/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.14 2000/04/05 08:36:13 morsch Check status code of particles in Pythia event to avoid double counting as partonic state and final state particle. Revision 1.13 1999/11/09 07:38:48 fca Changes for compatibility with version 2.23 of ROOT Revision 1.12 1999/11/03 17:43:20 fca New version from G.Martinez & A.Morsch Revision 1.11 1999/09/29 09:24:14 fca Introduction of the Copyright and cvs Log */ #include "AliGenerator.h" #include "AliGenPythia.h" #include "AliRun.h" #include "AliPythia.h" #include #include #include #include #include #include //#include ClassImp(AliGenPythia) AliGenPythia::AliGenPythia() :AliGenerator() { } AliGenPythia::AliGenPythia(Int_t npart) :AliGenerator(npart) { // default charm production at 5. 5 TeV // semimuonic decay // structure function GRVHO // fXsection = 0.; fParentSelect.Set(5); fChildSelect.Set(5); for (Int_t i=0; i<5; i++) fParentSelect[i]=fChildSelect[i]=0; SetProcess(); SetStrucFunc(); SetForceDecay(); SetPtHard(); SetEnergyCMS(); } AliGenPythia::~AliGenPythia() { } void AliGenPythia::Init() { SetMC(new AliPythia()); fPythia=(AliPythia*) fgMCEvGen; // fParentWeight=1./Float_t(fNpart); // // Forward Paramters to the AliPythia object fPythia->DefineParticles(); fPythia->SetCKIN(3,fPtHardMin); fPythia->SetCKIN(4,fPtHardMax); fPythia->ProcInit(fProcess,fEnergyCMS,fStrucFunc); fPythia->ForceDecay(fForceDecay); fPythia->Lulist(0); fPythia->Pystat(2); // Parent and Children Selection switch (fProcess) { case charm: fParentSelect[0]=411; fParentSelect[1]=421; fParentSelect[2]=431; fParentSelect[3]=4122; break; case charm_unforced: fParentSelect[0]=411; fParentSelect[1]=421; fParentSelect[2]=431; fParentSelect[3]=4122; break; case beauty: fParentSelect[0]=511; fParentSelect[1]=521; fParentSelect[2]=531; fParentSelect[3]=5122; break; case beauty_unforced: fParentSelect[0]=511; fParentSelect[1]=521; fParentSelect[2]=531; fParentSelect[3]=5122; break; case jpsi_chi: case jpsi: fParentSelect[0]=443; break; case mb: break; } switch (fForceDecay) { case semielectronic: case dielectron: case b_jpsi_dielectron: case b_psip_dielectron: fChildSelect[0]=11; break; case semimuonic: case dimuon: case b_jpsi_dimuon: case b_psip_dimuon: case pitomu: case katomu: fChildSelect[0]=13; break; case all: case nodecay: break; } } void AliGenPythia::Generate() { Float_t polar[3] = {0,0,0}; Float_t origin[3]= {0,0,0}; Float_t origin_p[3]= {0,0,0}; Float_t origin0[3]= {0,0,0}; Float_t p[3], p_p[4], random[6]; static TClonesArray *particles; // converts from mm/c to s const Float_t kconv=0.001/2.999792458e8; // Int_t nt=0; Int_t nt_p=0; Int_t jev=0; Int_t j, kf; if(!particles) particles=new TClonesArray("TParticle",1000); fTrials=0; for (j=0;j<3;j++) origin0[j]=fOrigin[j]; if(fVertexSmear==perEvent) { gMC->Rndm(random,6); for (j=0;j<3;j++) { origin0[j]+=fOsigma[j]*TMath::Cos(2*random[2*j]*TMath::Pi())* TMath::Sqrt(-2*TMath::Log(random[2*j+1])); fPythia->SetMSTP(151,0); } } else if (fVertexSmear==perTrack) { fPythia->SetMSTP(151,0); for (j=0;j<3;j++) { fPythia->SetPARP(151+j, fOsigma[j]*10.); } } while(1) { fPythia->Pyevnt(); fPythia->Lulist(1); fTrials++; fPythia->ImportParticles(particles,"All"); Int_t np = particles->GetEntriesFast(); printf("\n **************************************************%d\n",np); Int_t nc=0; if (np == 0 ) continue; if (fProcess != mb) { for (Int_t i = 0; iAt(i); Int_t ks = iparticle->GetStatusCode(); kf = CheckPDGCode(iparticle->GetPdgCode()); if (ks==21) continue; fChildWeight=(fPythia->GetBraPart(kf))*fParentWeight; // // Parent if (ParentSelected(TMath::Abs(kf))) { if (KinematicSelection(iparticle)) { if (nc==0) { // // Store information concerning the hard scattering process // Float_t mass_p = fPythia->GetPARI(13); Float_t pt_p = fPythia->GetPARI(17); Float_t y_p = fPythia->GetPARI(37); Float_t xmt_p = sqrt(pt_p*pt_p+mass_p*mass_p); Float_t ty = Float_t(TMath::TanH(y_p)); p_p[0] = pt_p; p_p[1] = 0; p_p[2] = xmt_p*ty/sqrt(1.-ty*ty); p_p[3] = mass_p; gAlice->SetTrack(0,-1,-1, p_p,origin_p,polar, 0,"Hard Scat.",nt_p,fParentWeight); gAlice->KeepTrack(nt_p); } nc++; // // store parent track information p[0]=iparticle->Px(); p[1]=iparticle->Py(); p[2]=iparticle->Pz(); origin[0]=origin0[0]+iparticle->Vx()/10; origin[1]=origin0[1]+iparticle->Vy()/10; origin[2]=origin0[2]+iparticle->Vz()/10; Int_t ifch=iparticle->GetFirstDaughter(); Int_t ilch=iparticle->GetLastDaughter(); if (ifch !=0 && ilch !=0) { gAlice->SetTrack(0,nt_p,kf, p,origin,polar, 0,"Primary",nt,fParentWeight); gAlice->KeepTrack(nt); Int_t iparent = nt; // // Children for (j=ifch; j<=ilch; j++) { TParticle * ichild = (TParticle *) particles->At(j-1); kf = CheckPDGCode(ichild->GetPdgCode()); // // if (ChildSelected(TMath::Abs(kf))) { origin[0]=ichild->Vx(); origin[1]=ichild->Vy(); origin[2]=ichild->Vz(); p[0]=ichild->Px(); p[1]=ichild->Py(); p[2]=ichild->Pz(); Float_t tof=kconv*ichild->T(); gAlice->SetTrack(fTrackIt, iparent, kf, p,origin,polar, tof,"Decay",nt,fChildWeight); gAlice->KeepTrack(nt); } // select child } // child loop } } // kinematic selection } // select particle } // particle loop } else { for (Int_t i = 0; iAt(i); kf = CheckPDGCode(iparticle->GetPdgCode()); Int_t ks = iparticle->GetStatusCode(); if (ks==1 && kf!=0 && KinematicSelection(iparticle)) { nc++; // // store track information p[0]=iparticle->Px(); p[1]=iparticle->Py(); p[2]=iparticle->Pz(); origin[0]=origin0[0]+iparticle->Vx()/10; origin[1]=origin0[1]+iparticle->Vy()/10; origin[2]=origin0[2]+iparticle->Vz()/10; Float_t tof=kconv*iparticle->T(); gAlice->SetTrack(fTrackIt,-1,kf,p,origin,polar, tof,"Primary",nt); gAlice->KeepTrack(nt); } // select particle } // particle loop printf("\n I've put %i particles on the stack \n",nc); } // mb ? if (nc > 0) { jev+=nc; if (jev >= fNpart) { fKineBias=Float_t(fNpart)/Float_t(fTrials); printf("\n Trials: %i %i %i\n",fTrials, fNpart, jev); break; } } } // event loop // adjust weight due to kinematic selection AdjustWeights(); // get cross-section fXsection=fPythia->GetPARI(1); } Bool_t AliGenPythia::ParentSelected(Int_t ip) { for (Int_t i=0; i<5; i++) { if (fParentSelect[i]==ip) return kTRUE; } return kFALSE; } Bool_t AliGenPythia::ChildSelected(Int_t ip) { for (Int_t i=0; i<5; i++) { if (fChildSelect[i]==ip) return kTRUE; } return kFALSE; } Bool_t AliGenPythia::KinematicSelection(TParticle *particle) { Float_t px=particle->Px(); Float_t py=particle->Py(); Float_t pz=particle->Pz(); Float_t e=particle->Energy(); // // transverse momentum cut Float_t pt=TMath::Sqrt(px*px+py*py); if (pt > fPtMax || pt < fPtMin) { // printf("\n failed pt cut %f %f %f \n",pt,fPtMin,fPtMax); return kFALSE; } // // momentum cut Float_t p=TMath::Sqrt(px*px+py*py+pz*pz); if (p > fPMax || p < fPMin) { // printf("\n failed p cut %f %f %f \n",p,fPMin,fPMax); return kFALSE; } // // theta cut Float_t theta = Float_t(TMath::ATan2(Double_t(pt),Double_t(pz))); if (theta > fThetaMax || theta < fThetaMin) { // printf("\n failed theta cut %f %f %f \n",theta,fThetaMin,fThetaMax); return kFALSE; } // // rapidity cut Float_t y = 0.5*TMath::Log((e+pz)/(e-pz)); if (y > fYMax || y < fYMin) { // printf("\n failed y cut %f %f %f \n",y,fYMin,fYMax); return kFALSE; } // // phi cut Float_t phi=Float_t(TMath::ATan2(Double_t(py),Double_t(px)))+TMath::Pi(); if (phi > fPhiMax || phi < fPhiMin) { // printf("\n failed phi cut %f %f %f \n",phi,fPhiMin,fPhiMax); return kFALSE; } return kTRUE; } void AliGenPythia::AdjustWeights() { TClonesArray *PartArray = gAlice->Particles(); TParticle *Part; Int_t ntrack=gAlice->GetNtrack(); for (Int_t i=0; iUncheckedAt(i); Part->SetWeight(Part->GetWeight()*fKineBias); } } Int_t AliGenPythia::CheckPDGCode(Int_t pdgcode) { // // If the particle is in a diffractive state, then take action accordingly switch (pdgcode) { case 110: //rho_diff0 -- difficult to translate, return rho0 return 113; case 210: //pi_diffr+ -- change to pi+ return 211; case 220: //omega_di0 -- change to omega0 return 223; case 330: //phi_diff0 -- return phi0 return 333; case 440: //J/psi_di0 -- return J/psi return 443; case 2110: //n_diffr -- return neutron return 2112; case 2210: //p_diffr+ -- return proton return 2212; } //non diffractive state -- return code unchanged return pdgcode; }