AliRunLoader *gAL=0; Int_t gEvt=0; Int_t gMaxEvt=0; TObjArray *pNmean,*pQthre; TTree *gEsdTr; //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void HESDfromKin(const char *name="default") {//simulate ESD from kinematics if(gSystem->IsFileInIncludePath("galice.root")){// tries to open session if(gAlice) delete gAlice; //in case we execute this in aliroot delete default AliRun object gAL=AliRunLoader::Open(); //try to open galice.root from current dir gAL->LoadgAlice(); //take new AliRun object from galice.root if(gAL->LoadHeader()) return; if(gAL->LoadKinematics()) return; AliLoader *pHL=gAL->GetDetectorLoader("HMPID"); pHL->LoadRecPoints(); AliESDEvent *pEsd = new AliESDEvent(); TFile *pEsdFl=TFile::Open("AliESDs.root","recreate"); gEsdTr=new TTree("esdTree","Sim ESD from kinematics"); pEsd->CreateStdContent(); pEsd->WriteToTree(gEsdTr); //clm: new ESD write schema: see Task Force meeting 20th June, 2007 gEsdTr->GetUserInfo()->Add(pEsd); //clm: TList has to be created for ReadFromTree method -- this was not needed by the old ESD } else return; if(!OpenCalib()) {Printf("Problems in OpenCalib!Bye.");return;} TString ttl=name; Bool_t htaCheck=ttl.Contains("HTA"); // if(!htaCheck) SimEsd(pHL,pEsd); else SimEsdHidden(pHL,pEsd); SimEsd(pHL,pEsd,htaCheck); pEsdFl->cd(); pEsdFl->Write();pEsdFl->Close(); } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ void SimEsd(AliLoader *pHL,AliESDEvent *pEsd,Bool_t htaCheck) { if(htaCheck) { TFile *fout = new TFile("HTA.root","recreate"); TH1F *hdC = new TH1F("dC" ,";delta Cerenkov (rad)",100,-0.2,0.2); TH1F *hCer = new TH1F("Cer" ,"Theta Cerenkov (rad)",250,0.,0.75); TH2F *htvsp = new TH2F("tvsp",";momentum (GeV/c);theta Cerenkov (rad)",100,0.,5.,1000,0.,0.75); TH1F *hdth = new TH1F("dth" ,";Delta theta Trk (mrad)",100,-250,250); TH1F *hdph = new TH1F("dph" ,";Delta phi Trk (mrad)",100,-500,500); Double_t rd=TMath::RadToDeg(); Printf("----------------------------------------------"); Printf("| SimHTA:Utility to embed ESD from kinematics|"); Printf("| with Hidden Track Algorithm (HTA) |"); Printf("----------------------------------------------"); } else { Printf("-----------------------------------------------"); Printf("| SimESD: Utility to embed ESD from kinematics|"); Printf("-----------------------------------------------"); } InitGRP(); // AliMagF *magFieldMap = (AliMagF*)TGeoGlobalMagField::Instance()->GetField(); // AliHMPIDTracker::SetFieldMap(gAL->GetAliRun()->Field(),kTRUE); AliHMPIDTracker pTracker; AliHMPID *pH=(AliHMPID*)gAL->GetAliRun()->GetDetector("HMPID"); Int_t iNevt=gAL->GetNumberOfEvents(); pEsd->SetMagneticField(AliHMPIDTracker::GetBz()); for(Int_t iEvt=0;iEvtGetEvent(iEvt); pHL->TreeR()->GetEntry(0); AliStack *pStack=gAL->Stack(); Int_t nTrkHMPID=0; for(Int_t i=0;iGetNtrack();i++){ if(!pStack->IsPhysicalPrimary(i)) continue; TParticle *pTrack=pStack->Particle(i); if(pTrack->GetPDG()->Charge()==0) continue; Printf("track n. %i",i); AliESDtrack trk(pTrack); Float_t xPc,yPc,xRa,yRa,thRa,phRa; Int_t iCh=pTracker.IntTrkCha(&trk,xPc,yPc,xRa,yRa,thRa,phRa); //get chamber intersected by this track if(iCh<0) { trk.SetHMPIDtrk(0,0,0,0); //no intersection found trk.SetHMPIDcluIdx (99,99999); //chamber not found, mip not yet considered trk.SetHMPIDsignal(AliHMPIDRecon::kNotPerformed); //ring reconstruction not yet performed continue; //no intersection at all, go after next track } nTrkHMPID++; trk.SetHMPIDcluIdx (iCh,99999); //chamber not found, mip not yet considered if(phRa<0) phRa += TMath::TwoPi(); // to be verified trk.SetHMPIDtrk(xPc,yPc,thRa,phRa); //store initial infos pEsd->AddTrack(&trk); Int_t status; if(!htaCheck) status = pTracker.Recon (pEsd,pH->CluLst(),pNmean,pQthre); else status = pTracker.ReconHiddenTrk(pEsd,pH->CluLst(),pNmean,pQthre); // Printf("status %i",status); if(status !=0) continue; }// track loop if(!(iEvt%50)) Printf("Number of events processed: %i with tracks %i in HMPID",iEvt,nTrkHMPID); // Printf("Number of events processed: %i with tracks %i in HMPID",iEvt,nTrkHMPID); gEsdTr->Fill(); pEsd->Reset(); }// event loop Printf("Events processed %i",iEvt); if(htaCheck) { fout->Write(); fout->Close(); delete fout; } gAL->UnloadHeader(); gAL->UnloadKinematics(); }//SimEsd() //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t OpenCalib() { AliCDBManager* pCDB = AliCDBManager::Instance(); pCDB->SetDefaultStorage("local://$ALICE_ROOT/OCDB"); pCDB->SetRun(0); AliCDBEntry *pQthreEnt=pCDB->Get("HMPID/Calib/Qthre",0); AliCDBEntry *pNmeanEnt=pCDB->Get("HMPID/Calib/Nmean",0); if(!pQthreEnt || !pNmeanEnt) return kFALSE; pNmean=(TObjArray*)pNmeanEnt->GetObject(); pQthre=(TObjArray*)pQthreEnt->GetObject(); if(!pQthre || !pNmean) return kFALSE; return kTRUE; } //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Bool_t InitGRP() { //------------------------------------ // Initialization of the GRP entry //------------------------------------ AliGRPObject *fGRPData; AliCDBEntry* entry = AliCDBManager::Instance()->Get("GRP/GRP/Data"); if (entry) { TMap* m = dynamic_cast(entry->GetObject()); // old GRP entry if (!m) { Printf("Found a TMap in GRP/GRP/Data, converting it into an AliGRPObject"); m->Print(); fGRPData = new AliGRPObject(); fGRPData->ReadValuesFromMap(m); } else { Printf("Found an AliGRPObject in GRP/GRP/Data, reading it"); fGRPData = dynamic_cast(entry->GetObject()); // new GRP entry entry->SetOwner(0); } AliCDBManager::Instance()->UnloadFromCache("GRP/GRP/Data"); } if (!fGRPData) { Printf("No GRP entry found in OCDB!"); return kFALSE; } TString lhcState = fGRPData->GetLHCState(); if (lhcState==AliGRPObject::GetInvalidString()) { Printf("GRP/GRP/Data entry: missing value for the LHC state ! Using UNKNOWN"); lhcState = "UNKNOWN"; } TString beamType = fGRPData->GetBeamType(); if (beamType==AliGRPObject::GetInvalidString()) { Printf("GRP/GRP/Data entry: missing value for the beam type ! Using UNKNOWN"); beamType = "UNKNOWN"; } Float_t beamEnergy = fGRPData->GetBeamEnergy(); if (beamEnergy==AliGRPObject::GetInvalidFloat()) { Printf("GRP/GRP/Data entry: missing value for the beam energy ! Using 0"); beamEnergy = 0; } // energy is provided in MeV*120 beamEnergy /= 120E3; TString runType = fGRPData->GetRunType(); if (runType==AliGRPObject::GetInvalidString()) { Printf("GRP/GRP/Data entry: missing value for the run type ! Using UNKNOWN"); runType = "UNKNOWN"; } Int_t activeDetectors = fGRPData->GetDetectorMask(); if (activeDetectors==AliGRPObject::GetInvalidUInt()) { Printf("GRP/GRP/Data entry: missing value for the detector mask ! Using 1074790399"); activeDetectors = 1074790399; } fRunInfo = new AliRunInfo(lhcState, beamType, beamEnergy, runType, activeDetectors); printf("qqqqqqqqqqqqqqqqqqqqqqq %s %s %f %s %d\n", lhcState.Data(), beamType.Data(), beamEnergy, runType.Data(), activeDetectors); fRunInfo->Dump(); //*** Dealing with the magnetic field map if ( TGeoGlobalMagField::Instance()->IsLocked() ) {Printf("Running with the externally locked B field !");} else { // Construct the field map out of the information retrieved from GRP. Bool_t ok = kTRUE; // L3 Float_t l3Current = fGRPData->GetL3Current((AliGRPObject::Stats)0); if (l3Current == AliGRPObject::GetInvalidFloat()) { Prtinf("GRP/GRP/Data entry: missing value for the L3 current !"); ok = kFALSE; } Char_t l3Polarity = fGRPData->GetL3Polarity(); if (l3Polarity == AliGRPObject::GetInvalidChar()) { Printf("GRP/GRP/Data entry: missing value for the L3 polarity !"); ok = kFALSE; } // Dipole Float_t diCurrent = fGRPData->GetDipoleCurrent((AliGRPObject::Stats)0); if (diCurrent == AliGRPObject::GetInvalidFloat()) { Printf("GRP/GRP/Data entry: missing value for the dipole current !"); ok = kFALSE; } Char_t diPolarity = fGRPData->GetDipolePolarity(); if (diPolarity == AliGRPObject::GetInvalidChar()) { Printf("GRP/GRP/Data entry: missing value for the dipole polarity !"); ok = kFALSE; } if (ok) { if ( !SetFieldMap(l3Current, diCurrent, l3Polarity ? -1:1, diPolarity ? -1:1) ) AliFatal("Failed to creat a B field map ! Exiting..."); Printf("Running with the B field constructed out of GRP !"); } else AliFatal("B field is neither set nor constructed from GRP ! Exitig..."); } return kTRUE; } //_____________________________________________________________________________ //_____________________________________________________________________________ Bool_t SetFieldMap(Float_t l3Cur=30000., Float_t diCur=6000., Float_t l3Pol=1., Float_t diPol=1., Float_t beamenergy=7000., const Char_t* beamtype="pp", const Char_t* path="$(ALICE_ROOT)/data/maps/mfchebKGI_sym.root") { //------------------------------------------------ // The magnetic field map, defined externally... // L3 current 30000 A -> 0.5 T // L3 current 12000 A -> 0.2 T // dipole current 6000 A // The polarities must be the same //------------------------------------------------ const Float_t l3NominalCurrent1=30000.; // (A) const Float_t l3NominalCurrent2=12000.; // (A) const Float_t diNominalCurrent =6000. ; // (A) const Float_t tolerance=0.03; // relative current tolerance const Float_t zero=77.; // "zero" current (A) // TString s=(l3Pol < 0) ? "L3: -" : "L3: +"; // AliMagF::BMap_t map = AliMagF::k5kG; // double fcL3,fcDip; // l3Cur = TMath::Abs(l3Cur); if (TMath::Abs(l3Cur-l3NominalCurrent1)/l3NominalCurrent1 < tolerance) { fcL3 = l3Cur/l3NominalCurrent1; map = AliMagF::k5kG; s += "0.5 T; "; } else if (TMath::Abs(l3Cur-l3NominalCurrent2)/l3NominalCurrent2 < tolerance) { fcL3 = l3Cur/l3NominalCurrent2; map = AliMagF::k2kG; s += "0.2 T; "; } else if (l3Cur <= zero) { fcL3 = 0; map = AliMagF::k5kGUniform; s += "0.0 T; "; fUniformField=kTRUE; // track with the uniform (zero) B field } else { AliError(Form("Wrong L3 current (%f A)!",l3Cur)); return kFALSE; } // diCur = TMath::Abs(diCur); if (TMath::Abs(diCur-diNominalCurrent)/diNominalCurrent < tolerance) { // 3% current tolerance... fcDip = diCur/diNominalCurrent; s += "Dipole ON"; } else if (diCur <= zero) { // some small current.. fcDip = 0.; s += "Dipole OFF"; } else { AliError(Form("Wrong dipole current (%f A)!",diCur)); return kFALSE; } // if (l3Pol!=diPol && (map==AliMagF::k5kG || map==AliMagF::k2kG) && fcDip!=0) { AliError("L3 and Dipole polarities must be the same"); return kFALSE; } // if (l3Pol<0) fcL3 = -fcL3; if (diPol<0) fcDip = -fcDip; // AliMagF::BeamType_t btype = AliMagF::kNoBeamField; TString btypestr = beamtype; btypestr.ToLower(); TPRegexp protonBeam("(proton|p)\\s*-?\\s*\\1"); TPRegexp ionBeam("(lead|pb|ion|a)\\s*-?\\s*\\1"); if (btypestr.Contains(ionBeam)) btype = AliMagF::kBeamTypeAA; else if (btypestr.Contains(protonBeam)) btype = AliMagF::kBeamTypepp; else { Printf(Form("Cannot determine the beam type from %s, assume no LHC magnet field",beamtype)); } Printf("------------------------------"); Printf(" Summary for B: %s",s.Data()); Printf("------------------------------"); AliMagF* fld = new AliMagF("MagneticFieldMap", s.Data(), 2, fcL3, fcDip, 10., map, path, btype,beamenergy); TGeoGlobalMagField::Instance()->SetField( fld ); TGeoGlobalMagField::Instance()->Lock(); // return kTRUE; }