/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /** @file AliFMDAltroMapping.cxx @author Christian Holm Christensen @date Sun Mar 26 18:27:56 2006 @brief Map HW to detector */ //____________________________________________________________________ // // Mapping of ALTRO hardware channel to detector coordinates // // The hardware address consist of a DDL number and 12bits of ALTRO // addresses. The ALTRO address are formatted as follows. // // 12 7 4 0 // |---------------|---------|------------| // | Board # | ALTRO # | Channel # | // +---------------+---------+------------+ // // The mapping is done purely by calculations. In the future, // however, we may need some hard-coded stuff, or an external file to // read from. // #include "AliFMDAltroMapping.h" // ALIFMDALTROMAPPING_H #include "AliFMDParameters.h" #include "AliLog.h" #include #include //____________________________________________________________________ ClassImp(AliFMDAltroMapping) #if 0 ; // This is here to keep Emacs for indenting the next line #endif //_____________________________________________________________________________ AliFMDAltroMapping::AliFMDAltroMapping() { // Constructor } //_____________________________________________________________________________ Bool_t AliFMDAltroMapping::ReadMapping() { // Read map from file - not used return kTRUE; } //_____________________________________________________________________________ Bool_t AliFMDAltroMapping::CreateInvMapping() { // Create inverse mapping - not used return kTRUE; } //____________________________________________________________________ Bool_t AliFMDAltroMapping::Hardware2Detector(UInt_t ddl, UInt_t addr, UShort_t& det, Char_t& ring, UShort_t& sec, UShort_t& str) const { // Translate a hardware address to detector coordinates. // // See also Hardware2Detector that accepts 4 inputs UInt_t board = (addr >> 7) & 0x1F; UInt_t altro = (addr >> 4) & 0x7; UInt_t chan = (addr & 0xf); return Hardware2Detector(ddl, board, altro, chan, det, ring, sec, str); } //____________________________________________________________________ Bool_t AliFMDAltroMapping::Hardware2Detector(UInt_t ddl, UInt_t board, UInt_t altro, UInt_t chan, UShort_t& det, Char_t& ring, UShort_t& sec, UShort_t& str) const { // Translate a hardware address to detector coordinates. // The detector is simply // // ddl + 1 // // The ring number, sector, and strip number is given by the addr // argument. The address argument, has the following format // // 12 7 4 0 // +-------------+----------+----------+ // | Board | ALTRO | Channel | // +-------------+----------+----------+ // // The board number identifier among other things the ring. There's // up to 4 boards per DDL, and the two first (0 and 16) corresponds // to the inner rings, while the two last (1 and 17) corresponds to // the outer rings. // // The board number and ALTRO number together identifies the sensor, // and hence. The lower board number (0 or 2) are the first N / 2 // sensors (where N is the number of sensors in the ring). // // There are 3 ALTRO's per card, and each ALTRO serves up to 4 // sensors. Which of sensor is determined by the channel number. // For the inner rings, the map is // // ALTRO 0, Channel 0 to 7 -> Sensor 0 or 5 // ALTRO 0, Channel 8 to 15 -> Sensor 1 or 6 // ALTRO 1, Channel 0 to 7 -> Sensor 2 or 7 // ALTRO 2, Channel 0 to 7 -> Sensor 3 or 8 // ALTRO 2, Channel 8 to 15 -> Sensor 4 or 9 // // For the outer rings, the map is // // ALTRO 0, Channel 0 to 3 -> Sensor 0 or 10 // ALTRO 0, Channel 4 to 7 -> Sensor 1 or 11 // ALTRO 0, Channel 8 to 11 -> Sensor 2 or 12 // ALTRO 0, Channel 12 to 15 -> Sensor 3 or 13 // ALTRO 1, Channel 0 to 3 -> Sensor 4 or 14 // ALTRO 1, Channel 4 to 7 -> Sensor 5 or 15 // ALTRO 2, Channel 0 to 3 -> Sensor 6 or 16 // ALTRO 2, Channel 4 to 7 -> Sensor 7 or 17 // ALTRO 2, Channel 8 to 11 -> Sensor 8 or 18 // ALTRO 2, Channel 12 to 15 -> Sensor 9 or 19 // // Which divison of the sensor we're in, depends on the channel // number only. For the inner rings, the map is // // Channel 0 -> Sector 0, strips 0-127 // Channel 1 -> Sector 1, strips 0-127 // Channel 3 -> Sector 0, strips 128-255 // Channel 4 -> Sector 1, strips 128-255 // Channel 5 -> Sector 0, strips 256-383 // Channel 6 -> Sector 1, strips 256-383 // Channel 7 -> Sector 0, strips 384-511 // Channel 8 -> Sector 1, strips 384-511 // // There are only half as many strips in the outer sensors, so there // only 4 channels are used for a full sensor. The map is // // Channel 0 -> Sector 0, strips 0-127 // Channel 1 -> Sector 1, strips 0-127 // Channel 3 -> Sector 0, strips 128-255 // Channel 4 -> Sector 1, strips 128-255 // // With this information, we can decode the hardware address to give // us detector coordinates, unique at least up a 128 strips. We // return the first strip in the given range. // det = ddl + 1; ring = (board % 2) == 0 ? 'I' : 'O'; switch (ring) { case 'i': case 'I': sec = ((board / 16) * 10 + (altro < 1 ? 0 : altro < 2 ? 4 : 6) + 2 * (chan / 8) + chan % 2); str = ((chan % 8) / 2) * 128; break; case 'o': case 'O': sec = ((board / 16) * 20 + (altro < 1 ? 0 : altro < 2 ? 8 : 12) + 2 * (chan / 4) + chan % 2); str = ((chan % 4) / 2) * 128; break; } return kTRUE; } //____________________________________________________________________ Bool_t AliFMDAltroMapping::Detector2Hardware(UShort_t det, Char_t ring, UShort_t sec, UShort_t str, UInt_t& ddl, UInt_t& board, UInt_t& altro, UInt_t& chan) const { // Translate detector coordinates to a hardware address. // The ddl is simply // // (det - 1) // // The ring number, sector, and strip number must be encoded into a // hardware address. The address argument, will have the following // format on output // // 12 7 4 0 // +-------------+----------+----------+ // | Board | ALTRO | Channel | // +-------------+----------+----------+ // // The board number is given by the ring and sector. The inner // rings board 0 and 16, while the outer are 1 and 17. Which of these // depends on the sector. The map is // // Ring I, sector 0- 9 -> board 0 // Ring I, sector 10-19 -> board 16 // Ring O, sector 0-19 -> board 1 // Ring O, sector 20-39 -> board 17 // // There are 3 ALTRO's per board. The ALTRO number is given by the // sector number. For the inner rings, these are given by // // Sector 0- 3 or 10-13 -> ALTRO 0 // Sector 4- 5 or 14-15 -> ALTRO 1 // Sector 6- 9 or 16-19 -> ALTRO 2 // // For the outers, it's given by // // Sector 0- 7 or 20-27 -> ALTRO 0 // Sector 8-11 or 28-31 -> ALTRO 1 // Sector 12-19 or 32-39 -> ALTRO 2 // // The channel number is given by the sector and strip number. For // the inners, the map is // // Sector 0, strips 0-127 -> Channel 0 // Sector 0, strips 128-255 -> Channel 2 // Sector 0, strips 256-383 -> Channel 4 // Sector 0, strips 384-511 -> Channel 6 // Sector 1, strips 0-127 -> Channel 1 // Sector 1, strips 128-255 -> Channel 3 // Sector 1, strips 256-383 -> Channel 5 // Sector 1, strips 384-511 -> Channel 7 // Sector 2, strips 0-127 -> Channel 8 // Sector 2, strips 128-255 -> Channel 10 // Sector 2, strips 256-383 -> Channel 12 // Sector 2, strips 384-511 -> Channel 14 // Sector 3, strips 0-127 -> Channel 9 // Sector 3, strips 128-255 -> Channel 11 // Sector 3, strips 256-383 -> Channel 13 // Sector 3, strips 384-511 -> Channel 15 // // and so on, up to sector 19. For the outer, the map is // // Sector 0, strips 0-127 -> Channel 0 // Sector 0, strips 128-255 -> Channel 2 // Sector 1, strips 0-127 -> Channel 1 // Sector 1, strips 128-255 -> Channel 3 // Sector 2, strips 0-127 -> Channel 4 // Sector 2, strips 128-255 -> Channel 6 // Sector 3, strips 0-127 -> Channel 5 // Sector 3, strips 128-255 -> Channel 7 // Sector 4, strips 0-127 -> Channel 8 // Sector 4, strips 128-255 -> Channel 10 // Sector 5, strips 0-127 -> Channel 9 // Sector 5, strips 128-255 -> Channel 11 // Sector 6, strips 0-127 -> Channel 12 // Sector 6, strips 128-255 -> Channel 14 // Sector 7, strips 0-127 -> Channel 13 // Sector 7, strips 128-255 -> Channel 15 // // and so on upto sector 40. // // With this information, we can decode the detector coordinates to // give us a unique hardware address // ddl = (det - 1); UInt_t tmp = 0; switch (ring) { case 'I': case 'i': board = (sec / 10) * 16; altro = (sec % 10) < 4 ? 0 : (sec % 10) < 6 ? 1 : 2; tmp = (sec % 10) - (altro == 0 ? 0 : altro == 1 ? 4 : 6); chan = 2 * (str / 128) + (sec % 2) + ((tmp / 2) % 2) * 8; break; case 'O': case 'o': board = (sec / 20) * 16 + 1; altro = (sec % 20) < 8 ? 0 : (sec % 20) < 12 ? 1 : 2; tmp = (sec % 20) - (altro == 0 ? 0 : altro == 1 ? 8 : 12); chan = 2 * (str / 128) + (sec % 2) + ((tmp / 2) % 4) * 4; break; } return kTRUE; } //____________________________________________________________________ Bool_t AliFMDAltroMapping::Detector2Hardware(UShort_t det, Char_t ring, UShort_t sec, UShort_t str, UInt_t& ddl, UInt_t& addr) const { // Translate detector coordinates to a hardware address. // // See also Detector2Hardware that returns 4 parameters. UInt_t board = 0; UInt_t altro = 0; UInt_t chan = 0; if (!Detector2Hardware(det,ring,sec,str,ddl,board,altro,chan)) return kFALSE; addr = chan + (altro << 4) + (board << 7); return kTRUE; } //____________________________________________________________________ Int_t AliFMDAltroMapping::GetHWAddress(Int_t sec, Int_t str, Int_t ring) { // Return hardware address corresponding to sector sec, strip str, // and ring ring. Mapping from TPC to FMD coordinates are // // TPC | FMD // --------+------ // padrow | sector // pad | strip // sector | ring // UInt_t ddl, hwaddr; Char_t r = Char_t(ring); if (!Detector2Hardware(1, r, sec, str, ddl, hwaddr)) return -1; return hwaddr; } //____________________________________________________________________ Int_t AliFMDAltroMapping::GetPadRow(Int_t hwaddr) const { // Return sector corresponding to hardware address hwaddr. Mapping // from TPC to FMD coordinates are // // TPC | FMD // --------+------ // padrow | sector // pad | strip // sector | ring // UShort_t det; Char_t ring; UShort_t sec; UShort_t str; Int_t ddl = 0; if (!Hardware2Detector(ddl, hwaddr, det, ring, sec, str)) return -1; return Int_t(sec); } //____________________________________________________________________ Int_t AliFMDAltroMapping::GetPad(Int_t hwaddr) const { // Return strip corresponding to hardware address hwaddr. Mapping // from TPC to FMD coordinates are // // TPC | FMD // --------+------ // padrow | sector // pad | strip // sector | ring // UShort_t det; Char_t ring; UShort_t sec; UShort_t str; Int_t ddl = 0; if (!Hardware2Detector(ddl, hwaddr, det, ring, sec, str)) return -1; return Int_t(str); } //____________________________________________________________________ Int_t AliFMDAltroMapping::GetSector(Int_t hwaddr) const { // Return ring corresponding to hardware address hwaddr. Mapping // from TPC to FMD coordinates are // // TPC | FMD // --------+------ // padrow | sector // pad | strip // sector | ring // UShort_t det; Char_t ring; UShort_t sec; UShort_t str; Int_t ddl = 0; if (!Hardware2Detector(ddl, hwaddr, det, ring, sec, str)) return -1; return Int_t(ring); } //____________________________________________________________________ void AliFMDAltroMapping::Print(Option_t* option) const { TString opt(option); opt.ToLower(); UInt_t ddl, board, chip, chan, addr; UShort_t det, sec, str; Char_t rng; if (opt.Contains("hw") || opt.Contains("hardware")) { std::cout << " DDL | Board | Chip | Chan | Address | Detector\n" << "=====+=======+======+======+=========+===============" << std::endl; for (ddl = 0; ddl <= 2; ddl++) { Int_t boards[] = { 0, 16, (ddl == 0 ? 32 : 1), 17, 32}; Int_t* ptr = boards; while ((board = *(ptr++)) < 32) { for (chip = 0; chip <= 2; chip++) { UInt_t nchan = (chip == 1 ? 8 : 16); for (chan = 0; chan < nchan; chan++) { Hardware2Detector(ddl, board, chip, chan, det, rng, sec, str); addr = ((board & 0x1f) << 7) | ((chip & 0x7) << 4) | (chan & 0xf); std::cout << " " << std::setw(3) << ddl << " | " << std::setfill('0') << std::hex << " 0x" << std::setw(2) << board << " | 0x" << std::setw(1) << chip << " | 0x" << std::setw(1) << chan << " | 0x" << std::setw(3) << addr << " | " << std::setfill(' ') << std::dec << " FMD" << std::setw(1) << det << rng << "[" << std::setw(2) << sec << "," << std::setw(3) << str << "]" << std::endl; } // for chan ... if (chip == 2 && *ptr >= 32) continue; std::cout << " + + + + + " << std::endl; } // for chip ... } // while board std::cout << "-----+-------+------+------+---------+---------------" << std::endl; } // for ddl ... } // if hw if (opt.Contains("det")) { std::cout << " Detector | DDL | Board | Chip | Chan | Address\n" << "===============+=====+=======+======+======+========" << std::endl; for (det = 1; det <= 3; det++) { Char_t rings[] = { 'I', (det == 1 ? '\0' : 'O'),'\0' }; Char_t* ptr = rings; while ((rng = *(ptr++)) != '\0') { UShort_t nsec = (rng == 'I' ? 20 : 40); UShort_t nstr = (rng == 'I' ? 512 : 256); for (sec = 0; sec < nsec; sec++) { for (str = 0; str < nstr; str += 128) { ddl = board = chip = chan; Detector2Hardware(det,rng,sec,str,ddl,board,chip,chan); addr = ((board & 0x1f) << 7) | ((chip & 0x7) << 4) | (chan & 0xf); std::cout << std::setfill(' ') << std::dec << " FMD" << std::setw(1) << det << rng << "[" << std::setw(2) << sec << "," << std::setw(3) << str << "] | " << std::setw(3) << ddl << " | 0x" << std::setfill('0') << std::hex << std::setw(2) << board << " | 0x" << std::setw(1) << chip << " | 0x" << std::setw(1) << chan << " | 0x" << std::setw(3) << addr << std::endl; } // for str ... } // for sec ... if (*ptr == '\0') continue; std::cout << " + + + + + " << std::endl; } // while rng ... std::cout << "---------------+-----+-------+------+------+--------" << std::endl; } // for det ... } // if det } //_____________________________________________________________________________ // // EOF //