//$Id$ // Author: Anders Vestbo , Uli Frankenfeld //*-- Copyright © ASV #include "AliL3RootTypes.h" #include "AliL3Defs.h" #include "AliL3Logging.h" #include "AliL3Track.h" #include "AliL3Transform.h" #include "AliL3Vertex.h" #include //_____________________________________________________________ // AliL3Track // // Track base class //Begin_Html /* */ //End_Html ClassImp(AliL3Track) Float_t AliL3Track::BFACT = 0.0029980; Double_t AliL3Track::pi=3.14159265358979323846; AliL3Track::AliL3Track() { //Constructor fNHits = 0; fMCid = -1; fKappa=0; fRadius=0; fCenterX=0; fCenterY=0; ComesFromMainVertex(false); fQ = 0; fPhi0=0; fPsi=0; fR0=0; fTanl=0; fZ0=0; fPt=0; fLength=0; fIsLocal=true; fRowRange[0]=0; fRowRange[1]=0; memset(fHitNumbers,0,176*sizeof(UInt_t)); } void AliL3Track::Set(AliL3Track *tpt){ SetRowRange(tpt->GetFirstRow(),tpt->GetLastRow()); SetPhi0(tpt->GetPhi0()); SetKappa(tpt->GetKappa()); SetNHits(tpt->GetNHits()); SetFirstPoint(tpt->GetFirstPointX(),tpt->GetFirstPointY(),tpt->GetFirstPointZ()); SetLastPoint(tpt->GetLastPointX(),tpt->GetLastPointY(),tpt->GetLastPointZ()); SetPt(tpt->GetPt()); SetPsi(tpt->GetPsi()); SetTgl(tpt->GetTgl()); SetCharge(tpt->GetCharge()); SetHits(tpt->GetNHits(),(UInt_t *)tpt->GetHitNumbers()); } Int_t AliL3Track::Compare(const AliL3Track *track) const { if(track->GetNHits() < GetNHits()) return 1; if(track->GetNHits() > GetNHits()) return -1; return 0; } AliL3Track::~AliL3Track() { //Nothing to do } Double_t AliL3Track::GetP() const { // Returns total momentum. return fabs(GetPt())*sqrt(1. + GetTgl()*GetTgl()); } Double_t AliL3Track::GetPseudoRapidity() const { return 0.5 * log((GetP() + GetPz()) / (GetP() - GetPz())); } /* Double_t AliL3Track::GetEta() const { return GetPseudoRapidity(); } */ Double_t AliL3Track::GetRapidity() const { Double_t m_pi = 0.13957; return 0.5 * log((m_pi + GetPz()) / (m_pi - GetPz())); } void AliL3Track::Rotate(Int_t slice,Bool_t tolocal) { //Rotate track to global parameters //If flag tolocal is set, the track is rotated //to local coordinates. Float_t psi[1] = {GetPsi()}; if(!tolocal) AliL3Transform::Local2GlobalAngle(psi,slice); else AliL3Transform::Global2LocalAngle(psi,slice); SetPsi(psi[0]); Float_t first[3]; first[0] = GetFirstPointX(); first[1] = GetFirstPointY(); first[2] = GetFirstPointZ(); if(!tolocal) AliL3Transform::Local2Global(first,slice); else AliL3Transform::Global2Local(first,slice,kTRUE); SetFirstPoint(first[0],first[1],first[2]); Float_t last[3]; last[0] = GetLastPointX(); last[1] = GetLastPointY(); last[2] = GetLastPointZ(); if(!tolocal) AliL3Transform::Local2Global(last,slice); else AliL3Transform::Global2Local(last,slice,kTRUE); SetLastPoint(last[0],last[1],last[2]); Float_t center[3] = {GetCenterX(),GetCenterY(),0}; if(!tolocal) AliL3Transform::Local2Global(center,slice); else AliL3Transform::Global2Local(center,slice,kTRUE); SetCenterX(center[0]); SetCenterY(center[1]); if(!tolocal) fIsLocal=kFALSE; else fIsLocal=kTRUE; } void AliL3Track::CalculateHelix(){ //Calculate Radius, CenterX and Centery from Psi, X0, Y0 // fRadius = fPt / (BFACT*AliL3Transform::GetBField()); if(fRadius) fKappa = -fQ*1./fRadius; else fRadius = 999999; //just zero Double_t trackPhi0 = fPsi + fQ *0.5 * pi; fCenterX = fFirstPoint[0] - fRadius * cos(trackPhi0); fCenterY = fFirstPoint[1] - fRadius * sin(trackPhi0); } Double_t AliL3Track::GetCrossingAngle(Int_t padrow) { //Calculate the crossing angle between track and given padrow. if(!IsLocal()) { printf("Track is not given in local coordinates\n"); return 0; } Float_t xyz[3]; if(!GetCrossingPoint(padrow,xyz)) printf("AliL3HoughTrack::GetCrossingPoint : Track does not cross line!!\n"); //Take the dot product of the tangent vector of the track, and //vector perpendicular to the padrow. Double_t tangent[2]; tangent[1] = (xyz[0] - GetCenterX())/GetRadius(); tangent[0] = -1.*(xyz[1] - GetCenterY())/GetRadius(); Double_t perp_padrow[2] = {1,0}; //locally in slice Double_t cos_beta = fabs(tangent[0]*perp_padrow[0] + tangent[1]*perp_padrow[1]); return acos(cos_beta); } Bool_t AliL3Track::GetCrossingPoint(Int_t padrow,Float_t *xyz) { //Assumes the track is given in local coordinates if(!IsLocal()) { printf("GetCrossingPoint: Track is given on global coordinates\n"); return false; } Double_t xHit = AliL3Transform::Row2X(padrow); xyz[0] = xHit; Double_t aa = (xHit - GetCenterX())*(xHit - GetCenterX()); Double_t r2 = GetRadius()*GetRadius(); if(aa > r2) return false; Double_t aa2 = sqrt(r2 - aa); Double_t y1 = GetCenterY() + aa2; Double_t y2 = GetCenterY() - aa2; xyz[1] = y1; if(fabs(y2) < fabs(y1)) xyz[1] = y2; Double_t yHit = xyz[1]; Double_t angle1 = atan2((yHit - GetCenterY()),(xHit - GetCenterX())); if(angle1 < 0) angle1 += 2.*Pi; Double_t angle2 = atan2((GetFirstPointY() - GetCenterY()),(GetFirstPointX() - GetCenterX())); if(angle2 < 0) angle2 += 2.*Pi; Double_t diff_angle = angle1 - angle2; diff_angle = fmod(diff_angle,2*Pi); if((GetCharge()*diff_angle) > 0) diff_angle = diff_angle - GetCharge()*2.*Pi; Double_t s_tot = fabs(diff_angle)*GetRadius(); Double_t zHit = GetFirstPointZ() + s_tot*GetTgl(); xyz[2] = zHit; return true; } Bool_t AliL3Track::CalculateReferencePoint(Double_t angle,Double_t radius){ // Global coordinate: crossing point with y = ax+ b; a=tan(angle-Pi/2); // const Double_t rr=radius;//132; //position of referece plane const Double_t xr = cos(angle) *rr; const Double_t yr = sin(angle) *rr; Double_t a = tan(angle-pi/2); Double_t b = yr - a * xr; Double_t pp=(fCenterX+a*fCenterY-a*b)/(1+pow(a,2)); Double_t qq=(pow(fCenterX,2)+pow(fCenterY,2)-2*fCenterY*b+pow(b,2)-pow(fRadius,2))/(1+pow(a,2)); Double_t racine = pp*pp-qq; if(racine<0) return IsPoint(kFALSE); //no Point Double_t rootRacine = sqrt(racine); Double_t x0 = pp+rootRacine; Double_t x1 = pp-rootRacine; Double_t y0 = a*x0 + b; Double_t y1 = a*x1 + b; Double_t diff0 = sqrt(pow(x0-xr,2)+pow(y0-yr,2)); Double_t diff1 = sqrt(pow(x1-xr,2)+pow(y1-yr,2)); if(diff0pi){ if(trackPhi0rmin&&r0rmin&&r1pi){ if(trackPhi0pi){ if(trackPhi0GetX();//Shift the center of curvature with respect to the vertex Double_t yc = GetCenterY() - vertex->GetY(); Double_t dist_x1 = xc*(1 + GetRadius()/sqrt(xc*xc + yc*yc)); Double_t dist_y1 = yc*(1 + GetRadius()/sqrt(xc*xc + yc*yc)); Double_t distance1 = sqrt(dist_x1*dist_x1 + dist_y1*dist_y1); Double_t dist_x2 = xc*(1 - GetRadius()/sqrt(xc*xc + yc*yc)); Double_t dist_y2 = yc*(1 - GetRadius()/sqrt(xc*xc + yc*yc)); Double_t distance2 = sqrt(dist_x2*dist_x2 + dist_y2*dist_y2); //Choose the closest: if(distance1 < distance2) { closest_x = dist_x1 + vertex->GetX(); closest_y = dist_y1 + vertex->GetY(); } else { closest_x = dist_x2 + vertex->GetX(); closest_y = dist_y2 + vertex->GetY(); } //Get the z coordinate: Double_t angle1 = atan2((closest_y-GetCenterY()),(closest_x-GetCenterX())); if(angle1 < 0) angle1 = angle1 + 2*Pi; Double_t angle2 = atan2((GetFirstPointY()-GetCenterY()),(GetFirstPointX()-GetCenterX())); if(angle2 < 0) angle2 = angle2 + 2*Pi; Double_t diff_angle = angle1 - angle2; diff_angle = fmod(diff_angle,2*Pi); if((GetCharge()*diff_angle) < 0) diff_angle = diff_angle + GetCharge()*2*Pi; Double_t s_tot = fabs(diff_angle)*GetRadius(); closest_z = GetFirstPointZ() - s_tot*GetTgl(); }