#ifndef AliHMPIDReconHTA_h #define AliHMPIDReconHTA_h /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ ////////////////////////////////////////////////////////////////////////// // // // AliHMPIDReconHTA // // // // HMPID class to perfom pattern recognition based on Hough transfrom // // // ////////////////////////////////////////////////////////////////////////// #include //base class class TClonesArray; //CkovAngle() class AliESDtrack; //CkovAngle() class AliHMPIDParam;//General pourpose class AliHMPIDReconHTA : public TNamed { public : AliHMPIDReconHTA(); virtual ~AliHMPIDReconHTA(); // HTA hidden track algorithm void InitVars (Int_t n); //init space for variables void DeleteVars ()const; //delete variables void InitDatabase (); //initialization of database void FindBinDB (Double_t x,Double_t y,Int_t &binX,Int_t &binY); //find indices of DB Bool_t UniformDistrib (); //to check isotropy in phi Cerenkov void FillZeroChan ()const; //complete the DB Bool_t CkovHiddenTrk (AliESDtrack *pTrk,TClonesArray *pClu,Int_t index, Double_t nmean); //Pattern recognition without trackinf information Bool_t CluPreFilter (TClonesArray *pClu ); //Pre clustering filter to cut bkg clusters Bool_t DoRecHiddenTrk ( ); //Calling to the fitted procedures Bool_t FindShape (Double_t &thTrkRec,Double_t &phiTrkRec,Double_t &thetaCRec); //Find shape of the ring Bool_t ShapeModel (Int_t np,Double_t *phiphot,Double_t *dist,Double_t &xA,Double_t &xB,Double_t &phiStart);//initial shape model for the cluster candidates Double_t VertParab (Double_t x1,Double_t y1,Double_t x2, Double_t y2, Double_t x3, Double_t y3)const;//calculate the coord. of the min. for a parabole for 3 points Bool_t FitFree (Double_t thTrkRec,Double_t phiTrkRec); //Fit (th,ph) of the track and ckovFit as result Bool_t FitRing (Double_t thTrkRec,Double_t phiTrkRec); //Fit (th,ph) of the track Double_t FindSimmPhi (); //find phi of the ring with min. dist. algorithm Int_t r2 (Double_t *coef, Double_t &x1, Double_t &x2); // solution of 2nd degree equation void SetNClu (Int_t nclu ) {fNClu=nclu;} //Setter for # of clusters void SetClCk (Int_t i,Bool_t what ) {fClCk[i]=what;} //Setter for cluster flags void SetCkovFit (Double_t ckov ) {fCkovFit=ckov;} //Setter for ckov fitted void SetCkovSig2 (Double_t rms ) {fCkovSig2=rms;} //Setter for sigma2 ckov fitted void SetTrkFit (Double_t th,Double_t ph ) {fThTrkFit = th;fPhTrkFit = ph;}//Setter for (th,ph) of the track void SetNCluFit (Int_t ncluFit ) {fNCluFit=ncluFit;} //Setter for # of clusters used in the fit void SetPhotAngles (Int_t i,Double_t th, Double_t ph ) {fPhiPhot[i]=ph;fThetaPhot[i]=th;} //Setter of the Cerenkov angles for a given photon void SetFitStatus (Bool_t status ) {fFitStatus = status;} //Setter for fit status void SetRadXY (Double_t x,Double_t y ) {fRadX = x;fRadY = y;} //Setter for (th,ph) of the track static void FunMinPhot(Int_t&/* */,Double_t* /* */,Double_t &f,Double_t *par,Int_t iflag); //Fit function to minimize thetaCer RMS/Sqrt(n) of n clusters Int_t CompactDB (Int_t binX,Int_t binY) const {return fgDB[binX][binY];} //find compact word of DB Int_t IdxMip ()const {return fIdxMip;} //Getter index of MIP Double_t MipX ()const {return fMipX;} //Getter of x MIP in LORS Double_t MipY ()const {return fMipY;} //Getter of y MIP in LORS Double_t MipQ ()const {return fMipQ;} //Getter of Q MIP Double_t RadX ()const {return fRadX;} //Getter of x at RAD in LORS Double_t RadY ()const {return fRadY;} //Getter of y at RAD in LORS Int_t NClu ()const {return fNClu;} //Getter of cluster multiplicity Int_t NCluFit ()const {return fNCluFit;} //Getter of n. photons used to fit the ring Double_t XClu (Int_t i)const {return fXClu[i];} //Getter of x clu Double_t YClu (Int_t i)const {return fYClu[i];} //Getter of y clu Bool_t ClCk (Int_t i)const {return fClCk[i];} //Getter of cluster flags Double_t PhotPhi (Int_t i)const {return fPhiPhot[i];} //Getter of the Phi Cerenkov angle for a given photon Double_t PhotTheta (Int_t i)const {return fThetaPhot[i];} //Getter of the Theta Cerenkov angle for a given photon Bool_t FitStatus ()const {return fFitStatus;} //Getter of status of the fit Double_t CkovFit ()const {return fCkovFit;} //Getter of ckov angle fitted Double_t ThTrkIn ()const {return fThTrkIn;} //Getter of theta started of the track Double_t PhTrkIn ()const {return fPhTrkIn;} //Getter of phi started of the track Double_t ThTrkFit ()const {return fThTrkFit;} //Getter of theta fitted of the track Double_t PhTrkFit ()const {return fPhTrkFit;} //Getter of phi fitted of the track // protected: // Double_t fMipX; //mip X position for Hidden Track Algorithm Double_t fMipY; //mip Y position for Hidden Track Algorithm Double_t fMipQ; //mip Q for Hidden Track Algorithm Double_t fRadX; //rad X position for Hidden Track Algorithm Double_t fRadY; //rad Y position for Hidden Track Algorithm Int_t fIdxMip; //mip index in the clus list Int_t fNClu; //n clusters to fit Double_t *fXClu; //container for x clus position Double_t *fYClu; //container for y clus position Double_t *fPhiPhot; //container for phi clus Double_t *fThetaPhot; //container for theta Cerenkov clus Bool_t *fClCk; //flag if cluster is used in fitting Double_t fThTrkIn; //theta started from ShapeModel Double_t fPhTrkIn; //phi started from ShapeModel Double_t fThTrkFit; //theta fitted of the track Double_t fPhTrkFit; //phi fitted of the track Double_t fCkovFit; //estimated ring Cherenkov angle Int_t fNCluFit; //n clusters used to fit the ring Double_t fCkovSig2; //estimated error^2 on ring Cherenkov angle Bool_t fFitStatus; //status of the fit 0=ok 1=still to be optimized AliHMPIDParam *fParam; //Pointer to AliHMPIDParam static Int_t fgDB[500][150]; //tmp DB // private: AliHMPIDReconHTA(const AliHMPIDReconHTA& r); //dummy copy constructor AliHMPIDReconHTA &operator=(const AliHMPIDReconHTA& r); //dummy assignment operator // ClassDef(AliHMPIDReconHTA,5) }; #endif // #ifdef AliHMPIDReconHTA_cxx