/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // AliHMPIDRecon // // // // HMPID class to perfom pattern recognition based on Hough transfrom // // for single chamber // ////////////////////////////////////////////////////////////////////////// #include "AliHMPIDRecon.h" //class header #include "AliHMPIDCluster.h" //CkovAngle() #include //TracePhot() #include //HoughResponse() #include //CkovAngle() #include //CkovAngle() #include //CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDRecon::AliHMPIDRecon(): TTask("RichRec","RichPat"), fPhotCnt(-1), fPhotFlag(0x0), fPhotClusIndex(0x0), fPhotCkov(0x0), fPhotPhi(0x0), fPhotWei(0x0), fCkovSigma2(0), fIsWEIGHT(kFALSE), fDTheta(0.001), fWindowWidth(0.045), fRingArea(0), fRingAcc(0), fTrkDir(0,0,1), // Just for test fTrkPos(30,40), // Just for test fMipPos(0,0), fPc(0,0), fParam(AliHMPIDParam::Instance()) { //.. //init of data members //.. fParam->SetRefIdx(fParam->MeanIdxRad()); // initialization of ref index to a default one } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::InitVars(Int_t n) { //.. //Init some variables //.. if(n<=0) return; fPhotFlag = new Int_t[n]; fPhotClusIndex = new Int_t[n]; fPhotCkov = new Double_t[n]; fPhotPhi = new Double_t[n]; fPhotWei = new Double_t[n]; // } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::DeleteVars()const { //.. //Delete variables //.. delete [] fPhotFlag; delete [] fPhotClusIndex; delete [] fPhotCkov; delete [] fPhotPhi; delete [] fPhotWei; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Int_t index,Double_t nmean,Float_t xRa,Float_t yRa) { // Pattern recognition method based on Hough transform // Arguments: pTrk - track for which Ckov angle is to be found // pCluLst - list of clusters for this chamber // Returns: - track ckov angle, [rad], const Int_t nMinPhotAcc = 3; // Minimum number of photons required to perform the pattern recognition Int_t nClusTot = pCluLst->GetEntries(); if(nClusTot>fParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction else fIsWEIGHT = kFALSE; InitVars(nClusTot); Float_t xPc,yPc,th,ph; pTrk->GetHMPIDtrk(xPc,yPc,th,ph); //initialize this track: th and ph angles at middle of RAD SetTrack(xRa,yRa,th,ph); fParam->SetRefIdx(nmean); Float_t mipX=-1,mipY=-1; Int_t chId=-1,mipQ=-1,sizeClu = -1; fPhotCnt=0; for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster if(iClu == index) { // this is the MIP! not a photon candidate: just store mip info mipX = pClu->X(); mipY = pClu->Y(); mipQ=(Int_t)pClu->Q(); sizeClu=pClu->Size(); continue; } chId=pClu->Ch(); Double_t thetaCer,phiCer; if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) fPhotPhi [fPhotCnt]=phiCer; fPhotClusIndex[fPhotCnt]=iClu; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) fPhotCnt++; //increment counter of photon candidates } }//clusters loop pTrk->SetHMPIDmip(mipX,mipY,mipQ,fPhotCnt); //store mip info in any case pTrk->SetHMPIDcluIdx(chId,index+1000*sizeClu); //set index of cluster if(fPhotCnt<=nMinPhotAcc) { //no reconstruction with <=3 photon candidates pTrk->SetHMPIDsignal(kNoPhotAccept); //set the appropriate flag return; } fMipPos.Set(mipX,mipY); //PATTERN RECOGNITION STARTED: Int_t iNrec=FlagPhot(HoughResponse(),pCluLst,pTrk); //flag photons according to individual theta ckov with respect to most probable pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNrec); //store mip info if(iNrec<1){ pTrk->SetHMPIDsignal(kNoPhotAccept); //no photon candidates are accepted return; } Double_t thetaC = FindRingCkov(pCluLst->GetEntries()); //find the best reconstructed theta Cherenkov // FindRingGeom(thetaC,2); pTrk->SetHMPIDsignal(thetaC); //store theta Cherenkov pTrk->SetHMPIDchi2(fCkovSigma2); //store errors squared DeleteVars(); }//CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer) { // Finds Cerenkov angle for this photon candidate // Arguments: cluX,cluY - position of cadidate's cluster // Returns: Cerenkov angle TVector3 dirCkov; Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD TVector3 pc(cluX,cluY,0.5*fParam->WinThick()+fParam->GapIdx()); //mip at PC Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+ (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER Double_t phi=(pc-rad).Phi(); //phi of photon Double_t ckov1=0; Double_t ckov2=0.75+fTrkDir.Theta(); //start to find theta cerenkov in DRS const Double_t kTol=0.01; Int_t iIterCnt = 0; while(1){ if(iIterCnt>=50) return kFALSE; Double_t ckov=0.5*(ckov1+ckov2); dirCkov.SetMagThetaPhi(1,ckov,phi); TVector2 posC=TraceForward(dirCkov); //trace photon with actual angles Double_t dist=cluR-(posC-fTrkPos).Mod(); //get distance between trial point and cluster position if(posC.X()==-999) dist = - 999; //total reflection problem iIterCnt++; //counter step if (dist> kTol) ckov1=ckov; //cluster @ larger ckov else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov else{ //precision achived: ckov in DRS found dirCkov.SetMagThetaPhi(1,ckov,phi); // Lors2Trs(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) return kTRUE; } } }//FindPhotTheta() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const { //Trace forward a photon from (x,y) up to PC // Arguments: dirCkov photon vector in LORS // Returns: pos of traced photon at PC TVector2 pos(-999,-999); Double_t thetaCer = dirCkov.Theta(); if(thetaCer > TMath::ASin(1./fParam->GetRefIdx())) return pos; //total refraction on WIN-GAP boundary Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick(); //z position of middle of RAD TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD Propagate(dirCkov,posCkov, -0.5*fParam->WinThick()); //go to RAD-WIN boundary Refract (dirCkov, fParam->GetRefIdx(),fParam->WinIdx()); //RAD-WIN refraction Propagate(dirCkov,posCkov, 0.5*fParam->WinThick()); //go to WIN-GAP boundary Refract (dirCkov, fParam->WinIdx(),fParam->GapIdx()); //WIN-GAP refraction Propagate(dirCkov,posCkov,0.5*fParam->WinThick()+fParam->GapThick()); //go to PC pos.Set(posCkov.X(),posCkov.Y()); return pos; }//TraceForward() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Lors2Trs(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const { //Theta Cerenkov reconstruction // Arguments: dirCkov photon vector in LORS // Returns: thetaCer of photon in TRS // phiCer of photon in TRS // TVector3 dirTrk; // dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi()); // Double_t thetaCer = TMath::ACos(dirCkov*dirTrk); TRotation mtheta; mtheta.RotateY(-fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(-fTrkDir.Phi()); TRotation mrot=mtheta*mphi; TVector3 dirCkovTRS; dirCkovTRS=mrot*dirCkov; phiCer = dirCkovTRS.Phi(); //actual value of the phi of the photon thetaCer= dirCkovTRS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Trs2Lors(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const { //Theta Cerenkov reconstruction // Arguments: dirCkov photon vector in TRS // Returns: thetaCer of photon in LORS // phiCer of photon in LORS TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); TRotation mrot=mphi*mtheta; TVector3 dirCkovLORS; dirCkovLORS=mrot*dirCkov; phiCer = dirCkovLORS.Phi(); //actual value of the phi of the photon thetaCer= dirCkovLORS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::FindRingGeom(Double_t ckovAng,Int_t level) { // Find area covered in the PC acceptance // Arguments: ckovAng - cerenkov angle // level - precision in finding area and portion of ring accepted (multiple of 50) // Returns: area of the ring in cm^2 for given theta ckov Int_t kN=50*level; Int_t nPoints = 0; Double_t area=0; Bool_t first=kFALSE; TVector2 pos1; for(Int_t i=0;iIsInside(pos1.X(),pos1.Y(),0)) { pos1 = IntWithEdge(fMipPos,pos1); // find the very first intersection... } else { if(!AliHMPIDParam::IsInDead(pos1.X(),pos1.Y())) nPoints++; //photon is accepted if not in dead zone } first=kTRUE; continue; } TVector2 pos2=TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN)); //trace the next photon if(pos2.X()==-999) continue; //no area: open ring if(!fParam->IsInside(pos2.X(),pos2.Y(),0)) { pos2 = IntWithEdge(fMipPos,pos2); } else { if(!AliHMPIDParam::IsInDead(pos2.X(),pos2.Y())) nPoints++; //photon is accepted if not in dead zone } area+=TMath::Abs((pos1-fMipPos).X()*(pos2-fMipPos).Y()-(pos1-fMipPos).Y()*(pos2-fMipPos).X()); //add area of the triangle... pos1 = pos2; } //--- find area and length of the ring; fRingAcc = (Double_t)nPoints/(Double_t)kN; area*=0.5; fRingArea = area; }//FindRingGeom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::IntWithEdge(TVector2 p1,TVector2 p2)const { // It finds the intersection of the line for 2 points traced as photons // and the edge of a given PC // Arguments: 2 points obtained tracing the photons // Returns: intersection point with detector (PC) edges Double_t xmin = (p1.X()=0 && pint.X()<=fParam->SizeAllX() && pint.X()>=xmin && pint.X()<=xmax && pint.Y()>=ymin && pint.Y()<=ymax) return pint; //intersection with high X pint.Set((Double_t)(p1.X() + (fParam->SizeAllY()-p1.Y())/m),(Double_t)(fParam->SizeAllY())); if(pint.X()>=0 && pint.X()<=fParam->SizeAllX() && pint.X()>=xmin && pint.X()<=xmax && pint.Y()>=ymin && pint.Y()<=ymax) return pint; //intersection with left Y pint.Set(0.,(Double_t)(p1.Y() + m*(0-p1.X()))); if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && pint.Y()>=ymin && pint.Y()<=ymax && pint.X()>=xmin && pint.X()<=xmax) return pint; //intersection with righ Y pint.Set((Double_t)(fParam->SizeAllX()),(Double_t)(p1.Y() + m*(fParam->SizeAllX()-p1.X()))); if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() && pint.Y()>=ymin && pint.Y()<=ymax && pint.X()>=xmin && pint.X()<=xmax) return pint; return p1; }//IntWithEdge() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingCkov(Int_t) { // Loops on all Ckov candidates and estimates the best Theta Ckov for a ring formed by those candidates. Also estimates an error for that Theat Ckov // collecting errors for all single Ckov candidates thetas. (Assuming they are independent) // Arguments: iNclus- total number of clusters in chamber for background estimation // Return: best estimation of track Theta ckov Double_t wei = 0.; Double_t weightThetaCerenkov = 0.; Double_t ckovMin=9999.,ckovMax=0.; Double_t sigma2 = 0; //to collect error squared for this ring for(Int_t i=0;ickovMax) ckovMax=fPhotCkov[i]; weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts sigma2 += 1./fParam->Sigma2(fTrkDir.Theta(),fTrkDir.Phi(),fPhotCkov[i],fPhotPhi[i]); } }//candidates loop if(sigma2>0) fCkovSigma2=1./sigma2; else fCkovSigma2=1e10; if(wei != 0.) weightThetaCerenkov /= wei; else weightThetaCerenkov = 0.; return weightThetaCerenkov; }//FindCkovRing() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov,TClonesArray *pCluLst, AliESDtrack *pTrk) { // Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by HoughResponse() // Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse() // Returns: number of photon candidates happened to be inside the window // Photon Flag: Flag = 0 initial set; // Flag = 1 good candidate (charge compatible with photon); // Flag = 2 photon used for the ring; Int_t *PhotIndex = new Int_t[fPhotCnt]; Int_t steps = (Int_t)((ckov )/ fDTheta); //how many times we need to have fDTheta to fill the distance between 0 and thetaCkovHough Double_t tmin = (Double_t)(steps - 1)*fDTheta; Double_t tmax = (Double_t)(steps)*fDTheta; Double_t tavg = 0.5*(tmin+tmax); tmin = tavg - 0.5*fWindowWidth; tmax = tavg + 0.5*fWindowWidth; Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window for(Int_t i=0;i= tmin && fPhotCkov[i] <= tmax) { fPhotFlag[i]=2; PhotIndex[iInsideCnt]=fPhotClusIndex[i]; iInsideCnt++; } } for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster for(Int_t j=0; jAddCalibObject(pClus); } } } delete [] PhotIndex; return iInsideCnt; }//FlagPhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const { // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses // Arguments: ckovThe,ckovPhi- photon ckov angles in TRS, [rad] // Returns: distance between photon point on PC and track projection Double_t theta,phi; TVector3 dirTRS,dirLORS; dirTRS.SetMagThetaPhi(1,ckovThe,ckovPhi); //photon in TRS Trs2Lors(dirTRS,theta,phi); dirLORS.SetMagThetaPhi(1,theta,phi); //photon in LORS return TraceForward(dirLORS); //now foward tracing }//TracePhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const { // Finds an intersection point between a line and XY plane shifted along Z. // Arguments: dir,pos - vector along the line and any point of the line // z - z coordinate of plain // Returns: none // On exit: pos is the position if this intesection if any static TVector3 nrm(0,0,1); TVector3 pnt(0,0,z); TVector3 diff=pnt-pos; Double_t sint=(nrm*diff)/(nrm*dir); pos+=sint*dir; }//Propagate() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const { // Refract direction vector according to Snell law // Arguments: // n1 - ref idx of first substance // n2 - ref idx of second substance // Returns: none // On exit: dir is new direction Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta()); if(TMath::Abs(sinref)>1.) dir.SetXYZ(-999,-999,-999); else dir.SetTheta(TMath::ASin(sinref)); }//Refract() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::HoughResponse() { // // fIdxMip = mipId; // Double_t kThetaMax=0.75; Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5); TH1D *phots = new TH1D("Rphot" ,"phots" ,nChannels,0,kThetaMax); TH1D *photsw = new TH1D("RphotWeighted" ,"photsw" ,nChannels,0,kThetaMax); TH1D *resultw = new TH1D("resultw","resultw" ,nChannels,0,kThetaMax); Int_t nBin = (Int_t)(kThetaMax/fDTheta); Int_t nCorrBand = (Int_t)(fWindowWidth/(2*fDTheta)); for (Int_t i=0; i< fPhotCnt; i++){//photon cadidates loop Double_t angle = fPhotCkov[i]; if(angle<0||angle>kThetaMax) continue; phots->Fill(angle); Int_t bin = (Int_t)(0.5+angle/(fDTheta)); Double_t weight=1.; if(fIsWEIGHT){ Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; FindRingGeom(lowerlimit); Double_t areaLow = GetRingArea(); FindRingGeom(upperlimit); Double_t areaHigh = GetRingArea(); Double_t diffArea = areaHigh - areaLow; if(diffArea>0) weight = 1./diffArea; } photsw->Fill(angle,weight); fPhotWei[i]=weight; }//photon candidates loop for (Int_t i=1; i<=nBin;i++){ Int_t bin1= i-nCorrBand; Int_t bin2= i+nCorrBand; if(bin1<1) bin1=1; if(bin2>nBin)bin2=nBin; Double_t sumPhots=phots->Integral(bin1,bin2); if(sumPhots<3) continue; // if less then 3 photons don't trust to this ring Double_t sumPhotsw=photsw->Integral(bin1,bin2); resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw); } // evaluate the "BEST" theta ckov as the maximum value of histogramm Double_t *pVec = resultw->GetArray(); Int_t locMax = TMath::LocMax(nBin,pVec); delete phots;delete photsw;delete resultw; // Reset and delete objects return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov }//HoughResponse() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingExt(Double_t ckov,Int_t ch,Double_t xPc,Double_t yPc,Double_t thRa,Double_t phRa) { // To find the acceptance of the ring even from external inputs. // // Double_t xRa = xPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Cos(phRa)*TMath::Tan(thRa); //just linear extrapolation back to RAD Double_t yRa = yPc - (fParam->RadThick()+fParam->WinThick()+fParam->GapThick())*TMath::Sin(phRa)*TMath::Tan(thRa); Int_t nStep = 500; Int_t nPhi = 0; Int_t ipc,ipadx,ipady; if(ckov>0){ SetTrack(xRa,yRa,thRa,phRa); for(Int_t j=0;jIsInDead(pos.X(),pos.Y())) continue; fParam->Lors2Pad(pos.X(),pos.Y(),ipc,ipadx,ipady); ipadx+=(ipc%2)*fParam->kPadPcX; ipady+=(ipc/2)*fParam->kPadPcY; if(fParam->IsDeadPad(ipadx,ipady,ch)) continue; nPhi++; }//point loop return ((Double_t)nPhi/(Double_t)nStep); }//if return -1; }