//____________________________________________________________________ // // This is a class that constructs AliFMDRecPoint objects from of Digits // This class reads either digits from a TClonesArray or raw data from // a DDL file (or similar), and stores the read ADC counts in an // internal cache (fAdcs). The rec-points are made via the naiive // method. // //-- Authors: Evgeny Karpechev(INR) and Alla Maevsksia // Latest changes by Christian Holm Christensen // // //____________________________________________________________________ /************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /** * @file AliFMDReconstructor.cxx * @author Christian Holm Christensen * @date Mon Mar 27 12:47:09 2006 * @brief FMD reconstruction */ // #include // ALILOG_H // #include // ALIRUN_H #include "AliFMDDebug.h" #include "AliFMDGeometry.h" // ALIFMDGEOMETRY_H #include "AliFMDParameters.h" // ALIFMDPARAMETERS_H #include "AliFMDAltroMapping.h" // ALIFMDALTROMAPPING_H #include "AliFMDDigit.h" // ALIFMDDIGIT_H #include "AliFMDSDigit.h" // ALIFMDDIGIT_H #include "AliFMDReconstructor.h" // ALIFMDRECONSTRUCTOR_H #include "AliFMDRecoParam.h" // ALIFMDRECOPARAM_H #include "AliFMDRawReader.h" // ALIFMDRAWREADER_H #include "AliFMDRecPoint.h" // ALIFMDMULTNAIIVE_H #include "AliESDEvent.h" // ALIESDEVENT_H #include "AliESDVertex.h" // ALIESDVERTEX_H #include "AliESDTZERO.h" // ALIESDVERTEX_H #include // ALIESDFMD_H #include #include #include #include #include #include "AliFMDESDRevertexer.h" class AliRawReader; //____________________________________________________________________ ClassImp(AliFMDReconstructor) #if 0 ; // This is here to keep Emacs for indenting the next line #endif //____________________________________________________________________ AliFMDReconstructor::AliFMDReconstructor() : AliReconstructor(), fMult(0x0), fNMult(0), fTreeR(0x0), fCurrentVertex(0), fESDObj(0x0), fNoiseFactor(0), fAngleCorrect(kTRUE), fVertexType(kNoVertex), fESD(0x0), fDiagnostics(kFALSE), fDiagStep1(0), fDiagStep2(0), fDiagStep3(0), fDiagStep4(0), fDiagAll(0), fBad(0), fZombie(false) { // Make a new FMD reconstructor object - default CTOR. SetNoiseFactor(); SetAngleCorrect(); if (AliDebugLevel() > 0) fDiagnostics = kTRUE; for(Int_t det = 1; det<=3; det++) { fZS[det-1] = kFALSE; fZSFactor[det-1] = 0; } } //____________________________________________________________________ AliFMDReconstructor::~AliFMDReconstructor() { // Destructor if (fMult) fMult->Delete(); if (fMult) delete fMult; if (fESDObj) delete fESDObj; } //____________________________________________________________________ void AliFMDReconstructor::Init() { // Initialize the reconstructor // Initialize the geometry AliFMDGeometry* geom = AliFMDGeometry::Instance(); geom->Init(); geom->InitTransformations(); // Initialize the parameters AliFMDParameters* param = AliFMDParameters::Instance(); if (param->Init(true) != 0) { AliError("Failed to initialize parameters, making zombie"); fZombie = true; } else fZombie = false; // Current vertex position fCurrentVertex = 0; // Create array of reconstructed strip multiplicities // fMult = new TClonesArray("AliFMDRecPoint", 51200); // Create ESD output object fESDObj = new AliESDFMD; // Check if we need diagnostics histograms if (!fDiagnostics) return; AliInfo("Making diagnostics histograms"); if (!fDiagStep1) { fDiagStep1 = new TH2I("diagStep1", "Read ADC vs. Noise surpressed ADC", 1024, -.5, 1023.5, 1024, -.5, 1023.5); fDiagStep1->SetDirectory(0); fDiagStep1->GetXaxis()->SetTitle("ADC (read)"); fDiagStep1->GetYaxis()->SetTitle(Form("ADC (noise surpressed %4.f)", fNoiseFactor)); } if (!fDiagStep2) { fDiagStep2 = new TH2F("diagStep2", "ADC vs Edep deduced", 1024, -.5, 1023.5, 100, 0, 2); fDiagStep2->SetDirectory(0); fDiagStep2->GetXaxis()->SetTitle("ADC (noise surpressed)"); fDiagStep2->GetYaxis()->SetTitle("#Delta E [GeV]"); } if (!fDiagStep3) { fDiagStep3 = new TH2F("diagStep3", "Edep vs Edep path corrected", 100, 0., 2., 100, 0., 2.); fDiagStep3->SetDirectory(0); fDiagStep3->GetXaxis()->SetTitle("#Delta E [GeV]"); fDiagStep3->GetYaxis()->SetTitle("#Delta E/#Delta x #times #delta x [GeV]"); } if (!fDiagStep4) { fDiagStep4 = new TH2F("diagStep4", "Edep vs Multiplicity deduced", 100, 0., 2., 100, -.1, 19.9); fDiagStep4->SetDirectory(0); fDiagStep4->GetXaxis()->SetTitle("#Delta E/#Delta x #times #delta x [GeV]"); fDiagStep4->GetYaxis()->SetTitle("Multiplicity"); fDiagAll = new TH2F("diagAll", "Read ADC vs Multiplicity deduced", 1024, -.5, 1023.5, 100, -.1, 19.9); } if (fDiagAll) { fDiagAll->SetDirectory(0); fDiagAll->GetXaxis()->SetTitle("ADC (read)"); fDiagAll->GetYaxis()->SetTitle("Multiplicity"); } } //____________________________________________________________________ void AliFMDReconstructor::ConvertDigits(AliRawReader* reader, TTree* digitsTree) const { // Convert Raw digits to AliFMDDigit's in a tree if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } AliFMDDebug(1, ("Reading raw data into digits tree")); if (!digitsTree) { AliError("No digits tree passed"); return; } static TClonesArray* array = 0; if (!array) array = new TClonesArray("AliFMDDigit"); digitsTree->Branch("FMD", &array); array->Clear(); AliFMDRawReader rawRead(reader, digitsTree); // rawRead.SetSampleRate(fFMD->GetSampleRate()); // rawRead.Exec(); rawRead.ReadAdcs(array); Int_t nWrite = digitsTree->Fill(); AliDebugF(1, "Got a grand total of %d digits, wrote %d bytes to tree", array->GetEntriesFast(), nWrite); AliFMDAltroMapping* map = AliFMDParameters::Instance()->GetAltroMap(); for (UShort_t i = 1; i <= 3; i++) { fZS[i-1] = rawRead.IsZeroSuppressed(map->Detector2DDL(i)); fZSFactor[i-1] = rawRead.NoiseFactor(map->Detector2DDL(i)); AliDebugF(2, "Noise factor for FMD%hu: %d", i, fZSFactor[i-1]); } } //____________________________________________________________________ void AliFMDReconstructor::GetVertex(AliESDEvent* esd) const { // Return the vertex to use. // This is obtained from the ESD object. // If not found, a warning is issued. fVertexType = kNoVertex; fCurrentVertex = 0; if (!esd) return; const AliESDVertex* vertex = esd->GetPrimaryVertex(); if (!vertex) vertex = esd->GetPrimaryVertexSPD(); if (!vertex) vertex = esd->GetPrimaryVertexTPC(); if (!vertex) vertex = esd->GetVertex(); if (vertex) { AliFMDDebug(2, ("Got %s (%s) from ESD: %f", vertex->GetName(), vertex->GetTitle(), vertex->GetZv())); fCurrentVertex = vertex->GetZv(); fVertexType = kESDVertex; return; } else if (esd->GetESDTZERO()) { AliFMDDebug(2, ("Got primary vertex from T0: %f", esd->GetT0zVertex())); fCurrentVertex = esd->GetT0zVertex(); fVertexType = kESDVertex; return; } AliWarning("Didn't get any vertex from ESD or generator"); } //____________________________________________________________________ Int_t AliFMDReconstructor::GetIdentifier() const { // Get the detector identifier. // Note the actual value is cached so that we do not // need to do many expensive string comparisons. static Int_t idx = AliReconstruction::GetDetIndex(GetDetectorName()); return idx; } //____________________________________________________________________ const AliFMDRecoParam* AliFMDReconstructor::GetParameters() const { // Get the reconstruction parameters. // // Return: // Pointer to reconstruction parameters or null if not found or wrong type Int_t iDet = GetIdentifier(); // Was 12 - but changed on Cvetans request const AliDetectorRecoParam* params = AliReconstructor::GetRecoParam(iDet); if (!params || params->IsA() != AliFMDRecoParam::Class()) return 0; return static_cast(params); } //____________________________________________________________________ void AliFMDReconstructor::UseRecoParam(Bool_t set) const { // // Set-up reconstructor to use values from reconstruction // parameters, if present, for this event. If the argument @a set // is @c false, then restore preset values. // // Parameters: // set // static Float_t savedNoiseFactor = fNoiseFactor; static Bool_t savedAngleCorrect = fAngleCorrect; if (set) { const AliFMDRecoParam* params = GetParameters(); if (params) { fNoiseFactor = params->NoiseFactor(); fAngleCorrect = params->AngleCorrect(); } return; } fNoiseFactor = savedNoiseFactor; fAngleCorrect = savedAngleCorrect; } //____________________________________________________________________ void AliFMDReconstructor::MarkDeadChannels(AliESDFMD* esd) const { // Loop over all entries of the ESD and mark // those that are dead as such // - otherwise put in the zero signal. AliFMDParameters* param = AliFMDParameters::Instance(); for (UShort_t d = 1; d <= 3; d++) { UShort_t nR = (d == 1 ? 1 : 2); for (UShort_t q = 0; q < nR; q++) { Char_t r = (q == 0 ? 'I' : 'O'); UShort_t nS = (q == 0 ? 20 : 40); UShort_t nT = (q == 0 ? 512 : 256); for (UShort_t s = 0; s < nS; s++) { for (UShort_t t = 0; t < nT; t++) { // A strip can be marked `bad' for two reasons: // // - The raw reader fails to read the value // - The strip is marked in OCDB as bad (IsDead) // // Hence, a dead strip will always be marked kInvalid here, // while a non-dead bad-read strip will be filled with 0. if (fBad(d, r, s, t)) { AliDebugF(5, "Marking FMD%d%c[%2d,%3d] as bad", d, r, s, t); esd->SetMultiplicity(d, r, s, t, AliESDFMD::kInvalidMult); } if (param->IsDead(d, r, s, t)) { AliDebugF(5, "Marking FMD%d%c[%2d,%3d] as dead", d, r, s, t); esd->SetMultiplicity(d, r, s, t, AliESDFMD::kInvalidMult); // esd->SetEta(d, r, s, t, AliESDFMD::kInvalidEta); } else if (esd->Multiplicity(d, r, s, t) == AliESDFMD::kInvalidMult) { AliDebugF(20, "Setting null signal in FMD%d%c[%2d,%3d]", d, r, s, t); esd->SetMultiplicity(d, r, s, t, 0); } else { AliDebugF(10, "Setting FMD%d%c[%2d,%3d]=%f",d,r,s,t, esd->Multiplicity(d, r, s, t)); } } } } } } //____________________________________________________________________ Bool_t AliFMDReconstructor::PreReconstruct() const { AliFMDDebug(1, ("Before reoconstructing")); if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return false; } // Get our vertex GetVertex(fESD); // Reset bad flags fBad.Reset(false); // Reset the output ESD if (fESDObj) { fESDObj->Clear(); // Pre-set eta values for (UShort_t d=1; d<=3; d++) { UShort_t nQ = (d == 1 ? 1 : 2); for (UShort_t q=0; qSetEta(d, r, 0, t, eta); } } } } return true; } //____________________________________________________________________ void AliFMDReconstructor::Reconstruct(AliFMDRawReader& rawReader) const { // Reconstruct directly from raw data (no intermediate output on // digit tree or rec point tree). // // Parameters: // rawReader FMD Raw event reader AliFMDDebug(1, ("Reconstructing from FMD raw reader")); if (!PreReconstruct()) return; UShort_t det, sec, str, fac; Short_t adc, oldDet = -1; Bool_t zs; Char_t rng; UseRecoParam(kTRUE); while (rawReader.NextSignal(det, rng, sec, str, adc, zs, fac)) { if (det != oldDet) { fZS[det-1] = zs; fZSFactor[det-1] = fac; oldDet = det; } ProcessSignal(det, rng, sec, str, adc); } UseRecoParam(kFALSE); } //____________________________________________________________________ void AliFMDReconstructor::Reconstruct(AliRawReader* reader, TTree*) const { // Reconstruct directly from raw data (no intermediate output on // digit tree or rec point tree). // // Parameters: // reader Raw event reader // ctree Not used - 'cluster tree' to store rec-points in. AliFMDDebug(1, ("Reconstructing from raw reader")); if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } AliFMDRawReader rawReader(reader, 0); Reconstruct(rawReader); } //____________________________________________________________________ void AliFMDReconstructor::Digitize(AliRawReader* reader, TClonesArray* sdigits) const { // Reconstruct directly from raw data (no intermediate output on // digit tree or rec point tree). // // Parameters: // reader Raw event reader // ctree Not used. if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } AliFMDRawReader rawReader(reader, 0); UShort_t det, sec, str, sam, rat, fac; Short_t adc, oldDet = -1; Bool_t zs; Char_t rng; UseRecoParam(kTRUE); while (rawReader.NextSample(det, rng, sec, str, sam, rat, adc, zs, fac)) { if (!rawReader.SelectSample(sam, rat)) continue; if (det != oldDet) { fZS[det-1] = zs; fZSFactor[det-1] = fac; oldDet = det; } DigitizeSignal(sdigits, det, rng, sec, str, sam, adc); } UseRecoParam(kFALSE); } //____________________________________________________________________ void AliFMDReconstructor::Reconstruct(TTree* digitsTree, TTree* clusterTree) const { // Reconstruct event from digits in tree // Get the FMD branch holding the digits. // FIXME: The vertex may not be known yet, so we may have to move // some of this to FillESD. // // Parameters: // digitsTree Pointer to a tree containing digits // clusterTree Pointer to output tree // if (!PreReconstruct()) return; if (!fMult) fMult = new TClonesArray("AliFMDRecPoint"); AliFMDDebug(1, ("Reconstructing from digits in a tree")); // Get the digitis array static TClonesArray* digits = new TClonesArray("AliFMDDigit"); TBranch* digitBranch = digitsTree->GetBranch("FMD"); if (!digitBranch) { Error("Exec", "No digit branch for the FMD found"); return; } digitBranch->SetAddress(&digits); if (digits) digits->Clear(); if (fMult) fMult->Clear(); // Create rec-point output branch fNMult = 0; fTreeR = clusterTree; fTreeR->Branch("FMD", &fMult); AliDebug(5, "Getting entry 0 from digit branch"); digitBranch->GetEntry(0); AliDebugF(5, "Processing %d digits", digits->GetEntriesFast()); UseRecoParam(kTRUE); ProcessDigits(digits); UseRecoParam(kFALSE); Int_t written = clusterTree->Fill(); AliFMDDebug(10, ("Filled %d bytes into cluster tree", written)); // digits->Delete(); // delete digits; } //____________________________________________________________________ void AliFMDReconstructor::ProcessDigits(TClonesArray* digits, const AliFMDRawReader& rawRead) const { // For each digit, find the pseudo rapdity, azimuthal angle, and // number of corrected ADC counts, and pass it on to the algorithms // used. // // Parameters: // digits Array of digits // if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } AliFMDAltroMapping* map = AliFMDParameters::Instance()->GetAltroMap(); for (size_t i = 1; i <= 3; i++) { fZS[i-1] = rawRead.IsZeroSuppressed(map->Detector2DDL(i)); fZSFactor[i-1] = rawRead.NoiseFactor(map->Detector2DDL(i)); } UseRecoParam(kTRUE); ProcessDigits(digits); UseRecoParam(kFALSE); } //____________________________________________________________________ void AliFMDReconstructor::ProcessDigits(TClonesArray* digits) const { // For each digit, find the pseudo rapdity, azimuthal angle, and // number of corrected ADC counts, and pass it on to the algorithms // used. // // Parameters: // digits Array of digits // Int_t nDigits = digits->GetEntries(); AliFMDDebug(2, ("Got %d digits", nDigits)); fESDObj->SetNoiseFactor(fNoiseFactor); fESDObj->SetAngleCorrected(fAngleCorrect); fBad.Reset(false); for (Int_t i = 0; i < nDigits; i++) { AliFMDDigit* digit = static_cast(digits->At(i)); if (!digit) continue; ProcessDigit(digit); } } //____________________________________________________________________ void AliFMDReconstructor::ProcessDigit(AliFMDDigit* digit) const { // // Process a single digit // // Parameters: // digit Digiti to process // UShort_t det = digit->Detector(); Char_t rng = digit->Ring(); UShort_t sec = digit->Sector(); UShort_t str = digit->Strip(); Short_t adc = digit->Counts(); // if (AliLog::GetDebugLevel("FMD","")>3) digit->Print(); ProcessSignal(det, rng, sec, str, adc); } //____________________________________________________________________ void AliFMDReconstructor::ProcessSignal(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, Short_t adc) const { // Process the signal from a single strip // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // adc ADC counts // Int_t dbg = AliLog::GetDebugLevel("FMD",""); Bool_t dhr = dbg > 3 && dbg < 10; if (dhr) printf("FMD%d%c[%2d,%3d] adc=%4d ", det, rng, sec, str, adc); if (adc >= AliFMDRawReader::kBadSignal) { AliFMDDebug(10, ("FMD%d%c[%2d,%3d] is marked bad", det, rng, sec, str)); if (dhr) Printf("bad"); fBad(det,rng,sec,str) = true; return; } // Check that the strip is not marked as dead AliFMDParameters* param = AliFMDParameters::Instance(); if (param->IsDead(det, rng, sec, str)) { AliFMDDebug(10, ("FMD%d%c[%2d,%3d] is dead", det, rng, sec, str)); if (dhr) Printf("dead"); fBad(det,rng,sec,str) = true; return; } // digit->Print(); // Get eta and phi Float_t eta = fESDObj->Eta(det, rng, 0, str); // Substract pedestal. UShort_t counts = SubtractPedestal(det, rng, sec, str, adc); if(counts == USHRT_MAX) { if (dhr) Printf("invalid"); return; } if (dhr) printf("counts=%4d ", counts); // Gain match digits. Double_t edep = Adc2Energy(det, rng, sec, str, eta, counts); // Get rid of nonsense energy if(edep < 0) { if (dhr) Printf("zero"); return; } if (dhr) printf("edep=%f ", edep); // Make rough multiplicity Double_t mult = Energy2Multiplicity(det, rng, sec, str, edep); // Get rid of nonsense mult //if (mult > 20) { // AliWarning(Form("The mutliplicity in FMD%d%c[%2d,%3d]=%f > 20 " // "(ADC: %d, Energy: %f)", det, rng, sec, str, mult, // counts, edep)); // } if (mult < 0) { if (dhr) Printf("not hit"); return; } if (dhr) Printf("mult=%f ", mult); AliFMDDebug(10, ("FMD%d%c[%2d,%3d]: " "ADC: %d, Counts: %d, Energy: %f, Mult: %f", det, rng, sec, str, adc, counts, edep, mult)); // Create a `RecPoint' on the output branch. if (fMult) { Float_t phi; PhysicalCoordinates(det, rng, sec, str, eta, phi); AliFMDRecPoint* m = new ((*fMult)[fNMult]) AliFMDRecPoint(det, rng, sec, str, eta, phi, edep, mult); (void)m; // Suppress warnings about unused variables. fNMult++; } fESDObj->SetMultiplicity(det, rng, sec, str, mult); // fESDObj->SetEta(det, rng, sec, str, eta); if (fDiagAll) fDiagAll->Fill(adc, mult); } //____________________________________________________________________ void AliFMDReconstructor::DigitizeSignal(TClonesArray* sdigits, UShort_t det, Char_t rng, UShort_t sec, UShort_t str, UShort_t /* sam */, Short_t adc) const { // Process the signal from a single strip // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // adc ADC counts // AliFMDParameters* param = AliFMDParameters::Instance(); // Check that the strip is not marked as dead if (param->IsDead(det, rng, sec, str)) { AliFMDDebug(10, ("FMD%d%c[%2d,%3d] is dead", det, rng, sec, str)); return; } // Substract pedestal. UShort_t counts = SubtractPedestal(det, rng, sec, str, adc); if(counts == USHRT_MAX || counts == 0) return; // Gain match digits. Double_t edep = Adc2Energy(det, rng, sec, str, counts); // Get rid of nonsense energy if(edep < 0) return; Int_t n = sdigits->GetEntriesFast(); // AliFMDSDigit* sdigit = new ((*sdigits)[n]) AliFMDSDigit(det, rng, sec, str, edep, counts, counts, counts, counts); // sdigit->SetCount(sam, counts); } //____________________________________________________________________ UShort_t AliFMDReconstructor::SubtractPedestal(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, UShort_t adc, Float_t noiseFactor, Bool_t zsEnabled, UShort_t zsNoiseFactor) const { // // Subtract the pedestal off the ADC counts. // // Parameters: // det Detector number // rng Ring identifier // sec Sector number // str Strip number // adc ADC counts // noiseFactor If pedestal substracted pedestal is less then // this times the noise, then consider this to be 0. // zsEnabled Whether zero-suppression is on. // zsNoiseFactor Noise factor used in on-line pedestal // subtraction. // // Return: // The pedestal subtracted ADC counts (possibly 0), or @c // USHRT_MAX in case of problems. // AliFMDParameters* param = AliFMDParameters::Instance(); Float_t ped = (zsEnabled ? 0 : param->GetPedestal(det, rng, sec, str)); Float_t noise = param->GetPedestalWidth(det, rng, sec, str); if (ped < 0 || noise < 0) { AliWarningClass(Form("Invalid pedestal (%f) or noise (%f) " "for FMD%d%c[%02d,%03d]", ped, noise, det, rng, sec, str)); return USHRT_MAX; } AliDebugClass(10, Form("Subtracting pedestal for FMD%d%c[%2d,%3d]=%4d " "(%s w/factor %d, noise factor %f, " "pedestal %8.2f+/-%8.2f)", det, rng, sec, str, adc, (zsEnabled ? "zs'ed" : "straight"), zsNoiseFactor, noiseFactor, ped, noise)); Int_t counts = adc + Int_t(zsEnabled ? zsNoiseFactor * noise : - ped); counts = TMath::Max(Int_t(counts), 0); // Calculate the noise factor for suppressing remenants of the noise // peak. If we have done on-line zero suppression, we only check // for noise signals that are larger than the suppressed noise. If // the noise factor used on line is larger than the factor used // here, we do not do this check at all. // // For example: // Online factor | Read factor | Result // ---------------+--------------+------------------------------- // 2 | 3 | Check if signal > 1 * noise // 3 | 3 | Check if signal > 0 // 3 | 2 | Check if signal > 0 // // In this way, we make sure that we do not suppress away too much // data, and that the read-factor is the most stringent cut. Float_t nf = zsNoiseFactor; // TMath::Max(0.F, noiseFactor - (zsEnabled ? zsNoiseFactor : 0)); if (counts <= noise * nf) counts = 0; if (counts > 0) AliDebugClass(15, "Got a hit strip"); UShort_t ret = counts < 0 ? 0 : counts; return ret; } //____________________________________________________________________ UShort_t AliFMDReconstructor::SubtractPedestal(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, Short_t adc) const { // Member function to subtract the pedestal from a digit // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // adc # of ADC counts // Return: // Pedestal subtracted signal or USHRT_MAX in case of problems // UShort_t counts = SubtractPedestal(det, rng, sec, str, adc, fNoiseFactor, fZS[det-1], fZSFactor[det-1]); if (fDiagStep1) fDiagStep1->Fill(adc, counts); return counts; } //____________________________________________________________________ Float_t AliFMDReconstructor::Adc2Energy(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, UShort_t count) const { // Converts number of ADC counts to energy deposited. // Note, that this member function can be overloaded by derived // classes to do strip-specific look-ups in databases or the like, // to find the proper gain for a strip. // // In the first simple version, we calculate the energy deposited as // // EnergyDeposited = cos(theta) * gain * count // // where // // Pre_amp_MIP_Range // gain = ----------------- * Energy_deposited_per_MIP // ADC_channel_size // // is constant and the same for all strips. // // For the production we use the conversion measured in the NBI lab. // The total conversion is then: // // gain = ADC / DAC // // EdepMip * count // => energy = ---------------- // gain * DACPerADC // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // counts Number of ADC counts over pedestal // Return // The energy deposited in a single strip, or -1 in case of problems // if (count <= 0) return 0; AliFMDParameters* param = AliFMDParameters::Instance(); Float_t gain = param->GetPulseGain(det, rng, sec, str); // 'Tagging' bad gains as bad energy if (gain < 0) { AliDebugF(10, "Invalid gain (%f) for FMD%d%c[%02d,%03d]", gain, det, rng, sec, str); return -1; } AliDebugF(10, "Converting counts %d to energy (factor=%f, DAC2MIP=%f)", count, gain,param->GetDACPerMIP()); Double_t edep = ((count * param->GetEdepMip()) / (gain * param->GetDACPerMIP())); return edep; } //____________________________________________________________________ Float_t AliFMDReconstructor::Adc2Energy(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, Float_t eta, UShort_t count) const { // Converts number of ADC counts to energy deposited. // Note, that this member function can be overloaded by derived // classes to do strip-specific look-ups in databases or the like, // to find the proper gain for a strip. // // In the first simple version, we calculate the energy deposited as // // EnergyDeposited = cos(theta) * gain * count // // where // // Pre_amp_MIP_Range // gain = ----------------- * Energy_deposited_per_MIP // ADC_channel_size // // is constant and the same for all strips. // // For the production we use the conversion measured in the NBI lab. // The total conversion is then: // // gain = ADC / DAC // // EdepMip * count // => energy = ---------------- // gain * DACPerADC // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // eta Psuedo-rapidity // counts Number of ADC counts over pedestal // Return // The energy deposited in a single strip, or -1 in case of problems // Double_t edep = Adc2Energy(det, rng, sec, str, count); if (fDiagStep2) fDiagStep2->Fill(count, edep); if (fAngleCorrect) { Double_t theta = 2 * TMath::ATan(TMath::Exp(-eta)); Double_t corr = TMath::Abs(TMath::Cos(theta)); Double_t cedep = corr * edep; AliDebugF(10, "correcting for path %f * %f = %f (eta=%f, theta=%f)", edep, corr, cedep, eta, theta); if (fDiagStep3) fDiagStep3->Fill(edep, cedep); edep = cedep; } return edep; } //____________________________________________________________________ Float_t AliFMDReconstructor::Energy2Multiplicity(UShort_t /*det*/, Char_t /*rng*/, UShort_t /*sec*/, UShort_t /*str*/, Float_t edep) const { // Converts an energy signal to number of particles. // Note, that this member function can be overloaded by derived // classes to do strip-specific look-ups in databases or the like, // to find the proper gain for a strip. // // In this simple version, we calculate the multiplicity as // // multiplicity = Energy_deposited / Energy_deposited_per_MIP // // where // // Energy_deposited_per_MIP = 1.664 * SI_density * SI_thickness // // is constant and the same for all strips // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // edep Energy deposited in a single strip // Return // The "bare" multiplicity corresponding to the energy deposited AliFMDParameters* param = AliFMDParameters::Instance(); Double_t edepMIP = param->GetEdepMip(); Float_t mult = edep / edepMIP; #if 0 if (edep > 0) AliFMDDebug(15, ("Translating energy %f to multiplicity via " "divider %f->%f", edep, edepMIP, mult)); #endif if (fDiagStep4) fDiagStep4->Fill(edep, mult); return mult; } //____________________________________________________________________ void AliFMDReconstructor::PhysicalCoordinates(UShort_t det, Char_t rng, UShort_t sec, UShort_t str, Float_t& eta, Float_t& phi) const { // Get the eta and phi of a digit // // Parameters: // det Detector ID // rng Ring ID // sec Sector ID // rng Strip ID // eta On return, contains the psuedo-rapidity of the strip // phi On return, contains the azimuthal angle of the strip // AliFMDGeometry* geom = AliFMDGeometry::Instance(); Double_t x, y, z, r, theta, deta, dphi; geom->Detector2XYZ(det, rng, sec, str, x, y, z); // Correct for vertex offset. z -= fCurrentVertex; AliFMDGeometry::XYZ2REtaPhiTheta(x, y, z, r, deta, dphi, theta); eta = deta; phi = dphi; } namespace { class ESDPrinter : public AliESDFMD::ForOne { public: ESDPrinter() {} Bool_t operator()(UShort_t d, Char_t r, UShort_t s, UShort_t t, Float_t m, Float_t e) { if (m > 0 && m != AliESDFMD::kInvalidMult) printf(" FMD%d%c[%2d,%3d] = %6.3f / %6.3f\n", d, r, s, t, m, e); return kTRUE; } }; } //____________________________________________________________________ void AliFMDReconstructor::FillESD(TTree* /* digitsTree */, TTree* /* clusterTree */, AliESDEvent* esd) const { // nothing to be done // FIXME: The vertex may not be known when Reconstruct is executed, // so we may have to move some of that member function here. AliFMDDebug(2, ("Calling FillESD with two trees and one ESD")); if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } // fESDObj->Print(); // Fix up ESD so that only truely dead channels get the kInvalidMult flag. MarkDeadChannels(fESDObj); Double_t oldVz = fCurrentVertex; GetVertex(esd); if (fVertexType != kNoVertex) { AliFMDDebug(2, ("Revertexing the ESD data to vz=%f (was %f)", fCurrentVertex, oldVz)); AliFMDESDRevertexer revertexer; revertexer.Revertex(fESDObj, fCurrentVertex); } if (AliDebugLevel() > 10) { ESDPrinter p; fESDObj->ForEach(p); } if (esd) { AliFMDDebug(2, ("Writing FMD data to ESD tree")); esd->SetFMDData(fESDObj); } if (!fDiagnostics || !esd) return; static bool first = true; // This is most likely NOT the event number you'd like to use. It // has nothing to do with the 'real' event number. // - That's OK. We just use it for the name of the directory - // nothing else. Christian Int_t evno = esd->GetEventNumberInFile(); AliFMDDebug(3, ("Writing diagnostics histograms to FMD.Diag.root/%03d",evno)); TFile f("FMD.Diag.root", (first ? "RECREATE" : "UPDATE")); first = false; f.cd(); TDirectory* d = f.mkdir(Form("%03d", evno), Form("Diagnostics histograms for event # %d", evno)); d->cd(); if (fDiagStep1) fDiagStep1->Write(); if (fDiagStep2) fDiagStep2->Write(); if (fDiagStep3) fDiagStep3->Write(); if (fDiagStep4) fDiagStep4->Write(); if (fDiagAll) fDiagAll->Write(); d->Write(); f.Write(); f.Close(); if (fDiagStep1) fDiagStep1->Reset(); if (fDiagStep2) fDiagStep2->Reset(); if (fDiagStep3) fDiagStep3->Reset(); if (fDiagStep4) fDiagStep4->Reset(); if (fDiagAll) fDiagAll->Reset(); } //____________________________________________________________________ void AliFMDReconstructor::FillESD(AliRawReader*, TTree* clusterTree, AliESDEvent* esd) const { // // Forwards to above member function // if (fZombie) { AliWarning("I'm a zombie - cannot do anything"); return; } TTree* dummy = 0; FillESD(dummy, clusterTree, esd); } //____________________________________________________________________ // // EOF //