14:55:35 hristov Merging the VirtualMC branch to the main development branch (HEAD) Revision 1.14.6.1 2002/06/10 14:57:41 hristov Merged with v3-08-02 Revision 1.15 2002/04/17 10:11:51 morsch Coding Rule violations corrected. Revision 1.14 2002/02/22 17:26:43 morsch Eta and omega added. Revision 1.13 2001/03/27 11:01:04 morsch Charm pt-distribution corrected. More realistic y-distribution for pi and K. Revision 1.12 2001/03/09 13:01:41 morsch - enum constants for paramterisation type (particle family) moved to AliGen*lib.h - use AliGenGSIlib::kUpsilon, AliGenPHOSlib::kEtaPrime to access the constants Revision 1.11 2000/11/30 07:12:50 alibrary Introducing new Rndm and QA classes Revision 1.10 2000/06/29 21:08:27 morsch All paramatrisation libraries derive from the pure virtual base class AliGenLib. This allows to pass a pointer to a library directly to AliGenParam and avoids the use of function pointers in Config.C. Revision 1.9 2000/06/14 15:20:56 morsch Include clean-up (IH) Revision 1.8 2000/06/09 20:32:11 morsch All coding rule violations except RS3 corrected Revision 1.7 2000/05/02 08:12:13 morsch Coding rule violations corrected. Revision 1.6 1999/09/29 09:24:14 fca Introduction of the Copyright and cvs Log */ // Library class for particle pt and y distributions used for // muon spectrometer simulations. // To be used with AliGenParam. // The following particle typed can be simulated: // pi, K, phi, omega, eta, J/Psi, Upsilon, charm and beauty mesons. // // andreas.morsch@cern.ch // #include "TMath.h" #include "TRandom.h" #include "AliGenMUONlib.h" ClassImp(AliGenMUONlib) // // Pions Double_t AliGenMUONlib::PtPion(Double_t *px, Double_t *dummy) { // // PT-PARAMETERIZATION CDF, PRL 61(88) 1819 // POWER LAW FOR PT > 500 MEV // MT SCALING BELOW (T=160 MEV) // const Double_t kp0 = 1.3; const Double_t kxn = 8.28; const Double_t kxlim=0.5; const Double_t kt=0.160; const Double_t kxmpi=0.139; const Double_t kb=1.; Double_t y, y1, xmpi2, ynorm, a; Double_t x=*px; // y1=TMath::Power(kp0/(kp0+kxlim),kxn); xmpi2=kxmpi*kxmpi; ynorm=kb*(TMath::Exp(-sqrt(kxlim*kxlim+xmpi2)/kt)); a=ynorm/y1; if (x > kxlim) y=a*TMath::Power(kp0/(kp0+x),kxn); else y=kb*TMath::Exp(-sqrt(x*x+xmpi2)/kt); return y*x; } // // y-distribution // Double_t AliGenMUONlib::YPion( Double_t *py, Double_t *dummy) { // Pion y Double_t y=TMath::Abs(*py); /* const Double_t ka = 7000.; const Double_t kdy = 4.; Double_t ex = y*y/(2*kdy*kdy); return ka*TMath::Exp(-ex); */ return 1.16526e+04+y*-3.79886e+03+y*y*4.31130e+02; } // particle composition // Int_t AliGenMUONlib::IpPion(TRandom *ran) { // Pion composition if (ran->Rndm() < 0.5) { return 211; } else { return -211; } } //____________________________________________________________ // // Mt-scaling Double_t AliGenMUONlib::PtScal(Double_t pt, Int_t np) { // SCALING EN MASSE PAR RAPPORT A PTPI // MASS PI,K,ETA,RHO,OMEGA,ETA',PHI const Double_t khm[10] = {.13957,.493,.5488,.769,.7826,.958,1.02,0,0,0}; // VALUE MESON/PI AT 5 GEV const Double_t kfmax[10]={1.,0.3,0.55,1.0,1.0,1.0,1.0,0,0,0}; np--; Double_t f5=TMath::Power(((sqrt(100.018215)+2.)/(sqrt(100.+khm[np]*khm[np])+2.0)),12.3); Double_t fmax2=f5/kfmax[np]; // PIONS Double_t ptpion=100.*PtPion(&pt, (Double_t*) 0); Double_t fmtscal=TMath::Power(((sqrt(pt*pt+0.018215)+2.)/ (sqrt(pt*pt+khm[np]*khm[np])+2.0)),12.3)/ fmax2; return fmtscal*ptpion; } // // kaon // // pt-distribution //____________________________________________________________ Double_t AliGenMUONlib::PtKaon( Double_t *px, Double_t *dummy) { // Kaon pT return PtScal(*px,2); } // y-distribution //____________________________________________________________ Double_t AliGenMUONlib::YKaon( Double_t *py, Double_t *dummy) { // Kaon y Double_t y=TMath::Abs(*py); /* const Double_t ka = 1000.; const Double_t kdy = 4.; // Double_t ex = y*y/(2*kdy*kdy); return ka*TMath::Exp(-ex); */ return 1.16526e+04+y*-3.79886e+03+y*y*4.31130e+02; } // particle composition // Int_t AliGenMUONlib::IpKaon(TRandom *ran) { // Kaon composition if (ran->Rndm() < 0.5) { return 321; } else { return -321; } } // J/Psi // // // pt-distribution //____________________________________________________________ Double_t AliGenMUONlib::PtJpsi( Double_t *px, Double_t *dummy) { // J/Psi pT const Double_t kpt0 = 4.; const Double_t kxn = 3.6; Double_t x=*px; // Double_t pass1 = 1.+(x/kpt0)*(x/kpt0); return x/TMath::Power(pass1,kxn); } Double_t AliGenMUONlib::PtJpsiPbPb( Double_t *px, Double_t *dummy) { // J/Psi pT // // R. Vogt 2002 // PbPb 5.5 TeV // MRST HO // mc = 1.4 GeV, pt-kick 1 GeV // Float_t ptJpsi[100] = { 0.0000e-01, 4.5870e+01, 6.5200e+01, 7.1740e+01, 6.5090e+01, 5.5070e+01, 4.9420e+01, 3.9780e+01, 3.2390e+01, 2.8120e+01, 2.3870e+01, 1.9540e+01, 1.6510e+01, 1.4180e+01, 1.2050e+01, 1.0390e+01, 8.7970e+00, 7.8680e+00, 6.7710e+00, 5.9360e+00, 5.3460e+00, 4.5670e+00, 4.6500e+00, 3.9360e+00, 3.5070e+00, 3.2070e+00, 2.8310e+00, 2.6340e+00, 2.4900e+00, 2.2410e+00, 2.1090e+00, 1.9070e+00, 1.7360e+00, 1.6120e+00, 1.5450e+00, 1.4350e+00, 1.3890e+00, 1.2610e+00, 1.0880e+00, 1.0930e+00, 1.0680e+00, 9.2500e-01, 8.6790e-01, 8.1790e-01, 7.9770e-01, 7.4660e-01, 7.3110e-01, 6.5120e-01, 6.8140e-01, 5.7960e-01, 5.8210e-01, 5.4640e-01, 5.1700e-01, 5.0760e-01, 4.8280e-01, 4.5360e-01, 4.4910e-01, 4.2410e-01, 4.2100e-01, 3.9530e-01, 3.7220e-01, 3.4840e-01, 3.4550e-01, 3.3000e-01, 3.1670e-01, 3.1470e-01, 2.8920e-01, 2.7650e-01, 2.6860e-01, 2.5390e-01, 2.4190e-01, 2.5200e-01, 2.2960e-01, 2.2540e-01, 2.0950e-01, 2.0250e-01, 1.8720e-01, 1.8200e-01, 1.7860e-01, 1.8290e-01, 1.6970e-01, 1.7130e-01, 1.6310e-01, 1.5500e-01, 1.5100e-01, 1.5770e-01, 1.4240e-01, 1.4560e-01, 1.3330e-01, 1.4190e-01, 1.2010e-01, 1.2430e-01, 1.2430e-01, 1.1340e-01, 1.1840e-01, 1.1380e-01, 1.0330e-01, 1.0130e-01, 1.0390e-01, 9.5810e-02 }; Float_t x = px[0] * px[0]; if (x < 1.5 || x > 100) { return 0.0; } else { Float_t y = Interpolate(x, ptJpsi, 0.5, 1., 100, 4); return px[0] * y; } } // // y-distribution //____________________________________________________________ Double_t AliGenMUONlib::YJpsi(Double_t *py, Double_t *dummy) { // J/psi y const Double_t ky0 = 4.; const Double_t kb=1.; Double_t yj; Double_t y=TMath::Abs(*py); // if (y < ky0) yj=kb; else yj=kb*TMath::Exp(-(y-ky0)*(y-ky0)/2); return yj; } Double_t AliGenMUONlib::YJpsiPbPb( Double_t *px, Double_t *dummy) { // // J/Psi y // // // R. Vogt 2002 // PbPb 5.5 TeV // MRST HO // mc = 1.4 GeV, pt-kick 1 GeV // Float_t yJpsi[62] = { 0.3981E-03, 0.1169E-01, 0.6143E-01, 0.3554E+00, 0.1249E+01 , 0.1677E+01, 0.3634E+01, 0.5414E+01, 0.8242E+01, 0.1102E+02 , 0.1353E+02, 0.1964E+02, 0.2357E+02, 0.2662E+02, 0.3023E+02 , 0.3250E+02, 0.3137E+02, 0.3243E+02, 0.3120E+02, 0.3249E+02 , 0.3166E+02, 0.3104E+02, 0.3203E+02, 0.3149E+02, 0.3117E+02 , 0.3210E+02, 0.3170E+02, 0.3279E+02, 0.3079E+02, 0.3208E+02 , 0.3218E+02, 0.3218E+02, 0.3208E+02, 0.3079E+02, 0.3279E+02 , 0.3170E+02, 0.3210E+02, 0.3118E+02, 0.3149E+02, 0.3203E+02 , 0.3104E+02, 0.3167E+02, 0.3250E+02, 0.3120E+02, 0.3243E+02 , 0.3137E+02, 0.3250E+02, 0.3022E+02, 0.2662E+02, 0.2357E+02 , 0.1964E+02, 0.1353E+02, 0.1102E+02, 0.8242E+01, 0.5414E+01 , 0.3634E+01, 0.1677E+01, 0.1249E+01, 0.3554E+00, 0.6142E-01 , 0.1169E-01, 0.3981E-03}; return Interpolate(px[0], yJpsi, -7.625, 0.25, 62, 2); } // particle composition // Int_t AliGenMUONlib::IpJpsi(TRandom *) { // J/Psi composition return 443; } // Upsilon // // // pt-distribution //____________________________________________________________ Double_t AliGenMUONlib::PtUpsilon( Double_t *px, Double_t *dummy ) { // Upsilon pT const Double_t kpt0 = 5.3; const Double_t kxn = 2.5; Double_t x=*px; // Double_t pass1 = 1.+(x/kpt0)*(x/kpt0); return x/TMath::Power(pass1,kxn); } Double_t AliGenMUONlib::PtUpsilonPbPb( Double_t *px, Double_t *dummy) { // // Upsilon pT // // // R. Vogt 2002 // PbPb 5.5 TeV // MRST HO // mc = 1.4 GeV, pt-kick 1 GeV // Float_t ptUps[100] = { 0.0000e-01, -1.5290e-02, 2.6020e-01, 3.4220e-01, 3.3710e-01, 3.1880e-01, 3.3420e-01, 2.7740e-01, 2.3730e-01, 2.0640e-01, 1.7690e-01, 1.6190e-01, 1.4500e-01, 1.3310e-01, 1.1440e-01, 1.0800e-01, 1.0210e-01, 8.4690e-02, 8.0050e-02, 7.0710e-02, 6.4160e-02, 6.5200e-02, 6.6890e-02, 6.0600e-02, 5.4030e-02, 5.1140e-02, 4.6120e-02, 4.4800e-02, 4.2490e-02, 4.1440e-02, 4.0310e-02, 3.7110e-02, 3.5890e-02, 3.5420e-02, 3.0370e-02, 2.9970e-02, 3.0770e-02, 2.6380e-02, 2.7740e-02, 2.6690e-02, 2.4210e-02, 2.5200e-02, 2.3760e-02, 2.1370e-02, 2.2290e-02, 2.2700e-02, 2.0110e-02, 1.9320e-02, 1.8830e-02, 1.9910e-02, 1.9740e-02, 1.8460e-02, 1.8240e-02, 1.6740e-02, 1.6140e-02, 1.7340e-02, 1.5950e-02, 1.5430e-02, 1.4780e-02, 1.2750e-02, 1.4370e-02, 1.2810e-02, 1.2900e-02, 1.1070e-02, 1.1830e-02, 1.1150e-02, 1.1260e-02, 1.1610e-02, 1.0700e-02, 1.1600e-02, 1.0390e-02, 1.0280e-02, 1.0180e-02, 1.0030e-02, 9.6050e-03, 8.8050e-03, 8.9680e-03, 9.0120e-03, 8.4110e-03, 8.6660e-03, 8.3060e-03, 8.5850e-03, 8.2600e-03, 8.3800e-03, 8.4200e-03, 7.5690e-03, 7.2100e-03, 7.1230e-03, 7.3350e-03, 7.1980e-03, 6.7500e-03, 6.6190e-03, 6.3370e-03, 6.6270e-03, 6.8290e-03, 6.0880e-03, 6.6310e-03, 6.0490e-03, 5.8900e-03, 5.6100e-03 }; Float_t x = px[0] * px[0]; if (x < 1.5 || x > 100) { return 0.0; } else { Float_t y = Interpolate(x, ptUps, 0.5, 1., 100, 4); return px[0] * y; } } // // y-distribution // //____________________________________________________________ Double_t AliGenMUONlib::YUpsilon(Double_t *py, Double_t *dummy) { // Upsilon y const Double_t ky0 = 3.; const Double_t kb=1.; Double_t yu; Double_t y=TMath::Abs(*py); // if (y < ky0) yu=kb; else yu=kb*TMath::Exp(-(y-ky0)*(y-ky0)/2); return yu; } Double_t AliGenMUONlib::YUpsilonPbPb( Double_t *px, Double_t *dummy) { // // Upsilon y // // // R. Vogt 2002 // PbPb 5.5 TeV // MRST HO // mc = 1.4 GeV, pt-kick 1 GeV // Float_t yUps[52] = { 0.000000, 0.000065, 0.000767, 0.004332, 0.014790, 0.029370, 0.052060, 0.077930, 0.122500, 0.135800, 0.184000, 0.207900, 0.228300, 0.258500, 0.269500, 0.288500, 0.316200, 0.304100, 0.315800, 0.323300, 0.322400, 0.322600, 0.345500, 0.338100, 0.331900, 0.343700, 0.343700, 0.331900, 0.338100, 0.345500, 0.322600, 0.322400, 0.323300, 0.315800, 0.304100, 0.316200, 0.288500, 0.269500, 0.258500, 0.228300, 0.207900, 0.184000, 0.135800, 0.122500, 0.077930, 0.052060, 0.029380, 0.014780, 0.004332, 0.000767, 0.6479E-04, 0.1013E-06 }; return Interpolate(px[0], yUps, -6.5, 0.25, 52, 2); } // particle composition // Int_t AliGenMUONlib::IpUpsilon(TRandom *) { // y composition return 553; } // // Phi // // // pt-distribution (by scaling of pion distribution) //____________________________________________________________ Double_t AliGenMUONlib::PtPhi( Double_t *px, Double_t *dummy) { // Phi pT return PtScal(*px,7); } // y-distribution Double_t AliGenMUONlib::YPhi( Double_t *px, Double_t *dummy) { // Phi y Double_t *dum=0; return YJpsi(px,dum); } // particle composition // Int_t AliGenMUONlib::IpPhi(TRandom *) { // Phi composition return 333; } // // omega // // // pt-distribution (by scaling of pion distribution) //____________________________________________________________ Double_t AliGenMUONlib::PtOmega( Double_t *px, Double_t *dummy) { // Omega pT return PtScal(*px,5); } // y-distribution Double_t AliGenMUONlib::YOmega( Double_t *px, Double_t *dummy) { // Omega y Double_t *dum=0; return YJpsi(px,dum); } // particle composition // Int_t AliGenMUONlib::IpOmega(TRandom *) { // Omega composition return 223; } // // Eta // // // pt-distribution (by scaling of pion distribution) //____________________________________________________________ Double_t AliGenMUONlib::PtEta( Double_t *px, Double_t *dummy) { // Eta pT return PtScal(*px,3); } // y-distribution Double_t AliGenMUONlib::YEta( Double_t *px, Double_t *dummy) { // Eta y Double_t *dum=0; return YJpsi(px,dum); } // particle composition // Int_t AliGenMUONlib::IpEta(TRandom *) { // Eta composition return 221; } // // Charm // // // pt-distribution //____________________________________________________________ Double_t AliGenMUONlib::PtCharm( Double_t *px, Double_t *dummy) { // Charm pT const Double_t kpt0 = 4.08; const Double_t kxn = 9.40; Double_t x=*px; // Double_t pass1 = 1.+(x/kpt0); return x/TMath::Power(pass1,kxn); } // y-distribution Double_t AliGenMUONlib::YCharm( Double_t *px, Double_t *dummy) { // Charm y Double_t *dum=0; return YJpsi(px,dum); } Int_t AliGenMUONlib::IpCharm(TRandom *ran) { // Charm composition Float_t random; Int_t ip; // 411,421,431,4122 random = ran->Rndm(); if (random < 0.5) { ip=411; } else if (random < 0.75) { ip=421; } else if (random < 0.90) { ip=431; } else { ip=4122; } if (ran->Rndm() < 0.5) {ip=-ip;} return ip; } // // Beauty // // // pt-distribution //____________________________________________________________ Double_t AliGenMUONlib::PtBeauty( Double_t *px, Double_t *dummy) { // Beauty pT const Double_t kpt0 = 4.; const Double_t kxn = 3.6; Double_t x=*px; // Double_t pass1 = 1.+(x/kpt0)*(x/kpt0); return x/TMath::Power(pass1,kxn); } // y-distribution Double_t AliGenMUONlib::YBeauty( Double_t *px, Double_t *dummy) { // Beauty y Double_t *dum=0; return YJpsi(px,dum); } Int_t AliGenMUONlib::IpBeauty(TRandom *ran) { // Beauty Composition Float_t random; Int_t ip; random = ran->Rndm(); if (random < 0.5) { ip=511; } else if (random < 0.75) { ip=521; } else if (random < 0.90) { ip=531; } else { ip=5122; } if (ran->Rndm() < 0.5) {ip=-ip;} return ip; } typedef Double_t (*GenFunc) (Double_t*, Double_t*); GenFunc AliGenMUONlib::GetPt(Int_t param, const char* tname) const { // Return pointer to pT parameterisation TString sname = TString(tname); GenFunc func; switch (param) { case kPhi: func=PtPhi; break; case kOmega: func=PtOmega; break; case kEta: func=PtEta; break; case kJpsi: if (sname == "Vogt") { func=PtJpsiPbPb; } else { func=PtJpsi; } break; case kUpsilon: if (sname == "Vogt") { func=PtUpsilonPbPb; } else { func=PtUpsilon; } break; case kCharm: func=PtCharm; break; case kBeauty: func=PtBeauty; break; case kPion: func=PtPion; break; case kKaon: func=PtKaon; break; default: func=0; printf(" unknown parametrisation\n"); } return func; } GenFunc AliGenMUONlib::GetY(Int_t param, const char* tname) const { TString sname = TString(tname); // Return pointer to y- parameterisation GenFunc func; switch (param) { case kPhi: func=YPhi; break; case kEta: func=YEta; break; case kOmega: func=YOmega; break; case kJpsi: if (sname == "Vogt") { func=YJpsiPbPb; } else { func=YJpsi; } break; case kUpsilon: if (sname == "Vogt") { func=YUpsilonPbPb; } else { func=YUpsilon; } break; case kCharm: func=YCharm; break; case kBeauty: func=YBeauty; break; case kPion: func=YPion; break; case kKaon: func=YKaon; break; default: func=0; printf(" unknown parametrisation\n"); } return func; } typedef Int_t (*GenFuncIp) (TRandom *); GenFuncIp AliGenMUONlib::GetIp(Int_t param, const char* tname) const { // Return pointer to particle type parameterisation GenFuncIp func; switch (param) { case kPhi: func=IpPhi; break; case kEta: func=IpEta; break; case kOmega: func=IpOmega; break; case kJpsi: func=IpJpsi; break; case kUpsilon: func=IpUpsilon; break; case kCharm: func=IpCharm; break; case kBeauty: func=IpBeauty; break; case kPion: func=IpPion; break; case kKaon: func=IpKaon; break; default: func=0; printf(" unknown parametrisation\n"); } return func; } Float_t AliGenMUONlib::Interpolate(Float_t x, Float_t* y, Float_t x0, Float_t dx, Int_t n, Int_t no) { // // Neville's alorithm for interpolation // // x: x-value // y: Input array // x0: minimum x // dx: step size // n: number of data points // no: order of polynom // Float_t* c = new Float_t[n]; Float_t* d = new Float_t[n]; Int_t m, i; for (i = 0; i < n; i++) { c[i] = y[i]; d[i] = y[i]; } Int_t ns = int((x - x0)/dx); Float_t y1 = y[ns]; ns--; for (m = 0; m < no; m++) { for (i = 0; i < n-m; i++) { Float_t ho = x0 + Float_t(i) * dx - x; Float_t hp = x0 + Float_t(i+m+1) * dx - x; Float_t w = c[i+1] - d[i]; Float_t den = ho-hp; den = w/den; d[i] = hp * den; c[i] = ho * den; } Float_t dy; if (2*ns < (n-m-1)) { dy = c[ns+1]; } else { dy = d[ns--]; } y1 += dy;} delete[] c; delete[] d; return y1; }