// ************************************************************************** // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * // * * // * Author: The ALICE Off-line Project. * // * Contributors are mentioned in the code where appropriate. * // * * // * Permission to use, copy, modify and distribute this software and its * // * documentation strictly for non-commercial purposes is hereby granted * // * without fee, provided that the above copyright notice appears in all * // * copies and that both the copyright notice and this permission notice * // * appear in the supporting documentation. The authors make no claims * // * about the suitability of this software for any purpose. It is * // * provided "as is" without express or implied warranty. * // ************************************************************************** #include "AliHMPIDv1.h" //class header #include "AliHMPIDParam.h" //StepManager() #include "AliHMPIDHit.h" //Hits2SDigs(),StepManager() #include "AliHMPIDDigit.h" //Digits2Raw(), Raw2SDigits() #include "AliHMPIDRawStream.h" //Digits2Raw(), Raw2SDigits() #include "AliRawReader.h" //Raw2SDigits() #include //StepManager() for gMC #include //StepHistory() #include //StepManager(),Hits2SDigits() #include //Hits2SDigits() #include //Hits2SDigits() #include //StepManager() #include //CreateMaterials() #include //CreateMaterials() //#include //CreateGeometry() #include //CreateMaterials() #include //CreateMaterials() #include //DefineOpticalProperties() #include //DefineOpticalProperties() #include #include //IsLostByFresnel() ClassImp(AliHMPIDv1) //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::AddAlignableVolumes()const { // Associates the symbolic volume name with the corresponding volume path. Interface method from AliModule invoked from AliMC // Arguments: none // Returns: none for(Int_t i=AliHMPIDParam::kMinCh;i<=AliHMPIDParam::kMaxCh;i++) gGeoManager->SetAlignableEntry(Form("/HMPID/Chamber%i",i),Form("ALIC_1/HMPID_%i",i)); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::CreateMaterials() { // Definition of available HMPID materials // Arguments: none // Returns: none AliDebug(1,"Start v1 HMPID."); //data from PDG booklet 2002 density [gr/cm^3] rad len [cm] abs len [cm] Float_t aAir[4]={12,14,16,36} , zAir[4]={6,7,8,18} , wAir[4]={0.000124,0.755267,0.231781,0.012827} , dAir=0.00120479; Int_t nAir=4;//mixture 0.9999999 Float_t aC6F14[2]={ 12.01 , 18.99} , zC6F14[2]={ 6 , 9} , wC6F14[2]={6 , 14} , dC6F14=1.68 ; Int_t nC6F14=-2; Float_t aSiO2[2]={ 28.09 , 15.99} , zSiO2[2]={14 , 8} , wSiO2[2]={1 , 2} , dSiO2=2.64 ; Int_t nSiO2=-2; Float_t aCH4[2]={ 12.01 , 1.01} , zCH4[2]={ 6 , 1} , wCH4[2]={1 , 4} , dCH4=7.17e-4 ; Int_t nCH4=-2; Float_t aCsI[2]={132.90 ,126.90} , zCsI[2]={55 ,53} , wCsI[2]={1 , 1} , dCsI=0.1 ; Int_t nCsI=-2; Float_t aRoha= 12.01 , zRoha= 6 , dRoha= 0.10 , radRoha= 18.80 , absRoha= 86.3/dRoha; //special material- quazi carbon Float_t aCu= 63.55 , zCu= 29 , dCu= 8.96 , radCu= 1.43 , absCu= 134.9/dCu ; Float_t aW=183.84 , zW= 74 , dW= 19.30 , radW= 0.35 , absW= 185.0/dW ; Float_t aAl= 26.98 , zAl= 13 , dAl= 2.70 , radAl= 8.90 , absAl= 106.4/dAl ; Int_t matId=0; //tmp material id number Int_t unsens = 0, sens=1; //sensitive or unsensitive medium Int_t itgfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); //type of field intergration 0 no field -1 user in guswim 1 Runge Kutta 2 helix 3 const field along z Float_t maxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); //max field value Float_t tmaxfd = -10.0; //max deflection angle due to magnetic field in one step Float_t deemax = - 0.2; //max fractional energy loss in one step Float_t stemax = - 0.1; //mas step allowed [cm] Float_t epsil = 0.001; //abs tracking precision [cm] Float_t stmin = - 0.001; //min step size [cm] in continius process transport, negative value: choose it automatically AliMixture(++matId,"Air" ,aAir ,zAir ,dAir ,nAir ,wAir ); AliMedium(kAir ,"Air" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMixture(++matId,"C6F14",aC6F14,zC6F14,dC6F14,nC6F14,wC6F14); AliMedium(kC6F14,"C6F14",matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMixture(++matId,"SiO2" ,aSiO2 ,zSiO2 ,dSiO2 ,nSiO2 ,wSiO2 ); AliMedium(kSiO2 ,"SiO2" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMixture(++matId,"CH4" ,aCH4 ,zCH4 ,dCH4 ,nCH4 ,wCH4 ); AliMedium(kCH4 ,"CH4" ,matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMixture(++matId,"CsI" ,aCsI ,zCsI ,dCsI ,nCsI ,wCsI ); AliMedium(kCsI ,"CsI" ,matId, sens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin);//sensitive AliMaterial(++matId,"Roha",aRoha,zRoha,dRoha,radRoha,absRoha); AliMedium(kRoha,"Roha", matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMaterial(++matId,"Cu" ,aCu ,zCu ,dCu ,radCu ,absCu ); AliMedium(kCu ,"Cu" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMaterial(++matId,"W" ,aW ,zW ,dW ,radW ,absW ); AliMedium(kW ,"W" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); AliMaterial(++matId,"Al" ,aAl ,zAl ,dAl ,radAl ,absAl ); AliMedium(kAl ,"Al" , matId, unsens, itgfld, maxfld, tmaxfd, stemax, deemax, epsil, stmin); // DefineOpticalProperties(); // NOT TO BE CALLED BY USER CODE !!! }//void AliHMPID::CreateMaterials() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::CreateGeometry() { //Creates detailed geometry simulation (currently GEANT volumes tree) AliDebug(1,"Start main."); if(!gMC->IsRootGeometrySupported()) return; Double_t cm=1,mm=0.1*cm,mkm=0.001*mm,dx,dy,dz;//default is cm TGeoVolume *pRich=gGeoManager->MakeBox("HMPID",gGeoManager->GetMedium("HMPID_CH4"),dx=(6*mm+1681*mm+6*mm)/2, //main HMPID volume dy=(6*mm+1466*mm+6*mm)/2, dz=(80*mm+40*mm)*2/2); //x,y taken from 2033P1 z from p84 TDR for(Int_t iCh=AliHMPIDParam::kMinCh;iCh<=AliHMPIDParam::kMaxCh;iCh++){//place 7 chambers TGeoHMatrix *pMatrix=new TGeoHMatrix; AliHMPIDParam::IdealPosition(iCh,pMatrix); gGeoManager->GetVolume("ALIC")->AddNode(pRich,iCh,pMatrix); } Float_t par[3]; Int_t matrixIdReturn=0; //matrix id returned by AliMatrix //Pad Panel frame 6 sectors par[0]=648*mm/2;par[1]= 411*mm/2;par[2]=40 *mm/2;gMC->Gsvolu("Rppf" ,"BOX ",(*fIdtmed)[kAl] ,par,3);//PPF 2001P2 inner size of the slab by 1mm more par[0]=181*mm/2;par[1]=89.25*mm/2;par[2]=38.3*mm/2;gMC->Gsvolu("RppfLarge","BOX ",(*fIdtmed)[kAir] ,par,3);//large whole par[0]=114*mm/2;par[1]=89.25*mm/2;par[2]=38.3*mm/2;gMC->Gsvolu("RppfSmall","BOX ",(*fIdtmed)[kAir] ,par,3);//small whole par[0]=644*mm/2;par[1]= 407*mm/2;par[2]= 1.7*mm/2;gMC->Gsvolu("Rpc" ,"BOX ",(*fIdtmed)[kCsI] ,par,3);//by 0.2 mm more then actual size (PCB 2006P1) gMC->Gspos("Rppf",0,"HMPID", -335*mm, -433*mm, 8*cm+20*mm, 0,"ONLY");//F1 2040P1 z p.84 TDR gMC->Gspos("Rppf",1,"HMPID", +335*mm, -433*mm, 8*cm+20*mm, 0,"ONLY"); gMC->Gspos("Rppf",2,"HMPID", -335*mm, 0*mm, 8*cm+20*mm, 0,"ONLY"); gMC->Gspos("Rppf",3,"HMPID", +335*mm, 0*mm, 8*cm+20*mm, 0,"ONLY"); gMC->Gspos("Rppf",4,"HMPID", -335*mm, +433*mm, 8*cm+20*mm, 0,"ONLY"); gMC->Gspos("Rppf",5,"HMPID", +335*mm, +433*mm, 8*cm+20*mm, 0,"ONLY"); gMC->Gspos("Rpc" ,1,"Rppf", 0*mm, 0*mm, -19.15*mm, 0,"ONLY");//PPF 2001P2 gMC->Gspos("RppfLarge",1,"Rppf", -224.5*mm, -151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",2,"Rppf", -224.5*mm, - 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",3,"Rppf", -224.5*mm, + 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",4,"Rppf", -224.5*mm, +151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",1,"Rppf", - 65.0*mm, -151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",2,"Rppf", - 65.0*mm, - 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",3,"Rppf", - 65.0*mm, + 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",4,"Rppf", - 65.0*mm, +151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",5,"Rppf", + 65.0*mm, -151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",6,"Rppf", + 65.0*mm, - 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",7,"Rppf", + 65.0*mm, + 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfSmall",8,"Rppf", + 65.0*mm, +151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",5,"Rppf", +224.5*mm, -151.875*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",6,"Rppf", +224.5*mm, - 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",7,"Rppf", +224.5*mm, + 50.625*mm, 0.85*mm, 0,"ONLY"); gMC->Gspos("RppfLarge",8,"Rppf", +224.5*mm, +151.875*mm, 0.85*mm, 0,"ONLY"); //Gap - anod wires 6 copies to HMPID par[0]=648*mm/2;par[1]= 411*mm/2 ;par[2]=4.45*mm/2;gMC->Gsvolu("Rgap","BOX ",(*fIdtmed)[kCH4] ,par,3);//xy as PPF 2001P2 z WP 2099P1 par[0]= 0*mm ;par[1]= 20*mkm/2 ;par[2]= 648*mm/2;gMC->Gsvolu("Rano","TUBE",(*fIdtmed)[kW] ,par,3);//WP 2099P1 z = gap x PPF 2001P2 AliMatrix(matrixIdReturn,180,0, 90,90, 90,0); //wires along x gMC->Gspos("Rgap",0,"HMPID", -335*mm, -433*mm,8*cm-2.225*mm, 0,"ONLY"); //F1 2040P1 z WP 2099P1 gMC->Gspos("Rgap",1,"HMPID", +335*mm, -433*mm,8*cm-2.225*mm, 0,"ONLY"); gMC->Gspos("Rgap",2,"HMPID", -335*mm, 0*mm,8*cm-2.225*mm, 0,"ONLY"); gMC->Gspos("Rgap",3,"HMPID", +335*mm, 0*mm,8*cm-2.225*mm, 0,"ONLY"); gMC->Gspos("Rgap",4,"HMPID", -335*mm, +433*mm,8*cm-2.225*mm, 0,"ONLY"); gMC->Gspos("Rgap",5,"HMPID", +335*mm, +433*mm,8*cm-2.225*mm, 0,"ONLY"); for(int i=1;i<=96;i++) gMC->Gspos("Rano",i,"Rgap", 0*mm, -411/2*mm+i*4*mm, 0.185*mm, matrixIdReturn,"ONLY"); //WP 2099P1 //Defines radiators geometry par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 24*mm/2; gMC->Gsvolu("Rrad" ,"BOX ",(*fIdtmed)[kC6F14] ,par,3); // Rad 2011P1 par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 4*mm/2; gMC->Gsvolu("RradFront" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //front par[0]=1330*mm/2 ;par[1]= 413*mm/2 ;par[2]= 5*mm/2; gMC->Gsvolu("RradWin" ,"BOX ",(*fIdtmed)[kSiO2] ,par,3); //window par[0]=1330*mm/2 ;par[1]= 5*mm/2 ;par[2]= 15*mm/2; gMC->Gsvolu("RradLong" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //long side par[0]= 10*mm/2 ;par[1]= 403*mm/2 ;par[2]= 15*mm/2; gMC->Gsvolu("RradShort" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //short side par[0]= 0 ;par[1]= 10*mm/2 ;par[2]= 15*mm/2; gMC->Gsvolu("RradSpacer","TUBE",(*fIdtmed)[kSiO2] ,par,3); //spacer gMC->Gspos("Rrad",1,"HMPID", 0*mm,-434*mm, -12*mm, 0,"ONLY"); //3 radiators to HMPID gMC->Gspos("Rrad",2,"HMPID", 0*mm, 0*mm, -12*mm, 0,"ONLY"); gMC->Gspos("Rrad",3,"HMPID", 0*mm,+434*mm, -12*mm, 0,"ONLY"); gMC->Gspos("RradFront",1,"Rrad", 0*mm, 0*mm, -10.0*mm, 0,"ONLY"); //front cover gMC->Gspos("RradWin" ,1,"Rrad", 0*mm, 0*mm, 9.5*mm, 0,"ONLY"); //quartz window (back cover) gMC->Gspos("RradLong" ,1,"Rrad", 0*mm,-204*mm, -0.5*mm, 0,"ONLY"); //long side gMC->Gspos("RradLong" ,2,"Rrad", 0*mm,+204*mm, -0.5*mm, 0,"ONLY"); //long side gMC->Gspos("RradShort",1,"Rrad",-660*mm, 0*mm, -0.5*mm, 0,"ONLY"); //short side gMC->Gspos("RradShort",2,"Rrad",+660*mm, 0*mm, -0.5*mm, 0,"ONLY"); //short side for(int i=0;i<3;i++) for(int j=0;j<10;j++) gMC->Gspos("RradSpacer",10*i+j,"Rrad",-1330*mm/2+116*mm+j*122*mm,(i-1)*105*mm,-0.5*mm,0,"ONLY");//spacers //Defines SandBox geometry par[0]=1419*mm/2 ;par[1]=1378*mm/2;par[2]=50.5*mm/2; gMC->Gsvolu("Rsb" ,"BOX ",(*fIdtmed)[kAir] ,par,3); //2072P1 par[0]=1419*mm/2 ;par[1]=1378*mm/2;par[2]= 0.5*mm/2; gMC->Gsvolu("RsbCover","BOX ",(*fIdtmed)[kAl] ,par,3); //cover par[0]=1359*mm/2 ;par[1]=1318*mm/2;par[2]=49.5*mm/2; gMC->Gsvolu("RsbComb" ,"BOX ",(*fIdtmed)[kRoha] ,par,3); //honeycomb structure gMC->Gspos("Rsb",1,"HMPID", 0*mm, 0*mm, -73.75*mm, 0,"ONLY"); //p.84 TDR sandbox to rich gMC->Gspos("RsbComb" ,1,"Rsb", 0*mm, 0*mm, 0*mm, 0,"ONLY"); //2072P1 honeycomv to sandbox gMC->Gspos("RsbCover",1,"Rsb", 0*mm, 0*mm, +25*mm, 0,"ONLY"); //cover to sandbox gMC->Gspos("RsbCover",2,"Rsb", 0*mm, 0*mm, -25*mm, 0,"ONLY"); //cover to sandbox AliDebug(1,"Stop v1. HMPID option"); }//CreateGeometry() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::Init() { // This methode defines ID for sensitive volumes, i.e. such geometry volumes for which there are if(gMC->CurrentVolID()==XXX) statements in StepManager() // Arguments: none // Returns: none AliDebug(1,"Start v1 HMPID."); fIdRad = gMC->VolId("Rrad"); fIdWin = gMC->VolId("RradWin"); fIdPc = gMC->VolId("Rpc"); fIdAmpGap = gMC->VolId("Rgap"); fIdProxGap = gMC->VolId("Rgap"); AliDebug(1,"Stop v1 HMPID."); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::DefineOpticalProperties() { // Optical properties definition. const Int_t kNbins=30; //number of photon energy points Float_t emin=5.5,emax=8.5; //Photon energy range,[eV] Float_t aEckov [kNbins]; Double_t dEckov [kNbins]; Float_t aAbsRad[kNbins], aAbsWin[kNbins], aAbsGap[kNbins], aAbsMet[kNbins]; Float_t aIdxRad[kNbins], aIdxWin[kNbins], aIdxGap[kNbins], aIdxMet[kNbins], aIdxPc[kNbins]; Float_t aQeAll [kNbins], aQePc [kNbins]; Double_t dReflMet[kNbins], dQePc[kNbins]; TF2 *pRaIF=new TF2("HidxRad","sqrt(1+0.554*(1239.84/x)^2/((1239.84/x)^2-5769)-0.0005*(y-20))" ,emin,emax,0,50); //DiMauro mail temp 0-50 degrees C TF1 *pWiIF=new TF1("HidxWin","sqrt(1+46.411/(10.666*10.666-x*x)+228.71/(18.125*18.125-x*x))" ,emin,emax); //SiO2 idx TDR p.35 TF1 *pGaIF=new TF1("HidxGap","1+0.12489e-6/(2.62e-4 - x*x/1239.84/1239.84)" ,emin,emax); //?????? from where TF1 *pRaAF=new TF1("HabsRad","(x<7.8)*(gaus+gaus(3))+(x>=7.8)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03 pRaAF->SetParameters(3.20491e16,-0.00917890,0.742402,3035.37,4.81171,0.626309); TF1 *pWiAF=new TF1("HabsWin","(x<8.2)*(818.8638-301.0436*x+36.89642*x*x-1.507555*x*x*x)+(x>=8.2)*0.0001" ,emin,emax); //fit from DiMauro data 28.10.03 TF1 *pGaAF=new TF1("HabsGap","(x<7.75)*6512.399+(x>=7.75)*3.90743e-2/(-1.655279e-1+6.307392e-2*x-8.011441e-3*x*x+3.392126e-4*x*x*x)",emin,emax); //????? from where TF1 *pQeF =new TF1("Hqe" ,"0+(x>6.07267)*0.344811*(1-exp(-1.29730*(x-6.07267)))" ,emin,emax); //fit from DiMauro data 28.10.03 for(Int_t i=0;iEval(eV); aIdxRad[i]=1.292;//pRaIF->Eval(eV,20); //Simulation for 20 degress C aAbsWin[i]=pWiAF->Eval(eV); aIdxWin[i]=1.5787;//pWiIF->Eval(eV); aAbsGap[i]=pGaAF->Eval(eV); aIdxGap[i]=1.0005;//pGaIF->Eval(eV); aQeAll[i] =1; //QE for all other materials except for PC must be 1. aAbsMet[i] =0.0001; aIdxMet[i]=0; //metal ref idx must be 0 in order to reflect photon aIdxPc [i]=1; aQePc [i]=pQeF->Eval(eV); //PC ref idx must be 1 in order to apply photon to QE conversion dQePc [i]=pQeF->Eval(eV); dReflMet[i] = 0.; // no reflection on the surface of the pc (?) } gMC->SetCerenkov((*fIdtmed)[kC6F14] , kNbins, aEckov, aAbsRad , aQeAll , aIdxRad ); gMC->SetCerenkov((*fIdtmed)[kSiO2] , kNbins, aEckov, aAbsWin , aQeAll , aIdxWin ); gMC->SetCerenkov((*fIdtmed)[kCH4] , kNbins, aEckov, aAbsGap , aQeAll , aIdxGap ); gMC->SetCerenkov((*fIdtmed)[kCu] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet ); gMC->SetCerenkov((*fIdtmed)[kW] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet ); //n=0 means reflect photons gMC->SetCerenkov((*fIdtmed)[kCsI] , kNbins, aEckov, aAbsMet , aQePc , aIdxPc ); //n=1 means convert photons gMC->SetCerenkov((*fIdtmed)[kAl] , kNbins, aEckov, aAbsMet , aQeAll , aIdxMet ); // Define a skin surface for the photocatode to enable 'detection' in G4 gMC->DefineOpSurface("surfPc", kGlisur /*kUnified*/,kDielectric_metal,kPolished, 0.); gMC->SetMaterialProperty("surfPc", "EFFICIENCY", kNbins, dEckov, dQePc); gMC->SetMaterialProperty("surfPc", "REFLECTIVITY", kNbins, dEckov, dReflMet); gMC->SetSkinSurface("skinPc", "Rpc", "surfPc"); delete pRaAF;delete pWiAF;delete pGaAF; delete pRaIF; delete pWiIF; delete pGaIF; delete pQeF; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDv1::IsLostByFresnel() { // Calculate probability for the photon to be lost by Fresnel reflection. TLorentzVector p4; Double_t mom[3],localMom[3]; gMC->TrackMomentum(p4); mom[0]=p4(1); mom[1]=p4(2); mom[2]=p4(3); localMom[0]=0; localMom[1]=0; localMom[2]=0; gMC->Gmtod(mom,localMom,2); Double_t localTc = localMom[0]*localMom[0]+localMom[2]*localMom[2]; Double_t localTheta = TMath::ATan2(TMath::Sqrt(localTc),localMom[1]); Double_t cotheta = TMath::Abs(TMath::Cos(localTheta)); if(gMC->GetRandom()->Rndm() < Fresnel(p4.E()*1e9,cotheta,1)){ AliDebug(1,"Photon lost"); return kTRUE; }else return kFALSE; }//IsLostByFresnel() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::GenFee(Float_t qtot) { // Generate FeedBack photons for the current particle. To be invoked from StepManager(). // eloss=0 means photon so only pulse height distribution is to be analysed. TLorentzVector x4; gMC->TrackPosition(x4); Int_t iNphotons=gMC->GetRandom()->Poisson(0.02*qtot); //# of feedback photons is proportional to the charge of hit AliDebug(1,Form("N photons=%i",iNphotons)); Int_t j; Float_t cthf, phif, enfp = 0, sthf, e1[3], e2[3], e3[3], vmod, uswop,dir[3], phi,pol[3], mom[4]; //Generate photons for(Int_t i=0;iGetRandom()->RndmArray(2,ranf); //Sample direction cthf=ranf[0]*2-1.0; if(cthf<0) continue; sthf = TMath::Sqrt((1. - cthf) * (1. + cthf)); phif = ranf[1] * 2 * TMath::Pi(); if(Double_t randomNumber=gMC->GetRandom()->Rndm()<=0.57) enfp = 7.5e-9; else if(randomNumber<=0.7) enfp = 6.4e-9; else enfp = 7.9e-9; dir[0] = sthf * TMath::Sin(phif); dir[1] = cthf; dir[2] = sthf * TMath::Cos(phif); gMC->Gdtom(dir, mom, 2); mom[0]*=enfp; mom[1]*=enfp; mom[2]*=enfp; mom[3] = TMath::Sqrt(mom[0]*mom[0]+mom[1]*mom[1]+mom[2]*mom[2]); // Polarisation e1[0]= 0; e1[1]=-dir[2]; e1[2]= dir[1]; e2[0]=-dir[1]; e2[1]= dir[0]; e2[2]= 0; e3[0]= dir[1]; e3[1]= 0; e3[2]=-dir[0]; vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; if (!vmod) for(j=0;j<3;j++) { uswop=e1[j]; e1[j]=e3[j]; e3[j]=uswop; } vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; if (!vmod) for(j=0;j<3;j++) { uswop=e2[j]; e2[j]=e3[j]; e3[j]=uswop; } vmod=0; for(j=0;j<3;j++) vmod+=e1[j]*e1[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e1[j]*=vmod; vmod=0; for(j=0;j<3;j++) vmod+=e2[j]*e2[j]; vmod=TMath::Sqrt(1/vmod); for(j=0;j<3;j++) e2[j]*=vmod; phi = gMC->GetRandom()->Rndm()* 2 * TMath::Pi(); for(j=0;j<3;j++) pol[j]=e1[j]*TMath::Sin(phi)+e2[j]*TMath::Cos(phi); gMC->Gdtom(pol, pol, 2); Int_t outputNtracksStored; gAlice->GetMCApp()->PushTrack(1, //transport gAlice->GetMCApp()->GetCurrentTrackNumber(),//parent track 50000051, //PID mom[0],mom[1],mom[2],mom[3], //track momentum x4.X(),x4.Y(),x4.Z(),x4.T(), //track origin pol[0],pol[1],pol[2], //polarization kPFeedBackPhoton, //process ID outputNtracksStored, //on return how many new photons stored on stack 1.0); //weight }//feedbacks loop AliDebug(1,"Stop."); }//GenerateFeedbacks() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::Hits2SDigits() { // Interface method ivoked from AliSimulation to create a list of sdigits corresponding to list of hits. Every hit generates one or more sdigits. // Arguments: none // Returns: none AliDebug(1,"Start."); for(Int_t iEvt=0;iEvt < GetLoader()->GetRunLoader()->GetNumberOfEvents();iEvt++){ //events loop GetLoader()->GetRunLoader()->GetEvent(iEvt); //get next event if(!GetLoader()->TreeH()) {GetLoader()->LoadHits(); } if(!GetLoader()->TreeS()) {GetLoader()->MakeTree("S"); MakeBranch("S");}//to for(Int_t iEnt=0;iEntTreeH()->GetEntries();iEnt++){//prims loop GetLoader()->TreeH()->GetEntry(iEnt); Hit2Sdi(Hits(),SdiLst()); }//prims loop GetLoader()->TreeS()->Fill(); GetLoader()->WriteSDigits("OVERWRITE"); SdiReset(); }//events loop GetLoader()->UnloadHits(); GetLoader()->UnloadSDigits(); AliDebug(1,"Stop."); }//Hits2SDigits() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::Hit2Sdi(TClonesArray *pHitLst,TClonesArray *pSdiLst) { // Converts list of hits to list of sdigits. // Arguments: pHitLst - list of hits provided not empty // pSDigLst - list of sdigits where to store the results // Returns: none for(Int_t iHit=0;iHitGetEntries();iHit++){ //hits loop AliHMPIDHit *pHit=(AliHMPIDHit*)pHitLst->At(iHit); //get pointer to current hit pHit->Hit2Sdi(pSdiLst); //convert this hit to list of sdigits }//hits loop loop }//Hits2Sdi() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::Digits2Raw() { // Interface method invoked by AliSimulation to create raw data streams from digits. Events loop is done in AliSimulation // Arguments: none // Returns: none AliDebug(1,"Start."); GetLoader()->LoadDigits(); TTree * treeD = GetLoader()->TreeD(); if(!treeD) { AliError("No digits tree!"); return; } treeD->GetEntry(0); //AliHMPIDDigit::WriteRaw(DigLst()); AliHMPIDRawStream *pRS=0x0; pRS->WriteRaw(DigLst()); GetLoader()->UnloadDigits(); AliDebug(1,"Stop."); }//Digits2Raw() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Float_t AliHMPIDv1::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola) { // Correction for Fresnel ??????????? // Arguments: ene - photon energy [GeV], // PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.) // Returns: Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2, 6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7, 7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5}; Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05, 2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11, 2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95, 1.72,1.53}; Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543, 0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878, 0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824, 1.714,1.498}; Float_t xe=ene; Int_t j=Int_t(xe*10)-49; Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]); Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]); //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197 Float_t sinin=TMath::Sqrt((1.-pdoti)*(1.+pdoti)); Float_t tanin=sinin/pdoti; Float_t c1=cn*cn-ck*ck-sinin*sinin; Float_t c2=4*cn*cn*ck*ck; Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1)); Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1); Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2); Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2); //CORRECTION FACTOR FOR SURFACE ROUGHNESS //B.J. STAGG APPLIED OPTICS, 30(1991),4113 Float_t sigraf=18.; Float_t lamb=1240/ene; Float_t fresn; Float_t rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb)); if(pola) { Float_t pdotr=0.8; //DEGREE OF POLARIZATION : 1->P , -1->S fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr)); } else fresn=0.5*(rp+rs); fresn = fresn*rO; return fresn; }//Fresnel() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::Print(Option_t *option)const { // Debug printout TObject::Print(option); }//void AliHMPID::Print(Option_t *option)const //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t AliHMPIDv1::Raw2SDigits(AliRawReader *pRR) { // Interface methode ivoked from AliSimulation to create a list of sdigits from raw digits. Events loop is done in AliSimulation // Arguments: pRR- raw reader // Returns: kTRUE on success (currently ignored in AliSimulation::ConvertRaw2SDigits()) //AliHMPIDDigit sdi; //tmp sdigit, raw digit will be converted to it if(!GetLoader()->TreeS()) {MakeTree("S"); MakeBranch("S");} TClonesArray *pSdiLst=SdiLst(); Int_t iSdiCnt=0; //tmp list of sdigits for all chambers AliHMPIDRawStream stream(pRR); while(stream.Next()) { for(Int_t iPad=0;iPadTreeS()->Fill(); GetLoader()->WriteSDigits("OVERWRITE");//write out sdigits SdiReset(); return kTRUE; }//Raw2SDigits //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::StepCount() { // Count number of ckovs created } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::StepHistory() { // This methode is invoked from StepManager() in order to print out static Int_t iStepN; const char *sParticle; switch(gMC->TrackPid()){ case kProton: sParticle="PROTON" ;break; case kNeutron: sParticle="neutron" ;break; case kGamma: sParticle="gamma" ;break; case 50000050: sParticle="CKOV" ;break; case kPi0: sParticle="Pi0" ;break; case kPiPlus: sParticle="Pi+" ;break; case kPiMinus: sParticle="Pi-" ;break; case kElectron: sParticle="electron" ;break; default: sParticle="not known" ;break; } TString flag="fanny combination"; if(gMC->IsTrackAlive()) { if(gMC->IsTrackEntering()) flag="enters to"; else if(gMC->IsTrackExiting()) flag="exits from"; else if(gMC->IsTrackInside()) flag="inside"; } else { if(gMC->IsTrackStop()) flag="stopped in"; } Int_t vid=0,copy=0; TString path=gMC->CurrentVolName(); path.Prepend("-");path.Prepend(gMC->CurrentVolOffName(1));//current volume and his mother are always there vid=gMC->CurrentVolOffID(2,copy); if(vid) {path.Prepend("-");path.Prepend(gMC->VolName(vid));} vid=gMC->CurrentVolOffID(3,copy); if(vid) {path.Prepend("-");path.Prepend(gMC->VolName(vid));} Printf("Step %i: %s (%i) %s %s m=%.6f GeV q=%.1f dEdX=%.4f",iStepN,sParticle,gMC->TrackPid(),flag.Data(),path.Data(),gMC->TrackMass(),gMC->TrackCharge(),gMC->Edep()*1e9); Printf("Step %i: tid=%i flags alive=%i disap=%i enter=%i exit=%i inside=%i out=%i stop=%i new=%i", iStepN, gAlice->GetMCApp()->GetCurrentTrackNumber(), gMC->IsTrackAlive(), gMC->IsTrackDisappeared(),gMC->IsTrackEntering(), gMC->IsTrackExiting(), gMC->IsTrackInside(),gMC->IsTrackOut(), gMC->IsTrackStop(), gMC->IsNewTrack()); Float_t a,z,den,rad,abs; a=z=den=rad=abs=-1; Int_t mid=gMC->CurrentMaterial(a,z,den,rad,abs); Printf("Step %i: id=%i a=%7.2f z=%7.2f den=%9.4f rad=%9.2f abs=%9.2f\n\n",iStepN,mid,a,z,den,rad,abs); iStepN++; }//StepHistory() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void AliHMPIDv1::StepManager() { // Full Step Manager. // Arguments: none // Returns: none // StepHistory(); return; //uncomment to print tracks history // StepCount(); return; //uncomment to count photons Int_t copy; //volume copy aka node //Treat photons if((gMC->TrackPid()==50000050||gMC->TrackPid()==50000051)&&gMC->CurrentVolID(copy)==fIdPc){ //photon (Ckov or feedback) hit PC (fIdPc) if(gMC->Edep()>0){ //photon survided QE test i.e. produces electron if(IsLostByFresnel()){ gMC->StopTrack(); return;} //photon lost due to fersnel reflection on PC gMC->CurrentVolOffID(2,copy); //current chamber since geomtry tree is HMPID-Rppf-Rpc Int_t tid= gMC->GetStack()->GetCurrentTrackNumber(); //take TID Int_t pid= gMC->TrackPid(); //take PID Float_t etot= gMC->Etot(); //total hpoton energy, [GeV] Double_t x[3]; gMC->TrackPosition(x[0],x[1],x[2]); //take MARS position at entrance to PC Float_t hitTime=(Float_t)gMC->TrackTime(); //hit formation time Float_t xl,yl; AliHMPIDParam::Instance()->Mars2Lors(copy,x,xl,yl); //take LORS position new((*fHits)[fNhits++])AliHMPIDHit(copy,etot,pid,tid,xl,yl,hitTime,x); //HIT for photon, position at P, etot will be set to Q GenFee(etot); //generate feedback photons etot is modified in hit ctor to Q of hit }//photon hit PC and DE >0 }//photon hit PC //Treat charged particles static Float_t eloss; //need to store mip parameters between different steps static Double_t in[3]; if(gMC->TrackCharge() && gMC->CurrentVolID(copy)==fIdAmpGap){ //charged particle in amplification gap (fIdAmpGap) if(gMC->IsTrackEntering()||gMC->IsNewTrack()) { //entering or newly created eloss=0; //reset Eloss collector gMC->TrackPosition(in[0],in[1],in[2]); //take position at the entrance }else if(gMC->IsTrackExiting()||gMC->IsTrackStop()||gMC->IsTrackDisappeared()){ //exiting or disappeared eloss +=gMC->Edep(); //take into account last step Eloss gMC->CurrentVolOffID(1,copy); //take current chamber since geometry tree is HMPID-Rgap Int_t tid= gMC->GetStack()->GetCurrentTrackNumber(); //take TID Int_t pid= gMC->TrackPid(); //take PID Double_t out[3]; gMC->TrackPosition(out[0],out[1],out[2]); //take MARS position at exit Float_t hitTime= (Float_t)gMC->TrackTime(); //hit formation time out[0]=0.5*(out[0]+in[0]); //> out[1]=0.5*(out[1]+in[1]); //take hit position at the anod plane out[2]=0.5*(out[2]+in[2]); //> Float_t xl,yl;AliHMPIDParam::Instance()->Mars2Lors(copy,out,xl,yl); //take LORS position new((*fHits)[fNhits++])AliHMPIDHit(copy,eloss,pid,tid,xl,yl,hitTime,out); //HIT for MIP, position near anod plane, eloss will be set to Q GenFee(eloss); //generate feedback photons }else //just going inside eloss += gMC->Edep(); //collect this step eloss }//MIP in GAP }//StepManager() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++