// ************************************************************************** // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * // * * // * Author: The ALICE Off-line Project. * // * Contributors are mentioned in the code where appropriate. * // * * // * Permission to use, copy, modify and distribute this software and its * // * documentation strictly for non-commercial purposes is hereby granted * // * without fee, provided that the above copyright notice appears in all * // * copies and that both the copyright notice and this permission notice * // * appear in the supporting documentation. The authors make no claims * // * about the suitability of this software for any purpose. It is * // * provided "as is" without express or implied warranty. * // ************************************************************************** #include "AliHMPIDParam.h" //class header #include "AliHMPIDDigit.h" //ctor #include "AliLog.h" //general #include //Stack() #include //Stack() #include "AliCDBManager.h" //ctor #include "AliCDBEntry.h" //ctor #include //TestTrans() #include //TestTrans() #include //TestTrans() #include #include //Stack() #include //ctor #include #include //ctor ClassImp(AliHMPIDParam) // Mathieson constant definition const Double_t AliHMPIDParam::fgkD = 0.222500; // ANODE-CATHODE distance 0.445/2 // K3 = 0.66 along the wires (anode-cathode/wire pitch=0.5625) const Double_t AliHMPIDParam::fgkSqrtK3x = TMath::Sqrt(0.66); const Double_t AliHMPIDParam::fgkK2x = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3x); const Double_t AliHMPIDParam::fgkK1x = 0.25*fgkK2x*fgkSqrtK3x/TMath::ATan(fgkSqrtK3x); const Double_t AliHMPIDParam::fgkK4x = fgkK1x/(fgkK2x*fgkSqrtK3x); // K3 = 0.87 along the wires (anode-cathode/wire pitch=0.5625) const Double_t AliHMPIDParam::fgkSqrtK3y = TMath::Sqrt(0.87); const Double_t AliHMPIDParam::fgkK2y = TMath::PiOver2()*(1 - 0.5*fgkSqrtK3y); const Double_t AliHMPIDParam::fgkK1y = 0.25*fgkK2y*fgkSqrtK3y/TMath::ATan(fgkSqrtK3y); const Double_t AliHMPIDParam::fgkK4y = fgkK1y/(fgkK2y*fgkSqrtK3y); // Float_t AliHMPIDParam::fgkMinPcX[]={0.,0.,0.,0.,0.,0.}; Float_t AliHMPIDParam::fgkMaxPcX[]={0.,0.,0.,0.,0.,0.}; Float_t AliHMPIDParam::fgkMinPcY[]={0.,0.,0.,0.,0.,0.}; Float_t AliHMPIDParam::fgkMaxPcY[]={0.,0.,0.,0.,0.,0.}; Float_t AliHMPIDParam::fgCellX=0.; Float_t AliHMPIDParam::fgCellY=0.; Float_t AliHMPIDParam::fgPcX=0; Float_t AliHMPIDParam::fgPcY=0; Float_t AliHMPIDParam::fgAllX=0; Float_t AliHMPIDParam::fgAllY=0; Bool_t AliHMPIDParam::fgInstanceType=kTRUE; AliHMPIDParam* AliHMPIDParam::fgInstance=0x0; //singleton pointer Int_t AliHMPIDParam::fgSigmas=4; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDParam::AliHMPIDParam(Bool_t noGeo=kFALSE): TNamed("HmpidParam","default version"), fX(0), fY(0), fRefIdx(1.28947),fPhotEMean(6.675),fTemp(25) //just set a refractive index for C6F14 at ephot=6.675 eV @ T=25 C { // Here all the intitializition is taken place when AliHMPIDParam::Instance() is invoked for the first time. // In particular, matrices to be used for LORS<->MARS trasnformations are initialized from TGeo structure. // Note that TGeoManager should be already initialized from geometry.root file AliCDBManager *pCDB = AliCDBManager::Instance(); if(!pCDB) { AliWarning("No Nmean C6F14 from OCDB. Default is taken from ctor."); } else { AliCDBEntry *pNmeanEnt =pCDB->Get("HMPID/Calib/Nmean"); //contains TObjArray of 42 TF1 + 1 EPhotMean if(!pNmeanEnt) { AliWarning("No Nmean C6F14 from OCDB. Default is taken from ctor."); } else { TObjArray *pNmean = (TObjArray*)pNmeanEnt->GetObject(); if(pNmean->GetEntries()==43) { //for backward compatibility Double_t tmin,tmax; ((TF1*)pNmean->At(42))->GetRange(tmin,tmax); fPhotEMean = ((TF1*)pNmean->At(42))->Eval(tmin); //photon eMean from OCDB AliInfo(Form("EPhotMean = %f eV successfully loaded from OCDB",fPhotEMean)); } else { AliWarning("For backward compatibility EPhotMean is taken from ctor."); } } } fRefIdx = MeanIdxRad(); //initialization of the running ref. index of freon Float_t dead=2.6;// cm of the dead zones between PCs-> See 2CRC2099P1 if(noGeo==kTRUE) fgInstanceType=kFALSE; //instance from ideal geometry, no actual geom is present if(noGeo==kFALSE && !gGeoManager) { TGeoManager::Import("geometry.root"); if(!gGeoManager) AliFatal("!!!!!!No geometry loaded!!!!!!!"); } fgCellX=0.8;fgCellY=0.84; if(!noGeo==kTRUE){ TGeoVolume *pCellVol = gGeoManager->GetVolume("Hcel"); if(pCellVol) { TGeoBBox *bcell = (TGeoBBox *)pCellVol->GetShape(); fgCellX=2.*bcell->GetDX(); fgCellY = 2.*bcell->GetDY(); // overwrite the values with the read ones } } fgPcX=80.*fgCellX; fgPcY = 48.*fgCellY; fgAllX=2.*fgPcX+dead; fgAllY=3.*fgPcY+2.*dead; fgkMinPcX[1]=fgPcX+dead; fgkMinPcX[3]=fgkMinPcX[1]; fgkMinPcX[5]=fgkMinPcX[3]; fgkMaxPcX[0]=fgPcX; fgkMaxPcX[2]=fgkMaxPcX[0]; fgkMaxPcX[4]=fgkMaxPcX[2]; fgkMaxPcX[1]=fgAllX; fgkMaxPcX[3]=fgkMaxPcX[1]; fgkMaxPcX[5]=fgkMaxPcX[3]; fgkMinPcY[2]=fgPcY+dead; fgkMinPcY[3]=fgkMinPcY[2]; fgkMinPcY[4]=2.*fgPcY+2.*dead; fgkMinPcY[5]=fgkMinPcY[4]; fgkMaxPcY[0]=fgPcY; fgkMaxPcY[1]=fgkMaxPcY[0]; fgkMaxPcY[2]=2.*fgPcY+dead; fgkMaxPcY[3]=fgkMaxPcY[2]; fgkMaxPcY[4]=fgAllY; fgkMaxPcY[5]=fgkMaxPcY[4]; fX=0.5*SizeAllX(); fY=0.5*SizeAllY(); for(Int_t i=kMinCh;i<=kMaxCh;i++) if(gGeoManager && gGeoManager->IsClosed()) { TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(Form("/HMPID/Chamber%i",i)); if (!pne) { AliErrorClass(Form("The symbolic volume %s does not correspond to any physical entry!",Form("HMPID_%i",i))); fM[i]=new TGeoHMatrix; IdealPosition(i,fM[i]); } else { TGeoPhysicalNode *pnode = pne->GetPhysicalNode(); if(pnode) fM[i]=new TGeoHMatrix(*(pnode->GetMatrix())); else { fM[i]=new TGeoHMatrix; IdealPosition(i,fM[i]); } } } else{ fM[i]=new TGeoHMatrix; IdealPosition(i,fM[i]); } fgInstance=this; }//ctor //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDParam::Print(Option_t* opt) const { // print some usefull (hopefully) info on some internal guts of HMPID parametrisation for(Int_t i=0;i<7;i++) fM[i]->Print(opt); }//Print() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDParam::IdealPosition(Int_t iCh, TGeoHMatrix *pMatrix) { // Construct ideal position matrix for a given chamber // Arguments: iCh- chamber ID; pMatrix- pointer to precreated unity matrix where to store the results // Returns: none const Double_t kAngHor=19.5; // horizontal angle between chambers 19.5 grad const Double_t kAngVer=20; // vertical angle between chambers 20 grad const Double_t kAngCom=30; // common HMPID rotation with respect to x axis 30 grad const Double_t kTrans[3]={490,0,0}; // center of the chamber is on window-gap surface pMatrix->RotateY(90); // rotate around y since initial position is in XY plane -> now in YZ plane pMatrix->SetTranslation(kTrans); // now plane in YZ is shifted along x switch(iCh){ case 0: pMatrix->RotateY(kAngHor); pMatrix->RotateZ(-kAngVer); break; //right and down case 1: pMatrix->RotateZ(-kAngVer); break; //down case 2: pMatrix->RotateY(kAngHor); break; //right case 3: break; //no rotation case 4: pMatrix->RotateY(-kAngHor); break; //left case 5: pMatrix->RotateZ(kAngVer); break; //up case 6: pMatrix->RotateY(-kAngHor); pMatrix->RotateZ(kAngVer); break; //left and up } pMatrix->RotateZ(kAngCom); //apply common rotation in XY plane } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDParam::Stack(Int_t evt,Int_t tid) { // Prints some useful info from stack // Arguments: evt - event number. if not -1 print info only for that event // tid - track id. if not -1 then print it and all it's mothers if any // Returns: mother tid of the given tid if any AliRunLoader *pAL=AliRunLoader::Open(); if(pAL->LoadHeader()) return -1; if(pAL->LoadKinematics()) return -1; Int_t mtid=-1; Int_t iNevt=pAL->GetNumberOfEvents(); for(Int_t iEvt=0;iEvtGetEvent(iEvt); AliStack *pStack=pAL->Stack(); if(tid==-1){ //print all tids for this event for(Int_t i=0;iGetNtrack();i++) pStack->Particle(i)->Print(); Printf("totally %i tracks including %i primaries for event %i out of %i event(s)", pStack->GetNtrack(),pStack->GetNprimary(),iEvt,iNevt); }else{ //print only this tid and it;s mothers if(tid<0 || tid>pStack->GetNtrack()) {Printf("Wrong tid, valid tid range for event %i is 0-%i",iEvt,pStack->GetNtrack());break;} TParticle *pTrack=pStack->Particle(tid); mtid=pTrack->GetFirstMother(); TString str=pTrack->GetName(); while((tid=pTrack->GetFirstMother()) >= 0){ pTrack=pStack->Particle(tid); str+=" from ";str+=pTrack->GetName(); } }//if(tid==-1) }//events loop pAL->UnloadHeader(); pAL->UnloadKinematics(); return mtid; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDParam::StackCount(Int_t pid,Int_t evt) { // Counts total number of particles of given sort (including secondary) for a given event AliRunLoader *pAL=AliRunLoader::Open(); pAL->GetEvent(evt); if(pAL->LoadHeader()) return 0; if(pAL->LoadKinematics()) return 0; AliStack *pStack=pAL->Stack(); Int_t iCnt=0; for(Int_t i=0;iGetNtrack();i++) if(pStack->Particle(i)->GetPdgCode()==pid) iCnt++; pAL->UnloadHeader(); pAL->UnloadKinematics(); return iCnt; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDParam::Sigma2(Double_t trkTheta,Double_t trkPhi,Double_t ckovTh, Double_t ckovPh) { // Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] TVector3 v(-999,-999,-999); Double_t trkBeta = 1./(TMath::Cos(ckovTh)*GetRefIdx()); if(trkBeta > 1) trkBeta = 1; //protection against bad measured thetaCer if(trkBeta < 0) trkBeta = 0.0001; // v.SetX(SigLoc (trkTheta,trkPhi,ckovTh,ckovPh,trkBeta)); v.SetY(SigGeom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta)); v.SetZ(SigCrom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta)); return v.Mag2(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDParam::SigLoc(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM) { // Analitical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - trkPhi; Double_t sint = TMath::Sin(trkTheta); Double_t cost = TMath::Cos(trkTheta); Double_t sinf = TMath::Sin(trkPhi); Double_t cosf = TMath::Cos(trkPhi); Double_t sinfd = TMath::Sin(phiDelta); Double_t cosfd = TMath::Cos(phiDelta); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) if (k<0) return 1e10; Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf); // formula (10) Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf); // formula (9) Double_t kk = betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (6) and (7) Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd); // formula (6) Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd); // formula (7) pag.4 Double_t errX = 0.2,errY=0.25; //end of page 7 return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDParam::SigCrom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM) { // Analitical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - trkPhi; Double_t sint = TMath::Sin(trkTheta); Double_t cost = TMath::Cos(trkTheta); Double_t cosfd = TMath::Cos(phiDelta); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t dtdn = cost*GetRefIdx()*betaM*betaM/(alpha*tantheta); // formula (12) // Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.); Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.); return f*dtdn; }//SigCrom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDParam::SigGeom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM) { // Analitical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Formulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - trkPhi; Double_t sint = TMath::Sin(trkTheta); Double_t cost = TMath::Cos(trkTheta); Double_t sinf = TMath::Sin(trkPhi); Double_t cosfd = TMath::Cos(phiDelta); Double_t costheta = TMath::Cos(thetaC); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) if (k<0) return 1e10; Double_t eTr = 0.5*RadThick()*betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (14) Double_t lambda = 1.-sint*sint*sinf*sinf; // formula (15) Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta)); // formula (13.a) Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(GapThick()*alpha*alpha); // formula (13.b) Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha); // formula (13.c) Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(GapThick()*betaM); // formula (13.d) Double_t dtdT = c1 * (c2+c3*c4); Double_t trErr = RadThick()/(TMath::Sqrt(12.)*cost); return trErr*dtdT; }//SigGeom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++