#ifndef AliHMPIDParam_h #define AliHMPIDParam_h /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include #include //base class #include //Instance() #include //Instance() #include //Lors2Mars() Mars2Lors() // Class providing all the needed parametrised information // to construct the geometry, to define segmentation and to provide response model // In future will also provide all the staff needed for alignment and calibration class AliHMPIDParam :public TNamed { public: //ctor&dtor virtual ~AliHMPIDParam() {if (fgInstance){for(Int_t i=0;i<7;i++){delete fM[i];fM[i] = 0x0;};fgInstance=0;}} void Print(Option_t *opt="") const; //print current parametrization static inline AliHMPIDParam* Instance(); //pointer to AliHMPIDParam singleton static inline AliHMPIDParam* InstanceNoGeo(); //pointer to AliHMPIDParam singleton without geometry.root for MOOD, displays, ... //geo info enum EChamberData{kMinCh=0,kMaxCh=6,kMinPc=0,kMaxPc=5}; //Segmenation enum EPadxData{kPadPcX=80,kMinPx=0,kMaxPx=79,kMaxPcx=159}; //Segmentation structure along x enum EPadyData{kPadPcY=48,kMinPy=0,kMaxPy=47,kMaxPcy=143}; //Segmentation structure along y static Float_t SizePadX ( ) {return fgCellX; } //pad size x, [cm] static Float_t SizePadY ( ) {return fgCellY; } //pad size y, [cm] static Float_t SizePcX ( ) {return fgPcX; } // PC size x static Float_t SizePcY ( ) {return fgPcY; } // PC size y static Float_t MaxPcX (Int_t iPc ) {return fgkMaxPcX[iPc]; } // PC limits static Float_t MaxPcY (Int_t iPc ) {return fgkMaxPcY[iPc]; } // PC limits static Float_t MinPcX (Int_t iPc ) {return fgkMinPcX[iPc]; } // PC limits static Float_t MinPcY (Int_t iPc ) {return fgkMinPcY[iPc]; } // PC limits static Int_t Nsig ( ) {return fgSigmas; } //Getter n. sigmas for noise static Float_t SizeAllX ( ) {return fgAllX; } //all PCs size x, [cm] static Float_t SizeAllY ( ) {return fgAllY; } //all PCs size y, [cm] static Float_t LorsX (Int_t pc,Int_t padx ) {return (padx +0.5)*SizePadX()+fgkMinPcX[pc]; } //center of the pad x, [cm] static Float_t LorsY (Int_t pc,Int_t pady ) {return (pady +0.5)*SizePadY()+fgkMinPcY[pc]; } //center of the pad y, [cm] inline static void Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py); //(x,y)->(pc,px,py) static Int_t Abs (Int_t ch,Int_t pc,Int_t x,Int_t y) {return ch*100000000+pc*1000000+x*1000+y; } //(ch,pc,padx,pady)-> abs pad static Int_t DDL2C (Int_t ddl ) {return ddl/2; } //ddl -> chamber static Int_t A2C (Int_t pad ) {return pad/100000000; } //abs pad -> chamber static Int_t A2P (Int_t pad ) {return pad%100000000/1000000; } //abs pad -> pc static Int_t A2X (Int_t pad ) {return pad%1000000/1000; } //abs pad -> pad X static Int_t A2Y (Int_t pad ) {return pad%1000; } //abs pad -> pad Y static Bool_t IsOverTh (Float_t q ) {return q >= fgSigmas; } //is digit over threshold? Double_t GetRefIdx ( )const{return fRadNmean; } //refractive index of freon Bool_t GetInstType ( )const{return fgInstanceType; } //return if the instance is from geom or ideal inline static Bool_t IsInDead(Float_t x,Float_t y ); //is the point in dead area? inline static Int_t InHVSector(Float_t x, Float_t y ); //find HV sector static Bool_t IsInside (Float_t x,Float_t y,Float_t d=0) {return x>-d&&y>-d&&x to be removed in future. Mean ref index C6F14 Double_t MeanIdxWin ()const {return 1.57819;} //<--TEMPORAR--> to be removed in future. Mean ref index quartz Float_t DistCut ()const {return 1.0;} //<--TEMPORAR--> to be removed in future. Cut for MIP-TRACK residual Float_t QCut ()const {return 100;} //<--TEMPORAR--> to be removed in future. Separation PHOTON-MIP charge Float_t MultCut ()const {return 200;} //<--TEMPORAR--> to be removed in future. Multiplicity cut to activate WEIGHT procedure Double_t RadThick ()const {return 1.5;} //<--TEMPORAR--> to be removed in future. Radiator thickness Double_t WinThick ()const {return 0.5;} //<--TEMPORAR--> to be removed in future. Window thickness Double_t GapThick ()const {return 8.0;} //<--TEMPORAR--> to be removed in future. Proximity gap thickness Double_t WinIdx ()const {return 1.5787;} //<--TEMPORAR--> to be removed in future. Mean refractive index of WIN material (SiO2) Double_t GapIdx ()const {return 1.0005;} //<--TEMPORAR--> to be removed in future. Mean refractive index of GAP material (CH4) static Int_t Stack(Int_t evt=-1,Int_t tid=-1); //Print stack info for event and tid static Int_t StackCount(Int_t pid,Int_t evt); //Counts stack particles of given sort in given event static void IdealPosition(Int_t iCh,TGeoHMatrix *m); //ideal position of given chamber //trasformation methodes void Lors2Mars (Int_t c,Float_t x,Float_t y,Double_t *m,Int_t pl=kPc)const{Double_t z=0; switch(pl){case kPc:z=8.0;break; case kAnod:z=7.806;break; case kRad:z=-1.25; break;} Double_t l[3]={x-fX,y-fY,z}; fM[c]->LocalToMaster(l,m); } TVector3 Lors2Mars (Int_t c,Float_t x,Float_t y, Int_t pl=kPc)const{Double_t m[3];Lors2Mars(c,x,y,m,pl); return TVector3(m); }//MRS->LRS void Mars2Lors (Int_t c,Double_t *m,Float_t &x ,Float_t &y )const{Double_t l[3];fM[c]->MasterToLocal(m,l);x=l[0]+fX;y=l[1]+fY;}//MRS->LRS void Mars2LorsVec(Int_t c,Double_t *m,Float_t &th,Float_t &ph )const{Double_t l[3]; fM[c]->MasterToLocalVect(m,l); Float_t pt=TMath::Sqrt(l[0]*l[0]+l[1]*l[1]); th=TMath::ATan(pt/l[2]); ph=TMath::ATan2(l[1],l[0]);} TVector3 Norm (Int_t c )const{Double_t n[3]; Norm(c,n); return TVector3(n); }//norm void Norm (Int_t c,Double_t *n )const{Double_t l[3]={0,0,1};fM[c]->LocalToMasterVect(l,n); }//norm void Point (Int_t c,Double_t *p,Int_t plane )const{Lors2Mars(c,0,0,p,plane);} //point of given chamber plane void SetRefIdx (Double_t refRadIdx ) {fRadNmean = refRadIdx;} //set refractive index of freon void SetSigmas (Int_t sigmas ) {fgSigmas = sigmas;} //set sigma cut void SetInstanceType(Bool_t inst ) {fgInstanceType = inst;} //kTRUE if from geomatry kFALSE if from ideal geometry //For PID Double_t SigLoc (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to cathode segmetation Double_t SigGeom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknown photon origin Double_t SigCrom (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh,Double_t beta);//error due to unknonw photon energy Double_t Sigma2 (Double_t trkTheta,Double_t trkPhi,Double_t ckovTh,Double_t ckovPh );//photon candidate sigma^2 enum EPlaneId {kPc,kRad,kAnod}; //3 planes in chamber enum ETrackingFlags {kMipDistCut=-9,kMipQdcCut=-5,kNoPhotAccept=-11}; //flags for Reconstruction protected: static /*const*/ Float_t fgkMinPcX[6]; //limits PC static /*const*/ Float_t fgkMinPcY[6]; //limits PC static /*const*/ Float_t fgkMaxPcX[6]; //limits PC static /*const*/ Float_t fgkMaxPcY[6]; static Int_t fgSigmas; //sigma Cut static Bool_t fgInstanceType; //kTRUE if from geomatry kFALSE if from ideal geometry static Float_t fgCellX, fgCellY, fgPcX, fgPcY, fgAllX, fgAllY; //definition of HMPID geometric parameters AliHMPIDParam(Bool_t noGeo); //default ctor is protected to enforce it to be singleton static AliHMPIDParam *fgInstance; //static pointer to instance of AliHMPIDParam singleton TGeoHMatrix *fM[7]; //pointers to matrices defining HMPID chambers rotations-translations Float_t fX; //x shift of LORS with respect to rotated MARS Float_t fY; //y shift of LORS with respect to rotated MARS Double_t fRadNmean; //C6F14 mean index as a running parameter private: AliHMPIDParam(const AliHMPIDParam& r); //dummy copy constructor AliHMPIDParam &operator=(const AliHMPIDParam& r); //dummy assignment operator ClassDef(AliHMPIDParam,0) //HMPID main parameters class }; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDParam* AliHMPIDParam::Instance() { // Return pointer to the AliHMPIDParam singleton. // Arguments: none // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry if(!fgInstance) new AliHMPIDParam(kFALSE); //default setting for reconstruction, if no geometry.root -> AliFatal return fgInstance; }//Instance() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDParam* AliHMPIDParam::InstanceNoGeo() { // Return pointer to the AliHMPIDParam singleton without the geometry.root. // Arguments: none // Returns: pointer to the instance of AliHMPIDParam or 0 if no geometry if(!fgInstance) new AliHMPIDParam(kTRUE); //to avoid AliFatal, for MOOD and displays, use ideal geometry parameters return fgInstance; }//Instance() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDParam::IsInDead(Float_t x,Float_t y) { // Check is the current point is outside of sensitive area or in dead zones // Arguments: x,y -position // Returns: 1 if not in sensitive zone for(Int_t iPc=0;iPc<6;iPc++) if(x>=fgkMinPcX[iPc] && x<=fgkMaxPcX[iPc] && y>=fgkMinPcY[iPc] && y<=fgkMaxPcY [iPc]) return kFALSE; //in current pc return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDParam::Lors2Pad(Float_t x,Float_t y,Int_t &pc,Int_t &px,Int_t &py) { // Check the pad of given position // Arguments: x,y- position [cm] in LORS; pc,px,py- pad where to store the result // Returns: none pc=px=py=-1; if (x>fgkMinPcX[0] && xfgkMinPcX[1] && xfgkMinPcY[0] && yfgkMinPcY[2] && yfgkMinPcY[4] && y=fgkMinPcY[0] && x<=(fgkMaxPcY[0]+fgkMinPcY[0])/2 && y>=fgkMinPcY[1] && y<=(fgkMaxPcY[1]+fgkMinPcY[1])/2) hvsec=0; if(x>=(fgkMaxPcY[0]+fgkMinPcY[0])/2 && x<=fgkMaxPcY[0] && y>=(fgkMaxPcY[1]+fgkMinPcY[1])/2 && y<=fgkMaxPcY[1]) hvsec=1; if(x>=fgkMinPcY[2] && x<=(fgkMaxPcY[2]+fgkMinPcY[2])/2 && y>=fgkMinPcY[3] && y<=(fgkMaxPcY[3]+fgkMinPcY[3])/2) hvsec=2; if(x>=(fgkMaxPcY[2]+fgkMinPcY[2])/2 && x<=fgkMaxPcY[2] && y>=(fgkMaxPcY[3]+fgkMinPcY[3])/2 && y<=fgkMaxPcY[3]) hvsec=3; if(x>=fgkMinPcY[4] && x<=(fgkMaxPcY[4]+fgkMinPcY[4])/2 && y>=fgkMinPcY[5] && y<=(fgkMaxPcY[5]+fgkMinPcY[5])/2) hvsec=4; if(x>=(fgkMaxPcY[4]+fgkMinPcY[4])/2 && x<=fgkMaxPcY[4] && y>=(fgkMaxPcY[5]-fgkMinPcY[5])/2 && y<=fgkMaxPcY[5]) hvsec=5; return hvsec; //in current pc } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #endif