// ************************************************************************** // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * // * * // * Author: The ALICE Off-line Project. * // * Contributors are mentioned in the code where appropriate. * // * * // * Permission to use, copy, modify and distribute this software and its * // * documentation strictly for non-commercial purposes is hereby granted * // * without fee, provided that the above copyright notice appears in all * // * copies and that both the copyright notice and this permission notice * // * appear in the supporting documentation. The authors make no claims * // * about the suitability of this software for any purpose. It is * // * provided "as is" without express or implied warranty. * // ************************************************************************** #include "AliHMPIDCluster.h" //class header #include //Solve() #include //Solve() #include //Solve() #include //Draw() #include "AliLog.h" //FindCusterSize() Bool_t AliHMPIDCluster::fgDoCorrSin=kTRUE; ClassImp(AliHMPIDCluster) void AliHMPIDCluster::SetClusterParams(Double_t xL,Double_t yL,Int_t iCh ) { //------------------------------------------------------------------------ //Set the cluster properties for the AliCluster3D part //------------------------------------------------------------------------ fParam = AliHMPIDParam::Instance(); if(!fParam->GetInstType()) //if there is no geometry we cannot retrieve the volId (only for monitoring) { new(this) AliCluster3D(); return; } //Get the volume ID from the previously set PNEntry UShort_t volId=AliGeomManager::LayerToVolUID(AliGeomManager::kHMPID,iCh); //get L->T cs matrix for a given chamber const TGeoHMatrix *t2l= AliGeomManager::GetTracking2LocalMatrix(volId); fParam = AliHMPIDParam::Instance(); //transformation from the pad cs to local xL -= 0.5*fParam->SizeAllX(); //size of all pads with dead zones included yL -= 0.5*fParam->SizeAllY(); // Get the position in the tracking cs Double_t posL[3]={xL, yL, 0.}; //this is the LORS of HMPID Double_t posT[3]; t2l->MasterToLocal(posL,posT); //Get the cluster covariance matrix in the tracking cs Double_t covL[9] = { 0.8*0.8/12., 0., 0.0, //pad size X 0., 0.84*0.84/12., 0.0, //pad size Y 0., 0., 0.1, //just 1 , no Z dimension ??? }; TGeoHMatrix m; m.SetRotation(covL); m.Multiply(t2l); m.MultiplyLeft(&t2l->Inverse()); Double_t *covT = m.GetRotationMatrix(); new(this) AliCluster3D(volId, // Can be done safer posT[0],posT[1],posT[2], covT[0],covT[1],covT[2], covT[4],covT[5], covT[8], 0x0); // No MC labels ? } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDCluster::~AliHMPIDCluster() { if(fDigs) delete fDigs; fDigs=0; //PH if(fParam) delete fParam; fParam=0; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CoG() { // Calculates naive cluster position as a center of gravity of its digits. // Arguments: none // Returns: none Int_t minPadX=999,minPadY=999,maxPadX=-1,maxPadY=-1; //for box finding if(fDigs==0) return; //no digits in this cluster fXX=fYY=fQRaw=0; //init summable parameters fCh = -1; //init chamber Int_t maxQpad=-1,maxQ=-1; //to calculate the pad with the highest charge AliHMPIDDigit *pDig=0x0; for(Int_t iDig=0;iDigGetEntriesFast();iDig++){ //digits loop pDig=(AliHMPIDDigit*)fDigs->At(iDig); //get pointer to next digit if(!pDig) continue; //protection if(pDig->PadPcX() > maxPadX) maxPadX = pDig->PadPcX(); // find the minimum box that contain the cluster MaxX if(pDig->PadPcY() > maxPadY) maxPadY = pDig->PadPcY(); // MaxY if(pDig->PadPcX() < minPadX) minPadX = pDig->PadPcX(); // MinX if(pDig->PadPcY() < minPadY) minPadY = pDig->PadPcY(); // MinY Float_t q=pDig->Q(); //get QDC fXX += pDig->LorsX()*q;fYY +=pDig->LorsY()*q; //add digit center weighted by QDC fQRaw+=q; //increment total charge if(q>maxQ) {maxQpad = pDig->Pad();maxQ=(Int_t)q;} // to find pad with highest charge fCh=pDig->Ch(); //initialize chamber number }//digits loop fBox=(maxPadX-minPadX+1)*100+maxPadY-minPadY+1; // dimension of the box: format Xdim*100+Ydim if ( fQRaw != 0 ) {fXX/=fQRaw;fYY/=fQRaw;} //final center of gravity if(fDigs->GetEntriesFast()>1&&fgDoCorrSin)CorrSin(); //correct it by sinoid fQ = fQRaw; // Before starting fit procedure, Q and QRaw must be equal fMaxQpad = maxQpad; fMaxQ=maxQ; //store max charge pad to the field fChi2=0; // no Chi2 to find fNlocMax=0; // proper status from this method fSt=kCoG; SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part }//CoG() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::CorrSin() { // Correction of cluster x position due to sinoid, see HMPID TDR page 30 // Arguments: none // Returns: none Int_t pc,px,py; fParam->Lors2Pad(fXX,fYY,pc,px,py); //tmp digit to get it center Float_t x=fXX-fParam->LorsX(pc,px); //diff between cluster x and center of the pad contaning this cluster fXX+=3.31267e-2*TMath::Sin(2*TMath::Pi()/0.8*x)-2.66575e-3*TMath::Sin(4*TMath::Pi()/0.8*x)+2.80553e-3*TMath::Sin(6*TMath::Pi()/0.8*x)+0.0070; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::Draw(Option_t*) { TMarker *pMark=new TMarker(X(),Y(),5); pMark->SetUniqueID(fSt);pMark->SetMarkerColor(kBlue); pMark->Draw(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::FitFunc(Int_t &iNpars, Double_t* deriv, Double_t &chi2, Double_t *par, Int_t iflag) { // Cluster fit function // par[0]=x par[1]=y par[2]=q for the first Mathieson shape // par[3]=x par[4]=y par[5]=q for the second Mathieson shape and so on up to iNpars/3 Mathieson shapes // For each pad of the cluster calculates the difference between actual pad charge and the charge induced to this pad by all Mathieson distributions // Then the chi2 is calculated as the sum of this value squared for all pad in the cluster. // Arguments: iNpars - number of parameters which is number of local maxima of cluster * 3 // chi2 - function result to be minimised // par - parameters array of size iNpars // Returns: none AliHMPIDCluster *pClu=(AliHMPIDCluster*)TVirtualFitter::GetFitter()->GetObjectFit(); Int_t nPads = pClu->Size(); chi2 = 0; Int_t iNshape = iNpars/3; for(Int_t i=0;iDig(i)->IntMathieson(par[3*j],par[3*j+1]); dQpadMath+=par[3*j+2]*fracMathi; // par[3*j+2] is charge par[3*j] is x par[3*j+1] is y of current Mathieson } if(dQpadMath>0 && pClu->Dig(i)->Q()>0) { chi2 +=TMath::Power((pClu->Dig(i)->Q()-dQpadMath),2)/pClu->Dig(i)->Q(); //chi2 function to be minimized } } //---calculate gradients... if(iflag==2) { Double_t **derivPart; derivPart = new Double_t*[iNpars]; for(Int_t j=0;jDig(i)->IntMathieson(par[3*j],par[3*j+1]); derivPart[3*j ][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()-0.5*AliHMPIDParam::SizePadX())- pClu->Dig(i)->MathiesonX(par[3*j]-pClu->Dig(i)->LorsX()+0.5*AliHMPIDParam::SizePadX()))* pClu->Dig(i)->IntPartMathiY(par[3*j+1]); derivPart[3*j+1][i] += par[3*j+2]*(pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()-0.5*AliHMPIDParam::SizePadY())- pClu->Dig(i)->MathiesonY(par[3*j+1]-pClu->Dig(i)->LorsY()+0.5*AliHMPIDParam::SizePadY()))* pClu->Dig(i)->IntPartMathiX(par[3*j]); derivPart[3*j+2][i] += fracMathi; } } //loop on all pads of the cluster for(Int_t i=0;iDig(i)->IntMathieson(par[3*j],par[3*j+1]); dQpadMath+=par[3*j+2]*fracMathi; if(dQpadMath>0 && pClu->Dig(i)->Q()>0) { deriv[3*j] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j ][i]; deriv[3*j+1] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+1][i]; deriv[3*j+2] += 2/pClu->Dig(i)->Q()*(pClu->Dig(i)->Q()-dQpadMath)*derivPart[3*j+2][i]; } } } //delete array... for(Int_t i=0;i0&&QRaw()>0) ratio = Q()/QRaw()*100; Printf("%sCLU: ch=%i (%7.3f,%7.3f) Q=%8.3f Qraw=%8.3f(%3.0f%%) Size=%2i DimBox=%i LocMax=%i Chi2=%7.3f %s", opt,Ch(),X(),Y(),Q(),QRaw(),ratio,Size(),fBox,fNlocMax,fChi2,status); if(fDigs) fDigs->Print(); }//Print() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDCluster::Solve(TClonesArray *pCluLst,Int_t *pSigmaCut, Bool_t isTryUnfold) { //This methode is invoked when the cluster is formed to solve it. Solve the cluster means to try to unfold the cluster //into the local maxima number of clusters. This methode is invoked by AliHMPIDRconstructor::Dig2Clu() on cluster by cluster basis. //At this point, cluster contains a list of digits, cluster charge and size is precalculated in AddDigit(), position is preset to (-1,-1) in ctor, //status is preset to kFormed in AddDigit(), chamber-sector info is preseted to actual values in AddDigit() //Method first finds number of local maxima and if it's more then one tries to unfold this cluster into local maxima number of clusters //Arguments: pCluLst - cluster list pointer where to add new cluster(s) // isTryUnfold - flag to switch on/off unfolding // Returns: number of local maxima of original cluster const Int_t kMaxLocMax=6; //max allowed number of loc max for fitting // CoG(); //First calculate CoG for the given cluster Int_t iCluCnt=pCluLst->GetEntriesFast(); //get current number of clusters already stored in the list by previous operations Int_t rawSize = Size(); //get current raw cluster size if(rawSize>100) { fSt = kBig; } else if(isTryUnfold==kFALSE) { fSt = kNot; } else if(rawSize==1) { fSt = kSi1; } if(rawSize>100 || isTryUnfold==kFALSE || rawSize==1) { //No deconv if: 1 - big cluster (also avoid no zero suppression!) // 2 - flag is set to FALSE SetClusterParams(fXX,fYY,fCh); // 3 - size = 1 new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add this raw cluster return 1; } //Phase 0. Initialise Fitter Double_t arglist[10]; Int_t ierflg = 0; TVirtualFitter* fitter = TVirtualFitter::Fitter(this,3*6); //initialize Fitter // arglist[0] = -1; ierflg = fitter->ExecuteCommand("SET PRI", arglist, 1); // no printout ierflg = fitter->ExecuteCommand("SET NOW", arglist, 0); //no warning messages arglist[0] = 1; ierflg = fitter->ExecuteCommand("SET GRA", arglist, 1); //force Fitter to use my gradient fitter->SetFCN(AliHMPIDCluster::FitFunc); // arglist[0] = 1; // ierflg = fitter->ExecuteCommand("SET ERR", arglist ,1); // Set starting values and step sizes for parameters //Phase 1. Find number of local maxima. Strategy is to check if the current pad has QDC more then all neigbours. Also find the box contaning the cluster fNlocMax=0; for(Int_t iDig1=0;iDig1PadChX()-pDig2->PadChX()),1)+TMath::Sign(Int_t(pDig1->PadChY()-pDig2->PadChY()),1);//distance between pads if(dist==1) //means dig2 is a neighbour of dig1 if(pDig2->Q()>=pDig1->Q()) iCnt++; //count number of pads with Q more then Q of current pad }//second digits loop if(iCnt==0&&fNlocMaxLorsX();Double_t yStart=pDig1->LorsY(); Double_t xMin=xStart-fParam->SizePadX(); Double_t xMax=xStart+fParam->SizePadX(); Double_t yMin=yStart-fParam->SizePadY(); Double_t yMax=yStart+fParam->SizePadY(); ierflg = fitter->SetParameter(3*fNlocMax ,Form("x%i",fNlocMax),xStart,0.1,xMin,xMax); // X,Y,Q initial values of the loc max pad ierflg = fitter->SetParameter(3*fNlocMax+1,Form("y%i",fNlocMax),yStart,0.1,yMin,yMax); // X, Y constrained to be near the loc max ierflg = fitter->SetParameter(3*fNlocMax+2,Form("q%i",fNlocMax),pDig1->Q(),0.1,0,10000); // Q constrained to be positive fNlocMax++; }//if this pad is local maximum }//first digits loop //Phase 2. Fit loc max number of Mathiesons or add this current cluster to the list // case 1 -> no loc max found if ( fNlocMax == 0) { // case of no local maxima found: pads with same charge... fNlocMax = 1; fSt=kNoLoc; SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster return fNlocMax; } // case 2 -> loc max found. Check # of loc maxima if ( fNlocMax >= kMaxLocMax) { SetClusterParams(fXX,fYY,fCh); // if # of local maxima exceeds kMaxLocMax... fSt = kMax; new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //...add this raw cluster } else { //or resonable number of local maxima to fit and user requested it // Now ready for minimization step arglist[0] = 500; //number of steps and sigma on pads charges arglist[1] = 1.; // ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2); //start fitting with Simplex if (!ierflg) fitter->ExecuteCommand("MIGRAD" ,arglist,2); //fitting improved by Migrad if(ierflg) { Double_t strategy=2; ierflg = fitter->ExecuteCommand("SET STR",&strategy,1); //change level of strategy if(!ierflg) { ierflg = fitter->ExecuteCommand("SIMPLEX",arglist,2); //start fitting with Simplex if (!ierflg) fitter->ExecuteCommand("MIGRAD" ,arglist,2); //fitting improved by Migrad } } if(ierflg) fSt=kAbn; //no convergence of the fit... Double_t dummy; char sName[80]; //vars to get results from Minuit Double_t edm, errdef; Int_t nvpar, nparx; for(Int_t i=0;iGetParameter(3*i ,sName, fXX, fErrX , dummy, dummy); // X fitter->GetParameter(3*i+1 ,sName, fYY, fErrY , dummy, dummy); // Y fitter->GetParameter(3*i+2 ,sName, fQ, fErrQ , dummy, dummy); // Q fitter->GetStats(fChi2, edm, errdef, nvpar, nparx); //get fit infos if(fNlocMax>1)FindClusterSize(i,pSigmaCut); //find clustersize for deconvoluted clusters //after this call, fSi temporarly is the calculated size. Later is set again //to its original value if(fSt!=kAbn) { if(fNlocMax!=1)fSt=kUnf; // if unfolded if(fNlocMax==1&&fSt!=kNoLoc) fSt=kLo1; // if only 1 loc max if ( !IsInPc()) fSt = kEdg; // if Out of Pc if(fSt==kNoLoc) fNlocMax=0; // if with no loc max (pads with same charge..) } SetClusterParams(fXX,fYY,fCh); //need to fill the AliCluster3D part new ((*pCluLst)[iCluCnt++]) AliHMPIDCluster(*this); //add new unfolded cluster if(fNlocMax>1)SetSize(rawSize); //Original raw size is set again to its proper value } } return fNlocMax; }//Solve() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDCluster::FindClusterSize(Int_t i,Int_t *pSigmaCut) { //Estimate of the clustersize for a deconvoluted cluster Int_t size = 0; for(Int_t iDig=0;iDigCh(); Double_t qPad = Q()*pDig->IntMathieson(X(),Y()); //pad charge AliDebug(1,Form("Chamber %i X %i Y %i SigmaCut %i pad %i qpadMath %8.2f qPadRaw %8.2f Qtotal %8.2f cluster n.%i",iCh,pDig->PadChX(),pDig->PadChY(), pSigmaCut[iCh],iDig,qPad,pDig->Q(),QRaw(),i)); if(qPad>pSigmaCut[iCh]) size++; } AliDebug(1,Form(" Calculated size %i",size)); if(size>0) SetSize(size); //in case of size == 0, original raw clustersize used }