/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // AliHMPIDRecon // // // // HMPID class to perfom pattern recognition based on Hough transfrom // // for single chamber // ////////////////////////////////////////////////////////////////////////// #include "AliHMPIDRecon.h" //class header #include "AliHMPIDParam.h" //CkovAngle() #include "AliHMPIDCluster.h" //CkovAngle() #include //FitEllipse() #include //TracePhot() #include //HoughResponse() #include //CkovAngle() #include //CkovAngle() const Double_t AliHMPIDRecon::fgkRadThick=1.5; const Double_t AliHMPIDRecon::fgkWinThick=0.5; const Double_t AliHMPIDRecon::fgkGapThick=8.0; const Double_t AliHMPIDRecon::fgkWinIdx =1.5787; const Double_t AliHMPIDRecon::fgkGapIdx =1.0005; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AliHMPIDRecon::AliHMPIDRecon():TTask("RichRec","RichPat"), fRadNmean(1.292), fPhotCnt(-1), fCkovSigma2(0), fIsWEIGHT(kFALSE), fDTheta(0.001), fWindowWidth(0.045), fTrkDir(TVector3(0,0,1)),fTrkPos(TVector2(30,40)) { // main ctor for (Int_t i=0; i<3000; i++) { fPhotFlag[i] = 0; fPhotCkov[i] = -1; fPhotPhi [i] = -1; fPhotWei [i] = 0; } //hidden algorithm fMipX=fMipY=fThTrkFit=fPhTrkFit=fCkovFit=fMipQ=fRadX=fRadY=-999; fIdxMip=fNClu=0; fCkovSig2=0; for (Int_t i=0; i<100; i++) { fXClu[i] = fYClu[i] = 0; fClCk[i] = kTRUE; } } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) { // Pattern recognition method based on Hough transform // Arguments: pTrk - track for which Ckov angle is to be found // pCluLst - list of clusters for this chamber // Returns: - track ckov angle, [rad], AliHMPIDParam *pParam=AliHMPIDParam::Instance(); if(pCluLst->GetEntries()>pParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction else fIsWEIGHT = kFALSE; Float_t xRa,yRa,th,ph; pTrk->GetHMPIDtrk(xRa,yRa,th,ph); //initialize this track: th and ph angles at middle of RAD SetTrack(xRa,yRa,th,ph); fRadNmean=nmean; Float_t dMin=999,mipX=-1,mipY=-1;Int_t chId=-1,mipId=-1,mipQ=-1; fPhotCnt=0; for (Int_t iClu=0; iCluGetEntriesFast();iClu++){//clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster chId=pClu->Ch(); if(pClu->Q()>pParam->QCut()){ //charge compartible with MIP clusters Float_t dX=fPc.X()-pClu->X(),dY=fPc.Y()-pClu->Y(),d =TMath::Sqrt(dX*dX+dY*dY); //distance between current cluster and intersection point if( d < dMin) {mipId=iClu; dMin=d;mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q();} //current cluster is closer, overwrite data for min cluster }else{ //charge compatible with photon cluster Double_t thetaCer,phiCer; if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){ //find ckov angle for this photon candidate fPhotCkov[fPhotCnt]=thetaCer; //actual theta Cerenkov (in TRS) fPhotPhi [fPhotCnt]=phiCer; //actual phi Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z) fPhotCnt++; //increment counter of photon candidates } } }//clusters loop Int_t iNacc=FlagPhot(HoughResponse()); //flag photons according to individual theta ckov with respect to most probable pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNacc); //store mip info if(mipId==-1) {pTrk->SetHMPIDsignal(kMipQdcCut); return;} //no clusters with QDC more the threshold at all if(dMin>pParam->DistCut()) {pTrk->SetHMPIDsignal(kMipDistCut); return;} //closest cluster with enough charge is still too far from intersection pTrk->SetHMPIDcluIdx(chId,mipId); //set index of cluster if(iNacc<1) pTrk->SetHMPIDsignal(kNoPhotAccept); //no photon candidates is accepted else pTrk->SetHMPIDsignal(FindRingCkov(pCluLst->GetEntries())); //find best Theta ckov for ring i.e. track pTrk->SetHMPIDchi2(fCkovSigma2); //errors squared }//CkovAngle() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer) { // Finds Cerenkov angle for this photon candidate // Arguments: cluX,cluY - position of cadidate's cluster // Returns: Cerenkov angle TVector3 dirCkov; Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad); //impact point at middle of RAD TVector3 pc(cluX,cluY,0.5*fgkWinThick+fgkGapIdx); //mip at PC Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+ (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER Double_t phi=(pc-rad).Phi(); //phi of photon Double_t ckov1=0; Double_t ckov2=0.75+fTrkDir.Theta(); //start to find theta cerenkov in DRS const Double_t kTol=0.01; Int_t iIterCnt = 0; while(1){ if(iIterCnt>=50) return kFALSE; Double_t ckov=0.5*(ckov1+ckov2); dirCkov.SetMagThetaPhi(1,ckov,phi); TVector2 posC=TraceForward(dirCkov); //trace photon with actual angles Double_t dist=cluR-(posC-fTrkPos).Mod(); //get distance between trial point and cluster position if(posC.X()==-999) dist = - 999; //total reflection problem iIterCnt++; //counter step if (dist> kTol) ckov1=ckov; //cluster @ larger ckov else if(dist<-kTol) ckov2=ckov; //cluster @ smaller ckov else{ //precision achived: ckov in DRS found dirCkov.SetMagThetaPhi(1,ckov,phi); // RecPhot(dirCkov,thetaCer,phiCer); //find ckov (in TRS:the effective Cherenkov angle!) return kTRUE; } } }//FindPhotTheta() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const { //Trace forward a photon from (x,y) up to PC // Arguments: dirCkov photon vector in LORS // Returns: pos of traced photon at PC TVector2 pos(-999,-999); Double_t thetaCer = dirCkov.Theta(); if(thetaCer > TMath::ASin(1./fRadNmean)) return pos; //total refraction on WIN-GAP boundary Double_t zRad= -0.5*fgkRadThick-0.5*fgkWinThick; //z position of middle of RAD TVector3 posCkov(fTrkPos.X(),fTrkPos.Y(),zRad); //RAD: photon position is track position @ middle of RAD Propagate(dirCkov,posCkov, -0.5*fgkWinThick); //go to RAD-WIN boundary Refract (dirCkov, fRadNmean,fgkWinIdx); //RAD-WIN refraction Propagate(dirCkov,posCkov, 0.5*fgkWinThick); //go to WIN-GAP boundary Refract (dirCkov, fgkWinIdx,fgkGapIdx); //WIN-GAP refraction Propagate(dirCkov,posCkov,0.5*fgkWinThick+fgkGapThick); //go to PC pos.Set(posCkov.X(),posCkov.Y()); return pos; }//TraceForward() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::RecPhot(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer) { //Theta Cerenkov reconstruction // Arguments: (x,y) of initial point in LORS, dirCkov photon vector in LORS // Returns: thetaCer theta cerenkov reconstructed // TVector3 dirTrk; // dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi()); // Double_t thetaCer = TMath::ACos(dirCkov*dirTrk); TRotation mtheta; mtheta.RotateY(- fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(- fTrkDir.Phi()); TRotation mrot=mtheta*mphi; TVector3 dirCkovTRS; dirCkovTRS=mrot*dirCkov; phiCer = dirCkovTRS.Phi(); //actual value of the phi of the photon thetaCer= dirCkovTRS.Theta(); //actual value of thetaCerenkov of the photon } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FindRingArea(Double_t ckovAng)const { // Find area inside the cerenkov ring which lays inside PCs // Arguments: ckovAng - cerenkov angle // Returns: area of the ring in cm^2 for given theta ckov const Int_t kN=100; Double_t area=0; for(Int_t i=0;ickovMax) ckovMax=fPhotCkov[i]; weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i]; wei += fPhotWei[i]; //collect weight as sum of all candidate weghts sigma2 += 1./Sigma2(fPhotCkov[i],fPhotPhi[i]); } }//candidates loop if(sigma2>0) fCkovSigma2=1./sigma2; else fCkovSigma2=1e10; if(wei != 0.) weightThetaCerenkov /= wei; else weightThetaCerenkov = 0.; return weightThetaCerenkov; }//FindCkovRing() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Int_t AliHMPIDRecon::FlagPhot(Double_t ckov) { // Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by HoughResponse() // Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse() // Returns: number of photon candidates happened to be inside the window // Photon Flag: Flag = 0 initial set; // Flag = 1 good candidate (charge compatible with photon); // Flag = 2 photon used for the ring; Int_t steps = (Int_t)((ckov )/ fDTheta); //how many times we need to have fDTheta to fill the distance between 0 and thetaCkovHough Double_t tmin = (Double_t)(steps - 1)*fDTheta; Double_t tmax = (Double_t)(steps)*fDTheta; Double_t tavg = 0.5*(tmin+tmax); tmin = tavg - 0.5*fWindowWidth; tmax = tavg + 0.5*fWindowWidth; Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window for(Int_t i=0;i= tmin && fPhotCkov[i] <= tmax) { fPhotFlag[i]=2; iInsideCnt++; } } return iInsideCnt; }//FlagPhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const { // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses // Arguments: ckovThe,ckovPhi- photon ckov angles in DRS, [rad] // Returns: distance between photon point on PC and track projection TRotation mtheta; mtheta.RotateY(fTrkDir.Theta()); TRotation mphi; mphi.RotateZ(fTrkDir.Phi()); TRotation mrot=mphi*mtheta; TVector3 dirCkov,dirCkovTors; dirCkovTors.SetMagThetaPhi(1,ckovThe,ckovPhi); //initially photon is directed according to requested ckov angle dirCkov=mrot*dirCkovTors; //now we know photon direction in LORS return TraceForward(dirCkov); }//TracePhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const { // Finds an intersection point between a line and XY plane shifted along Z. // Arguments: dir,pos - vector along the line and any point of the line // z - z coordinate of plain // Returns: none // On exit: pos is the position if this intesection if any static TVector3 nrm(0,0,1); TVector3 pnt(0,0,z); TVector3 diff=pnt-pos; Double_t sint=(nrm*diff)/(nrm*dir); pos+=sint*dir; }//Propagate() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const { // Refract direction vector according to Snell law // Arguments: // n1 - ref idx of first substance // n2 - ref idx of second substance // Returns: none // On exit: dir is new direction Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta()); if(sinref>1.) dir.SetXYZ(-999,-999,-999); else dir.SetTheta(TMath::ASin(sinref)); }//Refract() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::HoughResponse() { // // fIdxMip = mipId; // Double_t kThetaMax=0.75; Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5); TH1D *phots = new TH1D("Rphot" ,"phots" ,nChannels,0,kThetaMax); TH1D *photsw = new TH1D("RphotWeighted" ,"photsw" ,nChannels,0,kThetaMax); TH1D *resultw = new TH1D("resultw","resultw" ,nChannels,0,kThetaMax); Int_t nBin = (Int_t)(kThetaMax/fDTheta); Int_t nCorrBand = (Int_t)(fWindowWidth/(2*fDTheta)); for (Int_t i=0; i< fPhotCnt; i++){//photon cadidates loop Double_t angle = fPhotCkov[i]; if(angle<0||angle>kThetaMax) continue; phots->Fill(angle); Int_t bin = (Int_t)(0.5+angle/(fDTheta)); Double_t weight=1.; if(fIsWEIGHT){ Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta; Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta; Double_t diffArea = FindRingArea(upperlimit)-FindRingArea(lowerlimit); if(diffArea>0) weight = 1./diffArea; } photsw->Fill(angle,weight); fPhotWei[i]=weight; }//photon candidates loop for (Int_t i=1; i<=nBin;i++){ Int_t bin1= i-nCorrBand; Int_t bin2= i+nCorrBand; if(bin1<1) bin1=1; if(bin2>nBin)bin2=nBin; Double_t sumPhots=phots->Integral(bin1,bin2); if(sumPhots<3) continue; // if less then 3 photons don't trust to this ring Double_t sumPhotsw=photsw->Integral(bin1,bin2); resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw); } // evaluate the "BEST" theta ckov as the maximum value of histogramm Double_t *pVec = resultw->GetArray(); Int_t locMax = TMath::LocMax(nBin,pVec); delete phots;delete photsw;delete resultw; // Reset and delete objects return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov }//HoughResponse() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::Sigma2(Double_t ckovTh, Double_t ckovPh)const { // Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] TVector3 v(-999,-999,-999); Double_t trkBeta = 1./(TMath::Cos(ckovTh)*fRadNmean); if(trkBeta > 1) trkBeta = 1; //protection against bad measured thetaCer if(trkBeta < 0) trkBeta = 0.0001; // v.SetX(SigLoc (ckovTh,ckovPh,trkBeta)); v.SetY(SigGeom(ckovTh,ckovPh,trkBeta)); v.SetZ(SigCrom(ckovTh,ckovPh,trkBeta)); return v.Mag2(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigLoc(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t sint = TMath::Sin(fTrkDir.Theta()); Double_t cost = TMath::Cos(fTrkDir.Theta()); Double_t sinf = TMath::Sin(fTrkDir.Phi()); Double_t cosf = TMath::Cos(fTrkDir.Phi()); Double_t sinfd = TMath::Sin(phiDelta); Double_t cosfd = TMath::Cos(phiDelta); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) if (k<0) return 1e10; Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf); // formula (10) Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf); // formula (9) Double_t kk = betaM*TMath::Sqrt(k)/(fgkGapThick*alpha); // formula (6) and (7) Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd); // formula (6) Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd); // formula (7) pag.4 Double_t errX = 0.2,errY=0.25; //end of page 7 return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigCrom(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Fromulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t sint = TMath::Sin(fTrkDir.Theta()); Double_t cost = TMath::Cos(fTrkDir.Theta()); Double_t cosfd = TMath::Cos(phiDelta); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t dtdn = cost*fRadNmean*betaM*betaM/(alpha*tantheta); // formula (12) // Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.); Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.); return f*dtdn; }//SigCrom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::SigGeom(Double_t thetaC, Double_t phiC,Double_t betaM)const { // Analithical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon // created by a given MIP. Formulae according to CERN-EP-2000-058 // Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians] // dip and azimuthal angles for MIP taken at the entrance to radiator, [radians] // MIP beta // Returns: absolute error on Cerenkov angle, [radians] Double_t phiDelta = phiC - fTrkDir.Phi(); Double_t sint = TMath::Sin(fTrkDir.Theta()); Double_t cost = TMath::Cos(fTrkDir.Theta()); Double_t sinf = TMath::Sin(fTrkDir.Phi()); Double_t cosfd = TMath::Cos(phiDelta); Double_t costheta = TMath::Cos(thetaC); Double_t tantheta = TMath::Tan(thetaC); Double_t alpha =cost-tantheta*cosfd*sint; // formula (11) Double_t k = 1.-fRadNmean*fRadNmean+alpha*alpha/(betaM*betaM); // formula (after 8 in the text) if (k<0) return 1e10; Double_t eTr = 0.5*fgkRadThick*betaM*TMath::Sqrt(k)/(fgkGapThick*alpha); // formula (14) Double_t lambda = 1.-sint*sint*sinf*sinf; // formula (15) Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta)); // formula (13.a) Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(fgkGapThick*alpha*alpha); // formula (13.b) Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha); // formula (13.c) Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(fgkGapThick*betaM); // formula (13.d) Double_t dtdT = c1 * (c2+c3*c4); Double_t trErr = fgkRadThick/(TMath::Sqrt(12.)*cost); return trErr*dtdT; }//SigGeom() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // // From here HTA.... // //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::CkovHiddenTrk(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean) { // Pattern recognition method without any infos from tracking:HTA (Hidden Track Algorithm)... // The method finds in the chmber the cluster with the highest charge // compatibile with a MIP, then the strategy is applied // Arguments: pTrk - pointer to ESD track // pCluLs - list of clusters for a given chamber // nmean - mean freon ref. index // Returns: - 0=ok,1=not fitted AliHMPIDParam *pParam=AliHMPIDParam::Instance(); fRadNmean=nmean; if(pCluLst->GetEntriesFast()>100) return kFALSE; //boundary check for CluX,CluY... Float_t mipX=-1,mipY=-1;Int_t mipId=-1,mipQ=-1; Double_t qRef = 0; Int_t nCh=0; for (Int_t iClu=0;iCluGetEntriesFast();iClu++){ //clusters loop AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu); //get pointer to current cluster nCh = pClu->Ch(); fXClu[iClu] = pClu->X();fYClu[iClu] = pClu->Y(); //store x,y for fitting procedure fClCk[iClu] = kTRUE; //all cluster are accepted at this stage to be reconstructed if(pClu->Q()>qRef){ //searching the highest charge to select a MIP qRef = pClu->Q(); mipId=iClu; mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q(); } }//clusters loop fNClu = pCluLst->GetEntriesFast(); if(qRef>pParam->QCut()){ //charge compartible with MIP clusters fIdxMip = mipId; fClCk[mipId] = kFALSE; fMipX = mipX; fMipY=mipY; fMipQ = qRef; if(!DoRecHiddenTrk(pCluLst)) { pTrk->SetHMPIDsignal(kNoPhotAccept); return kFALSE; } //Do track and ring reconstruction,if problems returns 1 pTrk->SetHMPIDtrk(fRadX,fRadY,fThTrkFit,fPhTrkFit); //store track intersection info pTrk->SetHMPIDmip(fMipX,fMipY,(Int_t)fMipQ,fNClu); //store mip info pTrk->SetHMPIDcluIdx(nCh,fIdxMip); //set cham number and index of cluster pTrk->SetHMPIDsignal(fCkovFit); //find best Theta ckov for ring i.e. track pTrk->SetHMPIDchi2(fCkovSig2); //errors squared // Printf(" n clusters tot %i accepted %i",pCluLst->GetEntriesFast(),fNClu); return kTRUE; } return kFALSE; }//CkovHiddenTrk() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::DoRecHiddenTrk(TClonesArray *pCluLst) { // Pattern recognition method without any infos from tracking... // First a preclustering filter to avoid part of the noise // Then only ellipsed-rings are fitted (no possibility, // for the moment, to reconstruct very inclined tracks) // Finally a fitting with (th,ph) free, starting by very close values // previously evaluated. // Arguments: none // Returns: none Double_t phiRec; if(!CluPreFilter(pCluLst)) {return kFALSE;} if(!FitEllipse(phiRec)) {return kFALSE;} Int_t nClTmp1 = pCluLst->GetEntriesFast()-1; //minus MIP... Int_t nClTmp2 = 0; while(nClTmp1 != nClTmp2){ SetNClu(pCluLst->GetEntriesFast()); if(!FitFree(phiRec)) {return kFALSE;} nClTmp2 = NClu(); if(nClTmp2!=nClTmp1) {nClTmp1=nClTmp2;nClTmp2=0;} } fNClu = nClTmp2; return kTRUE; }//DoRecHiddenTrk() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::CluPreFilter(TClonesArray *pCluLst) { // Filter of bkg clusters // based on elliptical-shapes... // if(pCluLst->GetEntriesFast()>50||pCluLst->GetEntriesFast()<4) return kFALSE; else return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDRecon::FitEllipse(Double_t &phiRec) { //Fit a set of clusters with an analitical conical section function: // // Ax^2 + B*y^2 + 2Hxy + 2Gx + 2Fy + 1 = 0 ---> conical section // // H*H - A*B > 0 hyperbola // < 0 ellipse // = 0 parabola // // tan 2alfa = 2H/(A-B) alfa=angle of rotation // // coordinate of the centre of the conical section: // x = x' + a // y = y' + b // // HF - BG // a = --------- // AB - H^2 // // HG - AF // b = -------- // AB - H^2 Double_t cA,cB,cF,cG,cH; Double_t aArg=-1; Int_t iErrFlg; //tmp vars for TMinuit if(!gMinuit) gMinuit = new TMinuit(5); //init MINUIT with this number of parameters (5 params) gMinuit->mncler(); // reset Minuit list of paramters gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDRecon::FunMinEl); //set fit function gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit Double_t d1,d2,d3; TString sName; gMinuit->mnparm(0," A ",1,0.01,0,0,iErrFlg); gMinuit->mnparm(1," B ",1,0.01,0,0,iErrFlg); gMinuit->mnparm(2," H ",1,0.01,0,0,iErrFlg); gMinuit->mnparm(3," G ",1,0.01,0,0,iErrFlg); gMinuit->mnparm(4," F ",1,0.01,0,0,iErrFlg); gMinuit->mnexcm("SIMPLEX",&aArg,0,iErrFlg); gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); gMinuit->mnpout(0,sName,cA,d1,d2,d3,iErrFlg); gMinuit->mnpout(1,sName,cB,d1,d2,d3,iErrFlg); gMinuit->mnpout(2,sName,cH,d1,d2,d3,iErrFlg); gMinuit->mnpout(3,sName,cG,d1,d2,d3,iErrFlg); gMinuit->mnpout(4,sName,cF,d1,d2,d3,iErrFlg); delete gMinuit; Double_t i2 = cA*cB-cH*cH; //quartic invariant : i2 > 0 ellipse, i2 < 0 hyperbola if(i2<=0) return kFALSE; Double_t aX = (cH*cF-cB*cG)/i2; //x centre of the canonical section Double_t bY = (cH*cG-cA*cF)/i2; //y centre of the canonical section Double_t alfa1 = TMath::ATan(2*cH/(cA-cB)); //alpha = angle of rotation of the conical section if(alfa1<0) alfa1+=TMath::Pi(); alfa1*=0.5; // Double_t alfa2 = alfa1+TMath::Pi(); Double_t phiref = TMath::ATan2(bY-fMipY,aX-fMipX); //evaluate in a unique way the angle of rotation comparing it if(phiref<0) phiref+=TMath::TwoPi(); //with the vector that points to the centre from the mip if(i2<0) phiref+=TMath::Pi(); if(phiref>TMath::TwoPi()) phiref-=TMath::TwoPi(); // Printf(" alfa1 %f",alfa1*TMath::RadToDeg()); // Printf(" alfa2 %f",alfa2*TMath::RadToDeg()); // Printf(" firef %f",phiref*TMath::RadToDeg()); // if(TMath::Abs(alfa1-phiref)mncler(); // reset Minuit list of paramters gMinuit->SetObjectFit((TObject*)this); gMinuit->SetFCN(AliHMPIDRecon::FunMinPhot); //set fit function gMinuit->mnexcm("SET PRI",&aArg,1,iErrFlg); //suspend all printout from TMinuit gMinuit->mnexcm("SET NOW",&aArg,0,iErrFlg); //suspend all warning printout from TMinuit Double_t d1,d2,d3; TString sName; Double_t th,ph; gMinuit->mnparm(0," theta ", 0.01,0.01,0,TMath::PiOver2(),iErrFlg); gMinuit->mnparm(1," phi ",phiRec,0.01,0,TMath::TwoPi() ,iErrFlg); gMinuit->FixParameter(1); gMinuit->mnexcm("SIMPLEX" ,&aArg,0,iErrFlg); gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); gMinuit->Release(1); gMinuit->mnexcm("MIGRAD" ,&aArg,0,iErrFlg); gMinuit->mnpout(0,sName,th,d1,d2,d3,iErrFlg); gMinuit->mnpout(1,sName,ph,d1,d2,d3,iErrFlg); Double_t outPar[2] = {th,ph}; Double_t g; Double_t f;Int_t flag = 3; gMinuit->Eval(2, &g, f, outPar,flag); SetTrkFit(th,ph); return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Double_t AliHMPIDRecon::FunConSect(Double_t *c,Double_t x,Double_t y) { return c[0]*x*x+c[1]*y*y+2*c[2]*x*y+2*c[3]*x+2*c[4]*y+1; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::FunMinEl(Int_t &/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t /* */) { AliHMPIDRecon *pRec=(AliHMPIDRecon*)gMinuit->GetObjectFit(); Double_t minFun = 0; Int_t np = pRec->NClu(); for(Int_t i=0;iIdxMip()) continue; Double_t el = pRec->FunConSect(par,pRec->XClu(i),pRec->YClu(i)); minFun +=el*el; } f = minFun; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDRecon::FunMinPhot(Int_t &/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t iflag) { AliHMPIDRecon *pRec=(AliHMPIDRecon*)gMinuit->GetObjectFit(); Double_t sizeCh = 0.5*fgkRadThick+fgkWinThick+fgkGapThick; Double_t thTrk = par[0]; Double_t phTrk = par[1]; Double_t xrad = pRec->MipX() - sizeCh*TMath::Tan(thTrk)*TMath::Cos(phTrk); Double_t yrad = pRec->MipY() - sizeCh*TMath::Tan(thTrk)*TMath::Sin(phTrk); pRec->SetRadXY(xrad,yrad); pRec->SetTrack(xrad,yrad,thTrk,phTrk); Double_t meanCkov =0; Double_t meanCkov2=0; Double_t thetaCer,phiCer; Int_t nClAcc = 0; Int_t nClTot=pRec->NClu(); for(Int_t i=0;iClCk(i))) continue; pRec->FindPhotCkov(pRec->XClu(i),pRec->YClu(i),thetaCer,phiCer); meanCkov += thetaCer; meanCkov2 += thetaCer*thetaCer; nClAcc++; } if(nClAcc==0) {f=999;return;} meanCkov/=nClAcc; Double_t rms = (meanCkov2 - meanCkov*meanCkov*nClAcc)/nClAcc; if(rms<0) Printf(" rms2 = %f, strange!!!",rms); rms = TMath::Sqrt(rms); f = rms/TMath::Sqrt(nClAcc); if(iflag==3) { Printf("FunMinPhot before: photons candidates %i used %i",nClTot,nClAcc); nClAcc = 0; Double_t meanCkov1=0; Double_t meanCkov2=0; for(Int_t i=0;iClCk(i))) continue; pRec->FindPhotCkov(pRec->XClu(i),pRec->YClu(i),thetaCer,phiCer); if(TMath::Abs(thetaCer-meanCkov)<2*rms) { meanCkov1 += thetaCer; meanCkov2 += thetaCer*thetaCer; nClAcc++; } else pRec->SetClCk(i,kFALSE); } meanCkov1/=nClAcc; Double_t rms2 = (meanCkov2 - meanCkov*meanCkov*nClAcc)/nClAcc; Printf("FunMinPhot after: photons candidates %i used %i thetaCer %f",nClTot,nClAcc,meanCkov1); pRec->SetCkovFit(meanCkov1); pRec->SetCkovSig2(rms2); pRec->SetNClu(nClAcc); } }//FunMinPhot() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // // ended Hidden track algorithm.... // //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++