SUBROUTINE FSIINI C---Note: C-- ICH= 0 (1) if the Coulomb interaction is absent (present); C-- ISPIN= JJ= 1,2,..,MSPIN denote increasing values of the pair C-- total spin S. C-- To calculate the CF of two particles (with masses m1, m2 and C-- charges C1, C2) the following information is required: C-- AM= twice the reduced mass= 2*m1*m2/(m1+m2) in GeV/c^2, C-- DM= (m1-m2)/(m1+m2), required if NS=2; C-- AC= Bohr radius= 2*137.036*0.1973/(C1*C2*AMH) in fm; C-- AC > 1.D9 if C1*C2= 0, AC < 0 if C1*C2 < 0; C-- MSPIN= MSPINH(LL)= number of the values of the total pair spin S; C-- FD= FDH(LL,JJ), RD= RDH(LL,JJ)= scattering length and effective C-- radius for each value of the total pair spin S, JJ= 1,..,MSPIN; ; C-- the corresponding square well parameters EB= EBH(LL,JJ), RB= C-- RBH(LL,JJ) (required if NS=1) may be calculated by SEAR; C-- if the effective range approximation is not valid (as is the case, C-- e.g., for two-pion system) a code for calculation of the scattering C-- amplitude should be supplemented; C-- RHO= RHOH(LL,JJ), SF= SFH(LL,JJ), SE= SEH(LL) are spin factors; C-- RHO= the probability that the spins j1 and j2 of the two particles C-- will combine in a total spin S; C-- RHO= (2*S+1)/[(2j1+1)*(2j2+1)] for unpolarized particles; C-- RHO= (1-P1*P2)/4 and (3+P1*P2)/4 correspond to S=0 and 1 in the C-- case of spin-1/2 particles with polarizations P1 and P2; C----------------------------------------------------------------------- IMPLICIT REAL*8 (A-H,O-Z) COMMON/FSI_POC/AMN,AM1,AM2,CN,C1,C2,AC1,AC2 COMMON/FSI_PRF/PPX,PPY,PPZ,AK,AKS, 1 X,Y,Z,T,RP,RPS COMMON/FSI_SPIN/RHO(10) COMMON/FSI_ACH/HPR,AC,ACH,ACHR,ISPIN,MSPIN COMMON/FSI_NS/LL,NS,ICH,ISI,IQS,I3C,I3S COMMON/FSI_FD/FD(10),RD(10) COMMON/FSI_C/C(10),AM,AMS,DM COMMON/FSI_CONS/PI,PI2,SPI,DR,W COMPLEX*16 C COMMON/FSI_AA/AA COMMON/FSI_AAPI/AAPI(20,2)/FSI_AAND/AAND(20,4) COMMON/FSI_SW/RB(10),EB(10),BK(10),CDK(10),SDK(10), 1 SBKRB(10),SDKK(10) COMMON/LEDWEIGHT/WEIF,WEI,WEIN,ITEST,IRANPOS DIMENSION FDH(30,10),RDH(30,10),EBH(30,10),RBH(30,10) DIMENSION RHOH(30,10) DIMENSION AM1H(30),AM2H(30),C1H(30),C2H(30),MSPINH(30) C============= declarations pour l'appel de READ_FILE()============ CHARACTER*10 KEY CHARACTER*8 CH8 INTEGER*4 INT4 REAL*8 REAL8 INTEGER*4 IERR C C--- mass of the first and second particle DATA AM1H/.9395656D0,.9382723D0,.9395656D0,3.7294D0,.13957D0, C .13498D0,.13957D0, .9395656D0, .9382723D0, C 4*.13957D0,4*.493677D0, C 2*1.875613D0,2*2.808D0,2*.497672D0, C 1.875613D0,2*.9382723D0, 4*0.D0/ DATA AM2H/.9395656D0,.9382723D0,.9382723D0,3.7294D0,.13957D0, C .13498D0,.13957D0, 2*1.875613D0, C 2*.493677D0,2*.9382723D0, C 2*.493677D0,2*.9382723D0, C 1.875613D0,3.7294D0,2.808D0,3.7294D0, C 2*.497672D0,2*2.808D0,3.7294D0, 4*0.D0/ C--- charge of the first and second particle DATA C1H/0.D0,1.D0,0.D0,2.D0, 1.D0,0.D0,1.D0,0.D0,1.D0, C 3*1.D0,-1.D0,3*1.D0,-1.D0, C 4*1.D0,2*0.D0,3*1.D0, 4*0.D0/ DATA C2H/0.D0,1.D0,1.D0,2.D0,-1.D0,0.D0,3*1.D0, C -1.D0,3*1.D0,-1.D0,3*1.D0, C 1.D0,2.D0,1.D0,2.D0,2*0.D0,2*1.D0,2.D0, 4*0.D0/ C---MSPIN vs (LL) DATA MSPINH/3*2,4*1,2*2,8*1,3,1,2,1,2*1,2*2,1, 4*0/ C---Spin factors RHO vs (LL,ISPIN) DATA RHOH/3*.25D0, 4*1.D0, 2*.3333D0, 8*1.D0, C .1111D0,1.D0,.25D0,1.D0,2*1.D0, 1 .3333D0,.25D0,1.D0, 4*0.D0, C 3*.75D0, 4*0.D0, 2*.6667D0, 8*0.D0, C .3333D0,.0D0,.75D0,.0D0,2*0.D0, 2 .6667D0,.75D0,0.D0, 4*0.D0, C 17*.0D0,.5556D0,3*0.D0, 5*0.D0,4*0.D0,210*0.D0/ C---Scattering length FD and effective radius RD in fm vs (LL,ISPIN) DATA FDH/17.0D0,7.8D0,23.7D0,2230.1218D0,.225D0,.081D0,-.063D0, C -.65D0,-2.73D0, C .137D0,-.071D0,-.148D0,.112D0,2*1.D-6,-.360D0, 1 2*1.D-6,1.344D0,6*1.D-6,-5.628D0, 4*0.D0, C -10.8D0,2*-5.4D0,4*0.D0,-6.35D0,-11.88D0,8*0.D0,9*0.D0,4*0.D0, C 240*0.D0/ DATA RDH/2.7D0,2.8D0,2.7D0,1.12139906D0,-44.36D0,64.0D0,784.9D0, c--------|---------|---------|---------|---------|---------|---------|---------- C 477.9D0, 2.27D0, 9*0.D0,-69.973D0, 6*0.D0,3.529D0, 4*0.D0, C 3*1.7D0,4*0.D0,2.0D0,2.63D0, 17*0.D0, 4*0.D0, 240*0.D0/ C---Corresponding square well parameters RB (width in fm) and C-- EB =SQRT(-AM*U) (in GeV/c); U is the well height DATA RBH/2.545739D0, 2.779789D0, 2.585795D0, 5.023544D0, C .124673D0, .3925180D0,.09D0, 2.D0, 4.058058D0, 17*0.D0, 4*0.D0, C 3*2.003144D0, C 4*0.D0, 2.D0, 4.132163D0, 17*0.D0, 4*0.D0, 240*0.D0/ DATA EBH/.1149517D0, .1046257D0, .1148757D0, .1186010D0, C .7947389D0,2.281208D0,8.7D0,.4D0,.1561219D0,17*0.D0,4*0.D0, C 3*.1847221D0, C 4*0.D0, .4D0, .1150687D0, 17*0.D0, 4*0.D0, 240*0.D0/ C=======< constants >======================== W=1/.1973D0 ! from fm to 1/GeV PI=4*DATAN(1.D0) PI2=2*PI SPI=DSQRT(PI) DR=180.D0/PI ! from radian to degree AC1=1.D10 AC2=1.D10 C---setting particle masses and charges AM1=AM1H(LL) AM2=AM2H(LL) C1=C1H(LL) C2=C2H(LL) C-- Switches: C ISI=1(0) the strong interaction between the two particles ON (OFF) C IQS=1(0) the quantum statistics ON (OFF); C should be OFF for nonidentical particles C I3C=1(0) the Coulomb interaction with the nucleus ON (OFF) C I3S=1(0) the strong interaction with the nucleus ON (OFF) C ICH=1(0) if C1*C2 is different from 0 (is equal to 0) C- to switch off the Coulomb force between the two particles C put ICH=0 and substitute the strong amplitude parameters by C the ones not affected by Coulomb interaction IF(ITEST.EQ.0)THEN ICH=0 IF(C1*C2.NE.0.D0) ICH=1 IQS=0 IF(C1+AM1.EQ.C2+AM2) IQS=1 I3S=0 ! only this option is available ISI=1 I3C=1 ENDIF c23456 write(*,*)'FSIINI ITEST ich iqs i3s isi i3c',ITEST, + ICH,IQS,I3S,ISI,I3C C================================================================== C---fm to 1/GeV DO 3 J1=1,30 DO 3 J2=1,10 FDH(J1,J2)=FDH(J1,J2)*W RDH(J1,J2)=RDH(J1,J2)*W 3 RBH(J1,J2)=RBH(J1,J2)*W C---calcul. twice the reduced mass (AM), the relative mass difference C-- (DM) and the Bohr radius (AC) AM=2*AM1*AM2/(AM1+AM2) AMS=AM*AM DM=(AM1-AM2)/(AM1+AM2) AC=1.D10 C12=C1*C2 IF(C12.NE.0.D0)AC=2*137.036D0/(C12*AM) C---Setting spin factors MSPIN=MSPINH(LL) MSP=MSPIN DO 91 ISPIN=1,10 91 RHO(ISPIN)=RHOH(LL,ISPIN) C---Integration limit AA in the spherical wave approximation AA=0.D0 cc IF(NS.EQ.2.OR.NS.EQ.4)AA=.5D0 !!in 1/GeV --> 0.1 fm IF(NS.EQ.2.OR.NS.EQ.4)AA=6.D0 !!in 1/GeV --> 1.2 fm C---Setting scatt. length (FD), eff. radius (RD) and, if possible, C-- also the corresp. square well parameters (EB, RB) DO 55 JJ=1,MSP ISPIN=JJ FD(JJ)=FDH(LL,JJ) RD(JJ)=RDH(LL,JJ) EB(JJ)=EBH(LL,JJ) RB(JJ)=RBH(LL,JJ) IF(LL.NE.8.AND.LL.NE.9)GOTO25 C---Resets FD and RD for a nucleon-deuteron system (LL=8,9) JH=LL-7+2*JJ-2 FD(JJ)=AAND(1,JH) RD(JJ)=AAND(2,JH)-2*AAND(3,JH)/AAND(1,JH) C---Resets FD and RD for a pion-pion system (LL=5,6,7) 25 IF(LL.GT.7.OR.LL.LT.5)GOTO 24 IF(LL.EQ.7)FD(JJ)=AAPI(1,2)/AM IF(LL.EQ.5)FD(JJ)=(.6667D0*AAPI(1,1)+.3333D0*AAPI(1,2))/AM IF(LL.EQ.6)FD(JJ)=(.3333D0*AAPI(1,1)+.6667D0*AAPI(1,2))/AM AKS=0.D0 DAKS=1.D-5 AKSH=AKS+DAKS AKH=DSQRT(AKSH) GPI1H=GPIPI(AKSH,1) GPI2H=GPIPI(AKSH,2) H=1/FD(JJ) IF(LL.EQ.7)C(JJ)=1/DCMPLX(GPI2H,-AKH) IF(LL.EQ.5) +C(JJ)=.6667D0/DCMPLX(GPI1H,-AKH)+.3333D0/DCMPLX(GPI2H,-AKH) IF(LL.EQ.6) +C(JJ)=.3333D0/DCMPLX(GPI1H,-AKH)+.6667D0/DCMPLX(GPI2H,-AKH) HH=DREAL(1/C(JJ)) RD(JJ)=2*(HH-H)/DAKS 24 CONTINUE C---Calculation continues for any system (any LL) 55 CONTINUE END C======================================================= FUNCTION GPIPIold(X,J) C--- GPIPI = k*COTG(DELTA), X=k^2 C-- J=1(2) corresponds to isospin=0(2) IMPLICIT REAL*8 (A-H,O-Z) c-- Include 'common_fsi_aapi.inc' c-- Include 'common_fsi_c.inc' COMMON/FSI_AAPI/AAPI(20,2) COMMON/FSI_C/HELP(20),AM,AMS,DM OM=DSQRT(X+AMS) XX=X/AMS GPIPI=OM/AAPI(1,J) GPIPI=GPIPI*(1+(AAPI(3,J)-AAPI(1,J)**2)*XX+AAPI(4,J)*XX*XX) GPIPI=GPIPI/(1+(AAPI(3,J)+AAPI(2,J)/AAPI(1,J))*XX) GPIPIOLD=GPIPI END FUNCTION GPIN(X,J) C--- GPIN = k*COTG(DELTA), X=k^2 C-- J=1(2) corresponds to piN isospin=1/2(3/2) IMPLICIT REAL*8 (A-H,O-Z) c-- Include 'common_fsi_aapin.inc' COMMON/FSI_AAPIN/AAPIN(20,2) GPIN=1/AAPIN(1,J)+.5D0*AAPIN(2,J)*X END