* $Id$ C C C C SUBROUTINE QUENCH(JPJT,NTP) DIMENSION RDP(300),LQP(300),RDT(300),LQT(300) #include "hijcrdn.inc" #include "hiparnt.inc" C #include "hijjet1.inc" #include "hijjet2.inc" #include "histrng.inc" C SAVE IF(NTP.EQ.2) GO TO 400 IF(NTP.EQ.3) GO TO 2000 C******************************************************* C Jet interaction for proj jet in the direction PHIP C****************************************************** C IF(NFP(JPJT,7).NE.1) RETURN JP=JPJT DO 290 I=1,NPJ(JP) PTJET0=SQRT(PJPX(JP,I)**2+PJPY(JP,I)**2) IF(PTJET0.LE.HIPR1(11)) GO TO 290 PTOT=SQRT(PTJET0*PTJET0+PJPZ(JP,I)**2) IF(PTOT.LT.HIPR1(8)) GO TO 290 PHIP=ULANGL_HIJING(PJPX(JP,I),PJPY(JP,I)) C******* find the wounded proj which can interact with jet*** KP=0 DO 100 I2=1,IHNT2(1) IF(NFP(I2,5).NE.3 .OR. I2.EQ.JP) GO TO 100 DX=YP(1,I2)-YP(1,JP) DY=YP(2,I2)-YP(2,JP) PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIP) IF(DPHI.GE.HIPR1(40)/2.0) GO TO 100 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 100 KP=KP+1 LQP(KP)=I2 RDP(KP)=COS(DPHI)*RD0 100 CONTINUE C******* rearrange according decending rd************ DO 110 I2=1,KP-1 DO 110 J2=I2+1,KP IF(RDP(I2).LT.RDP(J2)) GO TO 110 RD=RDP(I2) LQ=LQP(I2) RDP(I2)=RDP(J2) LQP(I2)=LQP(J2) RDP(J2)=RD LQP(J2)=LQ 110 CONTINUE C****** find wounded targ which can interact with jet******** KT=0 DO 120 I2=1,IHNT2(3) IF(NFT(I2,5).NE.3) GO TO 120 DX=YT(1,I2)-YP(1,JP) DY=YT(2,I2)-YP(2,JP) PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIP) IF(DPHI.GT.HIPR1(40)/2.0) GO TO 120 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 120 KT=KT+1 LQT(KT)=I2 RDT(KT)=COS(DPHI)*RD0 120 CONTINUE C******* rearrange according decending rd************ DO 130 I2=1,KT-1 DO 130 J2=I2+1,KT IF(RDT(I2).LT.RDT(J2)) GO TO 130 RD=RDT(I2) LQ=LQT(I2) RDT(I2)=RDT(J2) LQT(I2)=LQT(J2) RDT(J2)=RD LQT(J2)=LQ 130 CONTINUE MP=0 MT=0 R0=0.0 NQ=0 DP=0.0 PTOT=SQRT(PJPX(JP,I)**2+PJPY(JP,I)**2+PJPZ(JP,I)**2) V1=PJPX(JP,I)/PTOT V2=PJPY(JP,I)/PTOT V3=PJPZ(JP,I)/PTOT 200 RN=RLU_HIJING(0) 210 IF(MT.GE.KT .AND. MP.GE.KP) GO TO 290 IF(MT.GE.KT) GO TO 220 IF(MP.GE.KP) GO TO 240 IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 240 220 MP=MP+1 DRR=RDP(MP)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 210 DP=DRR*HIPR1(14) IF(KFPJ(JP,I).NE.21) DP=0.5*DP C ********string tension of quark jet is 0.5 of gluon's IF(DP.LE.0.2) GO TO 210 IF(PTOT.LE.0.4) GO TO 290 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP IF(KFPJ(JP,I).NE.21) THEN PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2 & +PP(LQP(MP),3)**2 DE=SQRT(PJPM(JP,I)**2+PTOT**2) & -SQRT(PJPM(JP,I)**2+(PTOT-DP)**2) ERSHU=(PP(LQP(MP),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 210 PP(LQP(MP),4)=SQRT(ERSHU) PP(LQP(MP),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass R0=RDP(MP) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NPJ(LQP(MP))=NPJ(LQP(MP))+1 KFPJ(LQP(MP),NPJ(LQP(MP)))=21 PJPX(LQP(MP),NPJ(LQP(MP)))=DP1 PJPY(LQP(MP),NPJ(LQP(MP)))=DP2 PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3 PJPE(LQP(MP),NPJ(LQP(MP)))=DP PJPM(LQP(MP),NPJ(LQP(MP)))=0.0 GO TO 260 240 MT=MT+1 DRR=RDT(MT)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 210 DP=DRR*HIPR1(14) IF(DP.LE.0.2) GO TO 210 IF(PTOT.LE.0.4) GO TO 290 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP IF(KFPJ(JP,I).NE.21) THEN PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2 & +PT(LQT(MT),3)**2 DE=SQRT(PJPM(JP,I)**2+PTOT**2) & -SQRT(PJPM(JP,I)**2+(PTOT-DP)**2) ERSHU=(PT(LQT(MT),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 210 PT(LQT(MT),4)=SQRT(ERSHU) PT(LQT(MT),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass R0=RDT(MT) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NTJ(LQT(MT))=NTJ(LQT(MT))+1 KFTJ(LQT(MT),NTJ(LQT(MT)))=21 PJTX(LQT(MT),NTJ(LQT(MT)))=DP1 PJTY(LQT(MT),NTJ(LQT(MT)))=DP2 PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3 PJTE(LQT(MT),NTJ(LQT(MT)))=DP PJTM(LQT(MT),NTJ(LQT(MT)))=0.0 260 PJPX(JP,I)=(PTOT-DP)*V1 PJPY(JP,I)=(PTOT-DP)*V2 PJPZ(JP,I)=(PTOT-DP)*V3 PJPE(JP,I)=PJPE(JP,I)-DE PTOT=PTOT-DP NQ=NQ+1 GO TO 200 290 CONTINUE RETURN C******************************************************* C Jet interaction for target jet in the direction PHIT C****************************************************** C C******* find the wounded proj which can interact with jet*** 400 IF(NFT(JPJT,7).NE.1) RETURN JT=JPJT DO 690 I=1,NTJ(JT) PTJET0=SQRT(PJTX(JT,I)**2+PJTY(JT,I)**2) IF(PTJET0.LE.HIPR1(11)) GO TO 690 PTOT=SQRT(PTJET0*PTJET0+PJTZ(JT,I)**2) IF(PTOT.LT.HIPR1(8)) GO TO 690 PHIT=ULANGL_HIJING(PJTX(JT,I),PJTY(JT,I)) KP=0 DO 500 I2=1,IHNT2(1) IF(NFP(I2,5).NE.3) GO TO 500 DX=YP(1,I2)-YT(1,JT) DY=YP(2,I2)-YT(2,JT) PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIT) IF(DPHI.GT.HIPR1(40)/2.0) GO TO 500 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 500 KP=KP+1 LQP(KP)=I2 RDP(KP)=COS(DPHI)*RD0 500 CONTINUE C******* rearrange according to decending rd************ DO 510 I2=1,KP-1 DO 510 J2=I2+1,KP IF(RDP(I2).LT.RDP(J2)) GO TO 510 RD=RDP(I2) LQ=LQP(I2) RDP(I2)=RDP(J2) LQP(I2)=LQP(J2) RDP(J2)=RD LQP(J2)=LQ 510 CONTINUE C****** find wounded targ which can interact with jet******** KT=0 DO 520 I2=1,IHNT2(3) IF(NFT(I2,5).NE.3 .OR. I2.EQ.JT) GO TO 520 DX=YT(1,I2)-YT(1,JT) DY=YT(2,I2)-YT(2,JT) PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIT) IF(DPHI.GT.HIPR1(40)/2.0) GO TO 520 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 520 KT=KT+1 LQT(KT)=I2 RDT(KT)=COS(DPHI)*RD0 520 CONTINUE C******* rearrange according to decending rd************ DO 530 I2=1,KT-1 DO 530 J2=I2+1,KT IF(RDT(I2).LT.RDT(J2)) GO TO 530 RD=RDT(I2) LQ=LQT(I2) RDT(I2)=RDT(J2) LQT(I2)=LQT(J2) RDT(J2)=RD LQT(J2)=LQ 530 CONTINUE MP=0 MT=0 NQ=0 DP=0.0 R0=0.0 PTOT=SQRT(PJTX(JT,I)**2+PJTY(JT,I)**2+PJTZ(JT,I)**2) V1=PJTX(JT,I)/PTOT V2=PJTY(JT,I)/PTOT V3=PJTZ(JT,I)/PTOT 600 RN=RLU_HIJING(0) 610 IF(MT.GE.KT .AND. MP.GE.KP) GO TO 690 IF(MT.GE.KT) GO TO 620 IF(MP.GE.KP) GO TO 640 IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 640 620 MP=MP+1 DRR=RDP(MP)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 610 DP=DRR*HIPR1(14) IF(KFTJ(JT,I).NE.21) DP=0.5*DP C ********string tension of quark jet is 0.5 of gluon's IF(DP.LE.0.2) GO TO 610 IF(PTOT.LE.0.4) GO TO 690 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP C IF(KFTJ(JT,I).NE.21) THEN PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2 & +PP(LQP(MP),3)**2 DE=SQRT(PJTM(JT,I)**2+PTOT**2) & -SQRT(PJTM(JT,I)**2+(PTOT-DP)**2) ERSHU=(PP(LQP(MP),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 610 PP(LQP(MP),4)=SQRT(ERSHU) PP(LQP(MP),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass C R0=RDP(MP) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NPJ(LQP(MP))=NPJ(LQP(MP))+1 KFPJ(LQP(MP),NPJ(LQP(MP)))=21 PJPX(LQP(MP),NPJ(LQP(MP)))=DP1 PJPY(LQP(MP),NPJ(LQP(MP)))=DP2 PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3 PJPE(LQP(MP),NPJ(LQP(MP)))=DP PJPM(LQP(MP),NPJ(LQP(MP)))=0.0 GO TO 660 640 MT=MT+1 DRR=RDT(MT)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 610 DP=DRR*HIPR1(14) IF(DP.LE.0.2) GO TO 610 IF(PTOT.LE.0.4) GO TO 690 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP IF(KFTJ(JT,I).NE.21) THEN PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2 & +PT(LQT(MT),3)**2 DE=SQRT(PJTM(JT,I)**2+PTOT**2) & -SQRT(PJTM(JT,I)**2+(PTOT-DP)**2) ERSHU=(PT(LQT(MT),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 610 PT(LQT(MT),4)=SQRT(ERSHU) PT(LQT(MT),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass R0=RDT(MT) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NTJ(LQT(MT))=NTJ(LQT(MT))+1 KFTJ(LQT(MT),NTJ(LQT(MT)))=21 PJTX(LQT(MT),NTJ(LQT(MT)))=DP1 PJTY(LQT(MT),NTJ(LQT(MT)))=DP2 PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3 PJTE(LQT(MT),NTJ(LQT(MT)))=DP PJTM(LQT(MT),NTJ(LQT(MT)))=0.0 660 PJTX(JT,I)=(PTOT-DP)*V1 PJTY(JT,I)=(PTOT-DP)*V2 PJTZ(JT,I)=(PTOT-DP)*V3 PJTE(JT,I)=PJTE(JT,I)-DE PTOT=PTOT-DP NQ=NQ+1 GO TO 600 690 CONTINUE RETURN C******************************************************** C Q-QBAR jet interaction C******************************************************** 2000 ISG=JPJT IF(IASG(ISG,3).NE.1) RETURN C JP=IASG(ISG,1) JT=IASG(ISG,2) XJ=(YP(1,JP)+YT(1,JT))/2.0 YJ=(YP(2,JP)+YT(2,JT))/2.0 DO 2690 I=1,NJSG(ISG) PTJET0=SQRT(PXSG(ISG,I)**2+PYSG(ISG,I)**2) IF(PTJET0.LE.HIPR1(11).OR.PESG(ISG,I).LT.HIPR1(1)) & GO TO 2690 PTOT=SQRT(PTJET0*PTJET0+PZSG(ISG,I)**2) IF(PTOT.LT.MAX(HIPR1(1),HIPR1(8))) GO TO 2690 PHIQ=ULANGL_HIJING(PXSG(ISG,I),PYSG(ISG,I)) KP=0 DO 2500 I2=1,IHNT2(1) IF(NFP(I2,5).NE.3.OR.I2.EQ.JP) GO TO 2500 DX=YP(1,I2)-XJ DY=YP(2,I2)-YJ PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIQ) IF(DPHI.GT.HIPR1(40)/2.0) GO TO 2500 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 2500 KP=KP+1 LQP(KP)=I2 RDP(KP)=COS(DPHI)*RD0 2500 CONTINUE C******* rearrange according to decending rd************ DO 2510 I2=1,KP-1 DO 2510 J2=I2+1,KP IF(RDP(I2).LT.RDP(J2)) GO TO 2510 RD=RDP(I2) LQ=LQP(I2) RDP(I2)=RDP(J2) LQP(I2)=LQP(J2) RDP(J2)=RD LQP(J2)=LQ 2510 CONTINUE C****** find wounded targ which can interact with jet******** KT=0 DO 2520 I2=1,IHNT2(3) IF(NFT(I2,5).NE.3 .OR. I2.EQ.JT) GO TO 2520 DX=YT(1,I2)-XJ DY=YT(2,I2)-YJ PHI=ULANGL_HIJING(DX,DY) DPHI=ABS(PHI-PHIQ) IF(DPHI.GT.HIPR1(40)/2.0) GO TO 2520 RD0=SQRT(DX*DX+DY*DY) IF(RD0*SIN(DPHI).GT.HIPR1(12)) GO TO 2520 KT=KT+1 LQT(KT)=I2 RDT(KT)=COS(DPHI)*RD0 2520 CONTINUE C******* rearrange according to decending rd************ DO 2530 I2=1,KT-1 DO 2530 J2=I2+1,KT IF(RDT(I2).LT.RDT(J2)) GO TO 2530 RD=RDT(I2) LQ=LQT(I2) RDT(I2)=RDT(J2) LQT(I2)=LQT(J2) RDT(J2)=RD LQT(J2)=LQ 2530 CONTINUE MP=0 MT=0 NQ=0 DP=0.0 R0=0.0 PTOT=SQRT(PXSG(ISG,I)**2+PYSG(ISG,I)**2 & +PZSG(ISG,I)**2) V1=PXSG(ISG,I)/PTOT V2=PYSG(ISG,I)/PTOT V3=PZSG(ISG,I)/PTOT 2600 RN=RLU_HIJING(0) 2610 IF(MT.GE.KT .AND. MP.GE.KP) GO TO 2690 IF(MT.GE.KT) GO TO 2620 IF(MP.GE.KP) GO TO 2640 IF(RDP(MP+1).GT.RDT(MT+1)) GO TO 2640 2620 MP=MP+1 DRR=RDP(MP)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 2610 DP=DRR*HIPR1(14)/2.0 IF(DP.LE.0.2) GO TO 2610 IF(PTOT.LE.0.4) GO TO 2690 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP C IF(K2SG(ISG,I).NE.21) THEN IF(PTOT.LT.DP+HIPR1(1)) GO TO 2690 PRSHU=PP(LQP(MP),1)**2+PP(LQP(MP),2)**2 & +PP(LQP(MP),3)**2 DE=SQRT(PMSG(ISG,I)**2+PTOT**2) & -SQRT(PMSG(ISG,I)**2+(PTOT-DP)**2) ERSHU=(PP(LQP(MP),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 2610 PP(LQP(MP),4)=SQRT(ERSHU) PP(LQP(MP),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass C R0=RDP(MP) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NPJ(LQP(MP))=NPJ(LQP(MP))+1 KFPJ(LQP(MP),NPJ(LQP(MP)))=21 PJPX(LQP(MP),NPJ(LQP(MP)))=DP1 PJPY(LQP(MP),NPJ(LQP(MP)))=DP2 PJPZ(LQP(MP),NPJ(LQP(MP)))=DP3 PJPE(LQP(MP),NPJ(LQP(MP)))=DP PJPM(LQP(MP),NPJ(LQP(MP)))=0.0 GO TO 2660 2640 MT=MT+1 DRR=RDT(MT)-R0 IF(RN.GE.1.0-EXP(-DRR/HIPR1(13))) GO TO 2610 DP=DRR*HIPR1(14) IF(DP.LE.0.2) GO TO 2610 IF(PTOT.LE.0.4) GO TO 2690 IF(PTOT.LE.DP) DP=PTOT-0.2 DE=DP IF(K2SG(ISG,I).NE.21) THEN IF(PTOT.LT.DP+HIPR1(1)) GO TO 2690 PRSHU=PT(LQT(MT),1)**2+PT(LQT(MT),2)**2 & +PT(LQT(MT),3)**2 DE=SQRT(PMSG(ISG,I)**2+PTOT**2) & -SQRT(PMSG(ISG,I)**2+(PTOT-DP)**2) ERSHU=(PT(LQT(MT),4)+DE-DP)**2 AMSHU=ERSHU-PRSHU IF(AMSHU.LT.HIPR1(1)*HIPR1(1)) GO TO 2610 PT(LQT(MT),4)=SQRT(ERSHU) PT(LQT(MT),5)=SQRT(AMSHU) ENDIF C ********reshuffle the energy when jet has mass R0=RDT(MT) DP1=DP*V1 DP2=DP*V2 DP3=DP*V3 C ********momentum and energy transfer from jet NTJ(LQT(MT))=NTJ(LQT(MT))+1 KFTJ(LQT(MT),NTJ(LQT(MT)))=21 PJTX(LQT(MT),NTJ(LQT(MT)))=DP1 PJTY(LQT(MT),NTJ(LQT(MT)))=DP2 PJTZ(LQT(MT),NTJ(LQT(MT)))=DP3 PJTE(LQT(MT),NTJ(LQT(MT)))=DP PJTM(LQT(MT),NTJ(LQT(MT)))=0.0 2660 PXSG(ISG,I)=(PTOT-DP)*V1 PYSG(ISG,I)=(PTOT-DP)*V2 PZSG(ISG,I)=(PTOT-DP)*V3 PESG(ISG,I)=PESG(ISG,I)-DE PTOT=PTOT-DP NQ=NQ+1 GO TO 2600 2690 CONTINUE RETURN END