// ************************************************************************** // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * // * * // * Author: The ALICE Off-line Project. * // * Contributors are mentioned in the code where appropriate. * // * * // * Permission to use, copy, modify and distribute this software and its * // * documentation strictly for non-commercial purposes is hereby granted * // * without fee, provided that the above copyright notice appears in all * // * copies and that both the copyright notice and this permission notice * // * appear in the supporting documentation. The authors make no claims * // * about the suitability of this software for any purpose. It is * // * provided "as is" without express or implied warranty. * // ************************************************************************** #include "AliHMPIDCluster.h" //class header #include //Solve() #include //Solve() #include //Draw() Bool_t AliHMPIDCluster::fDoCorrSin=kTRUE; ClassImp(AliHMPIDCluster) //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CoG() { // Calculates naive cluster position as a center of gravity of its digits. // Arguments: none // Returns: none Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1; //for box finding if(fDigs==0) return; //no digits in this cluster fX=fY=fQRaw=0; //init summable parameters Int_t maxQpad=-1,maxQ=-1; //to calculate the pad with the highest charge AliHMPIDDigit *pDig; for(Int_t iDig=0;iDigGetEntriesFast();iDig++){ //digits loop pDig=(AliHMPIDDigit*)fDigs->At(iDig); //get pointer to next digit if(pDig->PadPcX() > maxPadX) maxPadX = pDig->PadPcX(); // find the minimum box that contain the cluster MaxX if(pDig->PadPcY() > maxPadY) maxPadY = pDig->PadPcY(); // MaxY if(pDig->PadPcX() < minPadX) minPadX = pDig->PadPcX(); // MinX if(pDig->PadPcY() < minPadY) minPadY = pDig->PadPcY(); // MinY Float_t q=pDig->Q(); //get QDC fX += pDig->LorsX()*q;fY +=pDig->LorsY()*q; //add digit center weighted by QDC fQRaw+=q; //increment total charge if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;} // to find pad with highest charge }//digits loop fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1; // dimension of the box: format Xdim*100+Ydim if ( fQRaw != 0 ) fX/=fQRaw;fY/=fQRaw; //final center of gravity if(fDigs->GetEntriesFast()>1&&fDoCorrSin)CorrSin(); //correct it by sinoid fQ = fQRaw; // Before starting fit procedure, Q and QRaw must be equal fCh=pDig->Ch(); //initialize chamber number fMaxQpad = maxQpad; fMaxQ=maxQ; //store max charge pad to the field fChi2=0; // no Chi2 to find fNlocMax=0; // proper status from this method fSt=kCoG; }//CoG() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CorrSin() { // Correction of cluster x position due to sinoid, see HMPID TDR page 30 // Arguments: none // Returns: none Int_t pc,px,py; AliHMPIDDigit::Lors2Pad(fX,fY,pc,px,py); //tmp digit to get it center Float_t x=fX-AliHMPIDDigit::LorsX(pc,px); //diff between cluster x and center of the pad contaning this cluster fX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Draw(Option_t*) { TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetUniqueID(fSt);pMark->SetMarkerColor(kBlue); pMark->Draw(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t *, Double_t &chi2, Double_t *par, Int_t ) { // Cluster fit function // par[0]=x par[1]=y par[2]=q for the first Mathieson shape // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes // For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster. // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3 // chi2 - function result to be minimised // par - parameters array of size iNpars // Returns: none AliHMPIDCluster *pClu=(AliHMPIDCluster*)gMinuit->GetObjectFit(); Int_t iNshape = iNpars/3; chi2 = 0; for(Int_t i=0;iSize();i++){ //loop on all pads of the cluster Double_t dQpadMath = 0; //pad charge collector for(Int_t j=0;jDig(i)->IntMathieson(par[3*j],par[3*j+1]); // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson } // if(dQpadMath>0)chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/dQpadMath; // if(dQpadMath>0)chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q(); // } //loop on all pads of the cluster }//FitFunction() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Print(Option_t* opt)const { //Print current cluster const char *status=0; switch(fSt){ case kFrm : status="formed " ;break; case kUnf : status="unfolded (fit)" ;break; case kCoG : status="coged " ;break; case kLo1 : status="locmax 1 (fit)" ;break; case kMax : status="exceeded (cog)" ;break; case kNot : status="not done (cog)" ;break; case kEmp : status="empty " ;break; case kEdg : status="edge (fit)" ;break; case kSi1 : status="size 1 (cog)" ;break; case kNoLoc: status="no LocMax(fit)" ;break; case kAbn : status="Abnormal fit " ;break; default: status="??????" ;break; } Double_t ratio=0; if(Q()>0&&QRaw()>0) ratio = Q()/QRaw()*100; Printf("%sCLU: ch=%i (%7.3f,%7.3f) Q=%8.3f Qraw=%8.3f(%3.0f%%) Size=%2i DimBox=%i LocMax=%i Chi2=%7.3f %s", opt,Ch(),X(),Y(),Q(),QRaw(),ratio,Size(),fBox,fNlocMax,fChi2,status); if(fDigs) fDigs->Print(); }//Print() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Bool_t isTryUnfold) { //This methode is invoked when the cluster is formed to solve it. Solve the cluster means to try to unfold the cluster //into the local maxima number of clusters. This methode is invoked by AliHMPIDRconstructor::Dig2Clu() on cluster by cluster basis. //At this point, cluster contains a list of digits, cluster charge and size is precalculated in AddDigit(), position is preset to (-1,-1) in ctor, //status is preset to kFormed in AddDigit(), chamber-sector info is preseted to actual values in AddDigit() //Method first finds number of local maxima and if it's more then one tries to unfold this cluster into local maxima number of clusters //Arguments: pCluLst - cluster list pointer where to add new cluster(s) // isTryUnfold - flag to switch on/off unfolding // Returns: number of local maxima of original cluster CoG(); Int_t iCluCnt=pCluLst->GetEntriesFast(); //get current number of clusters already stored in the list by previous operations if(isTryUnfold==kFALSE || Size()==1) { //if cluster contains single pad there is no way to improve the knowledge (isTryUnfold)?fSt=kSi1:fSt=kNot; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster return 1; } //Phase 0. Initialise TMinuit const Int_t kMaxLocMax=6; //max allowed number of loc max for fitting if(!gMinuit) gMinuit = new TMinuit(100); //init MINUIT with this number of parameters (3 params per mathieson) gMinuit->mncler(); // reset Minuit list of paramters gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDCluster::FitFunc); //set fit function Double_t aArg=-1; //tmp vars for TMinuit Int_t iErrFlg; gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit //Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster fNlocMax=0; for(Int_t iDig1=0;iDig1PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads if(dist==1) //means dig2 is a neighbour of dig1 if(pDig2->Q()>=pDig1->Q()) iCnt++; //count number of pads with Q more then Q of current pad }//second digits loop if(iCnt==0&&fNlocMaxLorsX();Double_t yStart=pDig1->LorsY(); Double_t xMin=xStart-AliHMPIDDigit::SizePadX(); Double_t xMax=xStart+AliHMPIDDigit::SizePadX(); Double_t yMin=yStart-AliHMPIDDigit::SizePadY(); Double_t yMax=yStart+AliHMPIDDigit::SizePadY(); gMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax,iErrFlg); // X,Y,Q initial values of the loc max pad gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax,iErrFlg); // X, Y constrained to be near the loc max gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,100000,iErrFlg);// Q constrained to be positive fNlocMax++; }//if this pad is local maximum }//first digits loop //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list // case 1 -> no loc max found if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge... gMinuit->mnparm(3*fNlocMax ,Form("x%i",fNlocMax),fX,0.1,0,0,iErrFlg); // Init values taken from CoG() -> fX,fY,fQRaw gMinuit->mnparm(3*fNlocMax+1,Form("y%i",fNlocMax),fY,0.1,0,0,iErrFlg); // gMinuit->mnparm(3*fNlocMax+2,Form("q%i",fNlocMax),fQRaw,0.1,0,100000,iErrFlg); // fNlocMax = 1; fSt=kNoLoc; } // case 2 -> loc max found. Check # of loc maxima if ( fNlocMax >= kMaxLocMax) // if # of local maxima exceeds kMaxLocMax... { fSt = kMax; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //...add this raw cluster } //or... else{ //...resonable number of local maxima to fit and user requested it Double_t arglist[10];arglist[0] = 10000;arglist[1] = 1.; //number of steps and sigma on pads charges gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg); //start fitting with Simplex gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg); //fitting improved by Migrad if(iErrFlg) { Double_t strategy=2; gMinuit->mnexcm("SET STR",&strategy,1,iErrFlg); //change level of strategy if(!iErrFlg) { gMinuit->mnexcm("SIMPLEX" ,arglist,2,iErrFlg); gMinuit->mnexcm("MIGRAD" ,arglist,2,iErrFlg); //fitting improved by Migrad // Printf("Try to improve fit --> err %d",iErrFlg); } } if(iErrFlg) fSt=kAbn; //no convergence of the fit... Double_t dummy; TString sName; //vars to get results from Minuit for(Int_t i=0;imnpout(3*i ,sName, fX, fErrX , dummy, dummy, iErrFlg); // X gMinuit->mnpout(3*i+1 ,sName, fY, fErrY , dummy, dummy, iErrFlg); // Y gMinuit->mnpout(3*i+2 ,sName, fQ, fErrQ , dummy, dummy, iErrFlg); // Q gMinuit->mnstat(fChi2,dummy,dummy,iErrFlg,iErrFlg,iErrFlg); // Chi2 of the fit if(fSt!=kAbn) { if(fNlocMax!=1)fSt=kUnf; // if unfolded if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1; // if only 1 loc max if ( !IsInPc()) fSt = kEdg; // if Out of Pc if(fSt==kNoLoc) fNlocMax=0; // if with no loc max (pads with same charge..) } new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster } } return fNlocMax; }//Solve() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++