#ifndef AliHMPIDParam_h #define AliHMPIDParam_h /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include "stdio.h" #include #include //base class #include //Instance() #include //Instance() #include //Lors2Mars() Mars2Lors() // Class providing all the needed parametrised information // to construct the geometry, to define segmentation and to provide response model // In future will also provide all the staff needed for alignment and calibration class AliHMPIDParam :public TNamed { public: //ctor&dtor virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}} void Print(Option_t *opt="") const; //print current parametrization static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ... //geo info enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y //The electronics takes the 32bit int as: first 9 bits for the pedestal and the second 9 bits for threshold - values below should be within range enum EPedestalData{kPadMeanZeroCharge=400,kPadSigmaZeroCharge=20,kPadMeanMasked=401,kPadSigmaMasked=20}; //One can go up to 5 sigma cut, overflow is protected in AliHMPIDCalib static Float_t r2d ( ) {return 57.2957795; } static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm] static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm] static Float_t SizePcX ( ) {return fgPcX; } // PC size x static Float_t SizePcY ( ) {return fgPcY; } // PC size y static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits static Int_t Nsig ( ) {return fgNSigmas; } //Getter n. sigmas for noise static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm] static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm] static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm] static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm] Float_t ChPhiMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Phi()*r2d();} //PhiMin (degree) of the camber ch Float_t ChThMin (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMinPx)-fX,LorsY(ch,kMinPy)-fY).Theta()*r2d();} //ThMin (degree) of the camber ch Float_t ChPhiMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Phi()*r2d();} //PhiMax (degree) of the camber ch Float_t ChThMax (Int_t ch ) {return Lors2Mars(ch,LorsX(ch,kMaxPcx)-fX,LorsY(ch,kMaxPcy)-fY).Theta()*r2d();} //ThMax (degree) of the camber ch inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py) static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y static Bool_t IsOverTh (Float_t q ) {return q >= fgThreshold; } //is digit over threshold? Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area? inline static Bool_t IsDeadPad(Int_t padx,Int_t pady,Int_t ch); //is a dead pad? inline void SetChStatus(Int_t ch,Bool_t status=kTRUE); inline void SetSectStatus(Int_t ch,Int_t sect,Bool_t status); inline void SetPcStatus(Int_t ch,Int_t pc,Bool_t status); inline void PrintChStatus(Int_t ch); inline void SetGeomAccept(); inline static Int_t InHVSector( Float_t y ); //find HV sector static Int_t Radiator( Float_t y ) {if (InHVSector(y)<0) return -1; return InHVSector(y)/2;} static Double_t HinRad(Float_t y) {if (Radiator(y)<0) return -1;return y-Radiator(y)*fgkMinPcY[Radiator(y)];} // height in the radiator to estimate temperature from gradient static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x=7.8)*0.0001;} static Double_t LAbsWin(Double_t eV) {return (eV<8.2)*(818.8638-301.0436*eV+36.89642*eV*eV-1.507555*eV*eV*eV)+(eV>=8.2)*0.0001;}//fit from DiMauro data 28.10.03 static Double_t LAbsGap(Double_t eV) {return (eV<7.75)*6512.399+(eV>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*eV-8.011441e-3*eV*eV+3.392126e-4*eV*eV*eV);} static Double_t QEffCSI(Double_t eV) {return (eV>6.07267)*0.344811*(1-exp(-1.29730*(eV-6.07267)));}//fit from DiMauro data 28.10.03 static Double_t GausPar(Double_t x,Double_t a1,Double_t a2,Double_t a3) {return a1*TMath::Exp(-0.5*((x-a2)/a3)*((x-a2)/a3));} inline static Double_t FindTemp(Double_t tLow,Double_t tUp,Double_t y); //find the temperature of the C6F14 in a given point with coord. y (in x is uniform) Double_t GetEPhotMean ()const {return fPhotEMean;} Double_t GetRefIdx ()const {return fRefIdx;} //running refractive index Double_t MeanIdxRad ()const {return NIdxRad(fPhotEMean,fTemp);} Double_t MeanIdxWin ()const {return NIdxWin(fPhotEMean);} // Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge Float_t MultCut ()const {return 30;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2) Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4) static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber //trasformation methodes void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); } TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l); Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]); th=TMath::ATan(pt/l[2]); ph=TMath::ATan2(l[1],l[0]);} void Lors2MarsVec(Int_t c,Double_t *m,Double_t *l )const{fM[c]->LocalToMasterVect(m,l); }//LRS->MRS TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane void SetTemp (Double_t temp ) {fTemp = temp;} //set actual temperature of the C6F14 void SetEPhotMean (Double_t ePhotMean ) {fPhotEMean = ePhotMean;} //set mean photon energy void SetRefIdx (Double_t refRadIdx ) {fRefIdx = refRadIdx;} //set running refractive index void SetNSigmas (Int_t sigmas ) {fgNSigmas = sigmas;} //set sigma cut void SetThreshold (Int_t thres ) {fgThreshold = thres;} //set sigma cut void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry //For PID Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2 //Mathieson Getters static Double_t PitchAnodeCathode() {return fgkD;} static Double_t SqrtK3x() {return fgkSqrtK3x;} static Double_t K2x () {return fgkK2x;} static Double_t K1x () {return fgkK1x;} static Double_t K4x () {return fgkK4x;} static Double_t SqrtK3y() {return fgkSqrtK3y;} static Double_t K2y () {return fgkK2y;} static Double_t K1y () {return fgkK1y;} static Double_t K4y () {return fgkK4y;} // enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction protected: static /*const*/ Float_t fgkMinPcX[6]; //limits PC static /*const*/ Float_t fgkMinPcY[6]; //limits PC static /*const*/ Float_t fgkMaxPcX[6]; //limits PC static /*const*/ Float_t fgkMaxPcY[6]; static Bool_t fgMapPad[160][144][7]; //map of pads to evaluate if they are active or dead (160,144) pads for 7 chambers // Mathieson constants // For HMPID --> x direction means parallel to the wires: K3 = 0.66 (NIM A270 (1988) 602-603) fig.1 // For HMPID --> y direction means perpendicular to the wires: K3 = 0.90 (NIM A270 (1988) 602-603) fig.2 // static const Double_t fgkD; // ANODE-CATHODE distance 0.445/2 static const Double_t fgkSqrtK3x,fgkK2x,fgkK1x,fgkK4x; static const Double_t fgkSqrtK3y,fgkK2y,fgkK1y,fgkK4y; // static Int_t fgNSigmas; //sigma Cut static Int_t fgThreshold; //sigma Cut static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations Float_t fX; //x shift of LORS with respect to rotated MARS Float_t fY; //y shift of LORS with respect to rotated MARS Double_t fRefIdx; //running refractive index of C6F14 Double_t fPhotEMean; //mean energy of photon Double_t fTemp; //actual temparature of C6F14 private: AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator ClassDef(AliHMPIDParam,1) //HMPID main parameters class }; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDParam* AliHMPIDParam::Instance() { // Return pointer to the AliHMPIDParam singleton. // Arguments: none // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal return fgInstance; }//Instance() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDParam* AliHMPIDParam::InstanceNoGeo() { // Return pointer to the AliHMPIDParam singleton without the geometry.root. // Arguments: none // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters return fgInstance; }//Instance() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y) { // Check is the current point is outside of sensitive area or in dead zones // Arguments: x,y -position // Returns: 1 if not in sensitive zone for(Int_t iPc=0;iPc<6;iPc++) if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDParam::IsDeadPad(Int_t padx,Int_t pady,Int_t ch) { // Check is the current pad is active or not // Arguments: padx,pady pad integer coord // Returns: kTRUE if dead, kFALSE if active if(fgMapPad[padx-1][pady-1][ch]) return kFALSE; //current pad active return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py) { // Check the pad of given position // Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result // Returns: none pc=px=py=-1; if (x>fgkMinPcX[0] && xfgkMinPcX[1] && xfgkMinPcY[0] && yfgkMinPcY[2] && yfgkMinPcY[4] && ySizePcY()) yRad = SizePcY(); //protection against fake y values Double_t gradT = (tHigh-tLow)/SizePcY(); // linear gradient return gradT*yRad+tLow; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDParam::SetChStatus(Int_t ch,Bool_t status) { //Set a chamber on or off depending on the status //Arguments: ch=chamber,status=kTRUE = active, kFALSE=off //Returns: none for(Int_t padx=0;padx=0;pady--) { for(Int_t padx=0;padx