#include "isajet/pilot.h" SUBROUTINE SSHSF C----------------------------------------------------------------------- C C Calculates the partial decay widths of C the Higgs bosons into sfermions. C calculated by X. Tata C program by M. Bisset C C 10/23/93: modified by H. Baer, 10/8/96 C Intra-flavor sfermion mixing is neglected C for all flavors EXCEPT for stops, sbottoms and staus. C C C 10/23/93 C It is assumed that the A-terms are real. C In addition, all coefficients of the sfermion C trilinear terms from the superpotential C EXCEPT the stop (AAT), sbottom (AAB) and stau (AAL) C coefficients are set to zero. C C ===> Code for the general case removing all these C artificial restrictions is present below. C The preceeding restrictions are specified C by giving special values to some variables C This is discussed in two sections beginning C with the symbols (*@&*) in the code below. C C----------------------------------------------------------------------- #if defined(CERNLIB_IMPNONE) IMPLICIT NONE #endif #include "isajet/sslun.inc" #include "isajet/sssm.inc" #include "isajet/sspar.inc" #include "isajet/sstype.inc" C C REAL SR2,PI,GG,TW2,BETA,DSA,DCA,DSB,DCB,MH REAL EP,TANB,COTB,ATERM,MSFMIX,THETSF,SIN2B REAL TEMP,TEMP1,TEMP2,YA1,YA2 REAL SINA,COSA,SINA2,COSA2,M1,M2,M12,LAMB REAL SINAU,COSAU,SINAD,COSAD REAL A11,A22,A12,B11,B22,B12,C11,C12,C21,C22 REAL ASQ,BSQ,CSQ,DWSF REAL DWSFL,DWSFH,DWSFP,DWSFC,SSXLAM REAL ASMB,MBMB,MBQ,ASMT,MTMT,MTQ,SUALFS DOUBLE PRECISION SSMQCD DIMENSION ATERM(12),MSFMIX(12,2),THETSF(12) DIMENSION ASQ(10,3),BSQ(9),CSQ(6,4) DIMENSION DWSF(12,4),DWSFL(12,4),DWSFH(12,4) DIMENSION DWSFP(12,4),DWSFC(6,4) INTEGER II,IJ,JJ,IC,IJU,IJD,NUMH C C SR2=SQRT(2.0) PI=4.0*ATAN(1.0) TW2=SN2THW/(1.0-SN2THW) GG=SQRT(4.0*PI*ALFAEM/SN2THW) EP=TWOM1 C TANB=1.0/RV2V1 COTB=RV2V1 BETA=ATAN(1.0/RV2V1) DSA=SIN(ALFAH) DCA=COS(ALFAH) DSB=SIN(BETA) DCB=COS(BETA) SIN2B=2.0*DSB*DCB C C Set A-terms. C (all A-terms are assumed to be real) C The A-terms are loaded into the array ATERM(12) C in the following way: C ATERM(1)=selectron A-term C ATERM(2)=smuon A-term C ATERM(3)=stau A-term C ATERM(4)=up squark A-term C ATERM(5)=charm squark A-term C ATERM(6)=down squark A-term C ATERM(7)=strange squark A-term C ATERM(8)=sbottom A-term C ATERM(9)=stop A-term C ATERM(10)=selectronic sneutrino A-term C ATERM(11)=smuonic sneutrino A-term C ATERM(12)=stauonic sneutrino A-term C DO 10 II=1,7 ATERM(II)=0.0 10 CONTINUE ATERM(3)=AAL ATERM(8)=AAB ATERM(9)=AAT DO 20 II=10,12 ATERM(II)=0.0 20 CONTINUE C C Set mixing parameters. C The intra-flavor-mixed sfermion masses are loaded into C the array MSFMIX(12,2) where (#,1) is the lighter C mixed sfermion mass of a given flavor and (#,2) is the C heavier sfermion mass. The sfermionic mixing angles are C loaded into the array THETSF(12). The identities of the C elements of these arrays are given below: C MSFMIX(1,*)=mixed selectron masses C THETSF(1)=selectron mixing angle C MSFMIX(2,*)=mixed smuon masses C THETSF(2)=smuon mixing angle C MSFMIX(3,*)=mixed stau masses C THETSF(3)=stau mixing angle C MSFMIX(4,*)=mixed up squark masses C THETSF(4)=up squark mixing angle C MSFMIX(5,*)=mixed charm squark masses C THETSF(5)=charm squark mixing angle C MSFMIX(6,*)=mixed down squark masses C THETSF(6)=down squark mixing angle C MSFMIX(7,*)=mixed strange squark masses C THETSF(7)=strange squark mixing angle C MSFMIX(8,*)=mixed sbottom masses C THETSF(8)=sbottom mixing angle C MSFMIX(9,*)=mixed stop masses C THETSF(9)=stop mixing angle C For sneuterinos MSFMIX(#,2)=0.0, THETSF(#)=0.0 ; #=10-12 C Yukawa contributions from D-terms to the sneutrino masses C are supposed to be added in here. C MSFMIX(10,1)= selectronic sneutrino mass with D-terms C MSFMIX(11,1)= smuonic sneutrino mass with D-terms C MSFMIX(12,1)= stauonic sneutrino mass with D-terms C DO 30 II=10,12 MSFMIX(II,2)=0.0 THETSF(II)=0.0 30 CONTINUE C C C (*@&*) 10/24/93 - Special conditions used --- C set all mixing angles EXCEPT stop, sbottom, stau to zero. C For all EXCEPT st, sb and stau, set mixed sfermion masses C to bare sfermion masses: C MSFMIX(#,1) = Left sfermion mass C MSFMIX(#,2) = Right sfermion mass ; # = 1-8 C but C MSFMIX(9,1) = AMT1SS C MSFMIX(9,2) = AMT2SS , etc. C C (The choice of which to call Left and which to call C Right is based on the definition of the sfermion C mixing angle theta_sf : C sfermion_1 = cos(theta_sf) * sfermion_L C - sin(theta_sf) * sfermion_R C sfermion_2 = sin(theta_sf) * sfermion_L C + cos(theta_sf) * sfermion_R C Thus if we set theta_sf = 0, then C sfermion_1 = sfermion_L C and sfermion_2 = sfermion_R . ) C DO 40 II=1,7 THETSF(II)=0.0 40 CONTINUE MSFMIX(1,1)=AMELSS MSFMIX(1,2)=AMERSS MSFMIX(2,1)=AMMLSS MSFMIX(2,2)=AMMRSS MSFMIX(3,1)=AML1SS MSFMIX(3,2)=AML2SS THETSF(3)=THETAL MSFMIX(4,1)=AMULSS MSFMIX(4,2)=AMURSS MSFMIX(5,1)=AMCLSS MSFMIX(5,2)=AMCRSS MSFMIX(6,1)=AMDLSS MSFMIX(6,2)=AMDRSS MSFMIX(7,1)=AMSLSS MSFMIX(7,2)=AMSRSS MSFMIX(8,1)=AMB1SS MSFMIX(8,2)=AMB2SS THETSF(8)=THETAB MSFMIX(9,1)=AMT1SS MSFMIX(9,2)=AMT2SS THETSF(9)=THETAT MSFMIX(10,1)=AMN1SS MSFMIX(11,1)=AMN2SS MSFMIX(12,1)=AMN3SS C DO 1000 NUMH=1,4 IF(NUMH.EQ.1) THEN MH=AMHL ELSE IF(NUMH.EQ.2) THEN MH=AMHH ELSE IF(NUMH.EQ.3) THEN MH=AMHA GO TO 233 ELSE IF(NUMH.EQ.4) THEN MH=AMHC GO TO 333 ENDIF ASMB=SUALFS(AMBT**2,.36,AMTP,3) MBMB=AMBT*(1.-4*ASMB/3./PI) MBQ=SSMQCD(DBLE(MBMB),DBLE(MH)) ASMT=SUALFS(AMTP**2,.36,AMTP,3) MTMT=AMTP/(1.+4*ASMT/3./PI+(16.11-1.04*(5.-6.63/AMTP))* $(ASMT/PI)**2) MTQ=SSMQCD(DBLE(MTMT),DBLE(MH)) C C Scalar neutral Higgses --> sfermions C partial decay widths C IF(NUMH.EQ.1) THEN TEMP=GG*AMW*SIN(BETA-ALFAH)/2.0 YA1=DCA YA2=DSA ELSE IF(NUMH.EQ.2) THEN TEMP=-GG*AMW*COS(BETA-ALFAH)/2.0 YA1=-DSA YA2=DCA ENDIF C TEMP1=TEMP*(1.0-TW2/3.0) TEMP2=GG*YA1/(AMW*DSB) ASQ(4,1)=TEMP1-TEMP2*AMUP**2 ASQ(5,1)=TEMP1-TEMP2*AMCH**2 ASQ(9,1)=TEMP1-TEMP2*MTQ**2 C TEMP1=-TEMP*(1.0+TW2/3.0) TEMP2=GG*YA2/(AMW*DCB) ASQ(6,1)=-TEMP1-TEMP2*AMDN**2 ASQ(7,1)=-TEMP1-TEMP2*AMST**2 ASQ(8,1)=-TEMP1-TEMP2*MBQ**2 C ASQ(10,1)=TEMP*(1.0+TW2) TEMP1=TEMP*(TW2-1.0) TEMP2=GG*YA2/(AMW*DCB) ASQ(1,1)=TEMP1-TEMP2*AME**2 ASQ(2,1)=TEMP1-TEMP2*AMMU**2 ASQ(3,1)=TEMP1-TEMP2*AMTAU**2 C TEMP1=4.0*TEMP*TW2/3.0 TEMP2=GG*YA1/(AMW*DSB) ASQ(4,2)=TEMP1-TEMP2*AMUP**2 ASQ(5,2)=TEMP1-TEMP2*AMCH**2 ASQ(9,2)=TEMP1-TEMP2*MTQ**2 C TEMP1=-2.0*TEMP*TW2/3.0 TEMP2=GG*YA2/(AMW*DCB) ASQ(6,2)=TEMP1-TEMP2*AMDN**2 ASQ(7,2)=TEMP1-TEMP2*AMST**2 ASQ(8,2)=TEMP1-TEMP2*MBQ**2 C ASQ(10,2)=0.0 TEMP1=-2.0*TEMP*TW2 TEMP2=GG*YA2/(AMW*DCB) ASQ(1,2)=TEMP1-TEMP2*AME**2 ASQ(2,2)=TEMP1-TEMP2*AMMU**2 ASQ(3,2)=TEMP1-TEMP2*AMTAU**2 C TEMP1=GG/(2.0*AMW*DSB) ASQ(4,3)=(EP*YA2 + ATERM(4)*YA1)*TEMP1*AMUP ASQ(5,3)=(EP*YA2 + ATERM(5)*YA1)*TEMP1*AMCH ASQ(9,3)=(EP*YA2 + ATERM(9)*YA1)*TEMP1*MTQ C TEMP1=GG/(2.0*AMW*DCB) ASQ(6,3)=(ATERM(6)*YA2 + EP*YA1)*TEMP1*AMDN ASQ(7,3)=(ATERM(7)*YA2 + EP*YA1)*TEMP1*AMST ASQ(8,3)=(ATERM(8)*YA2 + EP*YA1)*TEMP1*MBQ C ASQ(10,3)=0.0 ASQ(1,3)=(ATERM(1)*YA2 + EP*YA1)*TEMP1*AME ASQ(2,3)=(ATERM(2)*YA2 + EP*YA1)*TEMP1*AMMU ASQ(3,3)=(ATERM(3)*YA2 + EP*YA1)*TEMP1*AMTAU C C DO 150 IJ=1,9 IF(IJ.LT.4) THEN TEMP1=1.0/(16.0*PI*MH**3) ELSE TEMP1=3.0/(16.0*PI*MH**3) ENDIF SINA=SIN(THETSF(IJ)) COSA=COS(THETSF(IJ)) SINA2=SINA**2 COSA2=COSA**2 M1=MSFMIX(IJ,1) M2=MSFMIX(IJ,1) M12=M1+M2 IF(MH.GT.M12) THEN A11=ASQ(IJ,1)*COSA2+ASQ(IJ,2)*SINA2 $ -2.0*ASQ(IJ,3)*SINA*COSA LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSF(IJ,1)=TEMP1*SQRT(LAMB)*A11**2 ELSE IF(MH.LE.M12) THEN DWSF(IJ,1)=0.0 ENDIF C M1=MSFMIX(IJ,2) M2=MSFMIX(IJ,2) M12=M1+M2 IF(MH.GT.M12) THEN A22=ASQ(IJ,1)*SINA2+ASQ(IJ,2)*COSA2 $ +2.0*ASQ(IJ,3)*SINA*COSA LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSF(IJ,2)=TEMP1*SQRT(LAMB)*A22**2 ELSE IF(MH.LE.M12) THEN DWSF(IJ,2)=0.0 ENDIF C M1=MSFMIX(IJ,1) M2=MSFMIX(IJ,2) M12=M1+M2 IF(MH.GT.M12) THEN A12=(ASQ(IJ,1)-ASQ(IJ,2))*SINA*COSA $ +ASQ(IJ,3)*(COSA2-SINA2) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSF(IJ,3)=TEMP1*SQRT(LAMB)*A12**2 ELSE IF(MH.LE.M12) THEN DWSF(IJ,3)=0.0 ENDIF C DWSF(IJ,4)=DWSF(IJ,3) C IF(NUMH.EQ.1) THEN DO 121 JJ=1,4 DWSFL(IJ,JJ)=DWSF(IJ,JJ) 121 CONTINUE ELSE IF(NUMH.EQ.2) THEN DO 122 JJ=1,4 DWSFH(IJ,JJ)=DWSF(IJ,JJ) 122 CONTINUE ENDIF C 150 CONTINUE C C Now take care of sneutrinos. C DO 155 IJ=10,12 M1=MSFMIX(IJ,1) M2=MSFMIX(IJ,1) M12=M1+M2 IF(MH.GT.M12) THEN LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSF(IJ,1)=SQRT(LAMB)*(ASQ(10,1))**2 $ /(16.0*PI*MH**3) ELSE IF(MH.LE.M12) THEN DWSF(IJ,1) = 0.0 ENDIF DWSF(IJ,2)=0.0 DWSF(IJ,3)=0.0 DWSF(IJ,4)=0.0 IF(NUMH.EQ.1) THEN DO 151 JJ=1,4 DWSFL(IJ,JJ)=DWSF(IJ,JJ) 151 CONTINUE ELSE IF(NUMH.EQ.2) THEN DO 152 JJ=1,4 DWSFH(IJ,JJ)=DWSF(IJ,JJ) 152 CONTINUE ENDIF C 155 CONTINUE GO TO 1000 C C C Pseudocalar neutral Higgses --> sfermions C partial decay widths C 233 TEMP1=GG/(2.0*AMW) BSQ(1)=TEMP1*AME*(EP-TANB*ATERM(1)) BSQ(2)=TEMP1*AMMU*(EP-TANB*ATERM(2)) BSQ(3)=TEMP1*AMTAU*(EP-TANB*ATERM(3)) BSQ(4)=TEMP1*AMUP*(EP-COTB*ATERM(4)) BSQ(5)=TEMP1*AMCH*(EP-COTB*ATERM(5)) BSQ(6)=TEMP1*AMDN*(EP-TANB*ATERM(6)) BSQ(7)=TEMP1*AMST*(EP-TANB*ATERM(7)) BSQ(8)=TEMP1*MBQ*(EP-TANB*ATERM(8)) BSQ(9)=TEMP1*MTQ*(EP-COTB*ATERM(9)) C DO 260 IJ=1,9 IF(IJ.LT.4) THEN TEMP1=1.0/(16.0*PI*MH**3) ELSE TEMP1=3.0/(16.0*PI*MH**3) ENDIF SINA=SIN(THETSF(IJ)) COSA=COS(THETSF(IJ)) SINA2=SINA**2 COSA2=COSA**2 M1=MSFMIX(IJ,1) M2=MSFMIX(IJ,1) M12=M1+M2 IF(MH.GT.M12) THEN B11=-2.0*COSA*SINA*BSQ(IJ) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFP(IJ,1)=TEMP1*SQRT(LAMB)*B11**2 ELSE IF(MH.LE.M12) THEN DWSFP(IJ,1)=0.0 ENDIF C M1=MSFMIX(IJ,2) M2=MSFMIX(IJ,2) M12=M1+M2 IF(MH.GT.M12) THEN B22=-B11 LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFP(IJ,2)=TEMP1*SQRT(LAMB)*B22**2 ELSE IF(MH.LE.M12) THEN DWSFP(IJ,2)=0.0 ENDIF M1=MSFMIX(IJ,1) M2=MSFMIX(IJ,2) M12=M1+M2 IF(MH.GT.M12) THEN B12=(COSA2-SINA2)*BSQ(IJ) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFP(IJ,3)=TEMP1*SQRT(LAMB)*B12**2 ELSE IF(MH.LE.M12) THEN DWSFP(IJ,3)=0.0 ENDIF DWSFP(IJ,4)=DWSFP(IJ,3) 260 CONTINUE DO 265 IJ=10,12 DO 264 JJ=1,4 DWSFP(IJ,JJ)=0.0 264 CONTINUE 265 CONTINUE GO TO 1000 C C Charged Higgses --> sfermions C partial decay widths C 333 TEMP1=-AMW*SIN2B CSQ(1,1)=GG*(TEMP1+(TANB*AMDN**2 + COTB*AMUP**2)/AMW)/SR2 CSQ(2,1)=GG*(TEMP1+(TANB*AMST**2 + COTB*AMCH**2)/AMW)/SR2 CSQ(3,1)=GG*(TEMP1+(TANB*MBQ**2 + COTB*MTQ**2)/AMW)/SR2 CSQ(4,1)=GG*(TEMP1 + (TANB*AME**2)/AMW)/SR2 CSQ(5,1)=GG*(TEMP1 + (TANB*AMMU**2)/AMW)/SR2 CSQ(6,1)=GG*(TEMP1 + (TANB*AMTAU**2)/AMW)/SR2 C TEMP1=GG*(COTB+TANB)/(SR2*AMW) CSQ(1,2)=TEMP1*AMUP*AMDN CSQ(2,2)=TEMP1*AMCH*AMST CSQ(3,2)=TEMP1*MTQ*MBQ CSQ(4,2)=0.0 CSQ(5,2)=0.0 CSQ(6,2)=0.0 C TEMP1=GG/(SR2*AMW) CSQ(1,3)=TEMP1*AMUP*(EP-COTB*ATERM(4)) CSQ(2,3)=TEMP1*AMCH*(EP-COTB*ATERM(5)) CSQ(3,3)=TEMP1*MTQ*(EP-COTB*ATERM(9)) CSQ(4,3)=0.0 CSQ(5,3)=0.0 CSQ(6,3)=0.0 C CSQ(1,4)=TEMP1* AMDN*(EP-TANB*ATERM(6)) CSQ(2,4)=TEMP1* AMST*(EP-TANB*ATERM(7)) CSQ(3,4)=TEMP1* MBQ*(EP-TANB*ATERM(8)) CSQ(4,4)=TEMP1* AME*(EP-TANB*ATERM(1)) CSQ(5,4)=TEMP1* AMMU*(EP-TANB*ATERM(2)) CSQ(6,4)=TEMP1* AMTAU*(EP-TANB*ATERM(3)) C DO 350 IC=1,3 TEMP1=3.0/(16.0*PI*MH**3) IF(IC.EQ.1) THEN IJU=4 IJD=6 ELSE IF(IC.EQ.2) THEN IJU=5 IJD=7 ELSE IF(IC.EQ.3) THEN IJU=9 IJD=8 ENDIF SINAU=SIN(THETSF(IJU)) COSAU=COS(THETSF(IJU)) SINAD=SIN(THETSF(IJD)) COSAD=COS(THETSF(IJD)) C M1=MSFMIX(IJU,1) M2=MSFMIX(IJD,1) M12=M1+M2 IF(MH.GT.M12) THEN C11=COSAU*COSAD*CSQ(IC,1) $ + SINAU*SINAD*CSQ(IC,2) $ - SINAU*COSAD*CSQ(IC,3) $ - COSAU*SINAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,1)=TEMP1*SQRT(LAMB)*C11**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,1) = 0.0 ENDIF C M1=MSFMIX(IJU,1) M2=MSFMIX(IJD,2) M12=M1+M2 IF(MH.GT.M12) THEN C12=COSAU*SINAD*CSQ(IC,1) $ - SINAU*COSAD*CSQ(IC,2) $ - SINAU*SINAD*CSQ(IC,3) $ + COSAU*COSAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,2)=TEMP1*SQRT(LAMB)*C12**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,2)=0.0 ENDIF C M1=MSFMIX(IJU,2) M2=MSFMIX(IJD,1) M12=M1+M2 IF(MH.GT.M12) THEN C21=SINAU*COSAD*CSQ(IC,1) $ - COSAU*SINAD*CSQ(IC,2) $ + COSAU*COSAD*CSQ(IC,3) $ - SINAU*SINAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,3)=TEMP1*SQRT(LAMB)*C21**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,3)=0.0 ENDIF C M1=MSFMIX(IJU,2) M2=MSFMIX(IJD,2) M12=M1+M2 IF(MH.GT.M12) THEN C22=SINAU*SINAD*CSQ(IC,1) $ + COSAU*COSAD*CSQ(IC,2) $ + COSAU*SINAD*CSQ(IC,3) $ - SINAU*COSAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,4)=TEMP1*SQRT(LAMB)*C22**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,4)=0.0 ENDIF C 350 CONTINUE C C C Now calculate the sleptonic C partial decay widths of the C charged Higgs. C DO 355 IC = 4,6 TEMP1=1.0/(16.0*PI*MH**3) IF(IC.EQ.4) THEN IJU=10 IJD=1 ELSE IF(IC.EQ.5) THEN IJU=11 IJD=2 ELSE IF(IC.EQ.6) THEN IJU=12 IJD=3 ENDIF SINAD=SIN(THETSF(IJD)) COSAD=COS(THETSF(IJD)) C M1=MSFMIX(IJU,1) M2=MSFMIX(IJD,1) M12=M1+M2 IF(MH.GT.M12) THEN C11=COSAD*CSQ(IC,1)-SINAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,1)=TEMP1*SQRT(LAMB)*C11**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,1)=0.0 ENDIF C M1=MSFMIX(IJU,1) M2=MSFMIX(IJD,2) M12=M1+M2 IF(MH.GT.M12) THEN C12=SINAD*CSQ(IC,1)+COSAD*CSQ(IC,4) LAMB=SSXLAM(MH**2,M1**2,M2**2) DWSFC(IC,2)=TEMP1*SQRT(LAMB)*C12**2 ELSE IF(MH.LE.M12) THEN DWSFC(IC,2)=0.0 ENDIF DWSFC(IC,3)=0.0 DWSFC(IC,4)=0.0 355 CONTINUE 1000 CONTINUE C H_l decays CALL SSSAVE(ISHL,DWSFL(1,1),ISEL,-ISEL,0,0,0) CALL SSSAVE(ISHL,DWSFL(1,2),ISER,-ISER,0,0,0) CALL SSSAVE(ISHL,DWSFL(2,1),ISMUL,-ISMUL,0,0,0) CALL SSSAVE(ISHL,DWSFL(2,2),ISMUR,-ISMUR,0,0,0) CALL SSSAVE(ISHL,DWSFL(3,1),ISTAU1,-ISTAU1,0,0,0) CALL SSSAVE(ISHL,DWSFL(3,2),ISTAU2,-ISTAU2,0,0,0) CALL SSSAVE(ISHL,DWSFL(3,3),ISTAU1,-ISTAU2,0,0,0) CALL SSSAVE(ISHL,DWSFL(3,4),ISTAU2,-ISTAU1,0,0,0) CALL SSSAVE(ISHL,DWSFL(4,1),ISUPL,-ISUPL,0,0,0) CALL SSSAVE(ISHL,DWSFL(4,2),ISUPR,-ISUPR,0,0,0) CALL SSSAVE(ISHL,DWSFL(5,1),ISCHL,-ISCHL,0,0,0) CALL SSSAVE(ISHL,DWSFL(5,2),ISCHR,-ISCHR,0,0,0) CALL SSSAVE(ISHL,DWSFL(6,1),ISDNL,-ISDNL,0,0,0) CALL SSSAVE(ISHL,DWSFL(6,2),ISDNR,-ISDNR,0,0,0) CALL SSSAVE(ISHL,DWSFL(7,1),ISSTL,-ISSTL,0,0,0) CALL SSSAVE(ISHL,DWSFL(7,2),ISSTR,-ISSTR,0,0,0) CALL SSSAVE(ISHL,DWSFL(8,1),ISBT1,-ISBT1,0,0,0) CALL SSSAVE(ISHL,DWSFL(8,2),ISBT2,-ISBT2,0,0,0) CALL SSSAVE(ISHL,DWSFL(8,3),ISBT1,-ISBT2,0,0,0) CALL SSSAVE(ISHL,DWSFL(8,4),ISBT2,-ISBT1,0,0,0) CALL SSSAVE(ISHL,DWSFL(9,1),ISTP1,-ISTP1,0,0,0) CALL SSSAVE(ISHL,DWSFL(9,2),ISTP2,-ISTP2,0,0,0) CALL SSSAVE(ISHL,DWSFL(9,3),ISTP1,-ISTP2,0,0,0) CALL SSSAVE(ISHL,DWSFL(9,4),ISTP2,-ISTP1,0,0,0) CALL SSSAVE(ISHL,DWSFL(10,1),ISNEL,-ISNEL,0,0,0) CALL SSSAVE(ISHL,DWSFL(11,1),ISNML,-ISNML,0,0,0) CALL SSSAVE(ISHL,DWSFL(12,1),ISNTL,-ISNTL,0,0,0) C H_h decays CALL SSSAVE(ISHH,DWSFH(1,1),ISEL,-ISEL,0,0,0) CALL SSSAVE(ISHH,DWSFH(1,2),ISER,-ISER,0,0,0) CALL SSSAVE(ISHH,DWSFH(2,1),ISMUL,-ISMUL,0,0,0) CALL SSSAVE(ISHH,DWSFH(2,2),ISMUR,-ISMUR,0,0,0) CALL SSSAVE(ISHH,DWSFH(3,1),ISTAU1,-ISTAU1,0,0,0) CALL SSSAVE(ISHH,DWSFH(3,2),ISTAU2,-ISTAU2,0,0,0) CALL SSSAVE(ISHH,DWSFH(3,3),ISTAU1,-ISTAU2,0,0,0) CALL SSSAVE(ISHH,DWSFH(3,4),ISTAU2,-ISTAU1,0,0,0) CALL SSSAVE(ISHH,DWSFH(4,1),ISUPL,-ISUPL,0,0,0) CALL SSSAVE(ISHH,DWSFH(4,2),ISUPR,-ISUPR,0,0,0) CALL SSSAVE(ISHH,DWSFH(5,1),ISCHL,-ISCHL,0,0,0) CALL SSSAVE(ISHH,DWSFH(5,2),ISCHR,-ISCHR,0,0,0) CALL SSSAVE(ISHH,DWSFH(6,1),ISDNL,-ISDNL,0,0,0) CALL SSSAVE(ISHH,DWSFH(6,2),ISDNR,-ISDNR,0,0,0) CALL SSSAVE(ISHH,DWSFH(7,1),ISSTL,-ISSTL,0,0,0) CALL SSSAVE(ISHH,DWSFH(7,2),ISSTR,-ISSTR,0,0,0) CALL SSSAVE(ISHH,DWSFH(8,1),ISBT1,-ISBT1,0,0,0) CALL SSSAVE(ISHH,DWSFH(8,2),ISBT2,-ISBT2,0,0,0) CALL SSSAVE(ISHH,DWSFH(8,3),ISBT1,-ISBT2,0,0,0) CALL SSSAVE(ISHH,DWSFH(8,4),ISBT2,-ISBT1,0,0,0) CALL SSSAVE(ISHH,DWSFH(9,1),ISTP1,-ISTP1,0,0,0) CALL SSSAVE(ISHH,DWSFH(9,2),ISTP2,-ISTP2,0,0,0) CALL SSSAVE(ISHH,DWSFH(9,3),ISTP1,-ISTP2,0,0,0) CALL SSSAVE(ISHH,DWSFH(9,4),ISTP2,-ISTP1,0,0,0) CALL SSSAVE(ISHH,DWSFH(10,1),ISNEL,-ISNEL,0,0,0) CALL SSSAVE(ISHH,DWSFH(11,1),ISNML,-ISNML,0,0,0) CALL SSSAVE(ISHH,DWSFH(12,1),ISNTL,-ISNTL,0,0,0) C Decay of H_p CALL SSSAVE(ISHA,DWSFP(1,3),ISEL,-ISER,0,0,0) CALL SSSAVE(ISHA,DWSFP(1,4),ISER,-ISEL,0,0,0) CALL SSSAVE(ISHA,DWSFP(2,3),ISMUL,-ISMUR,0,0,0) CALL SSSAVE(ISHA,DWSFP(2,4),ISMUR,-ISMUL,0,0,0) CALL SSSAVE(ISHA,DWSFP(3,1),ISTAU1,-ISTAU1,0,0,0) CALL SSSAVE(ISHA,DWSFP(3,2),ISTAU2,-ISTAU2,0,0,0) CALL SSSAVE(ISHA,DWSFP(3,3),ISTAU1,-ISTAU2,0,0,0) CALL SSSAVE(ISHA,DWSFP(3,4),ISTAU2,-ISTAU1,0,0,0) CALL SSSAVE(ISHA,DWSFP(4,3),ISUPL,-ISUPR,0,0,0) CALL SSSAVE(ISHA,DWSFP(4,4),ISUPR,-ISUPL,0,0,0) CALL SSSAVE(ISHA,DWSFP(5,3),ISCHL,-ISCHR,0,0,0) CALL SSSAVE(ISHA,DWSFP(5,4),ISCHR,-ISCHL,0,0,0) CALL SSSAVE(ISHA,DWSFP(6,3),ISDNL,-ISDNR,0,0,0) CALL SSSAVE(ISHA,DWSFP(6,4),ISDNR,-ISDNL,0,0,0) CALL SSSAVE(ISHA,DWSFP(7,3),ISSTL,-ISSTR,0,0,0) CALL SSSAVE(ISHA,DWSFP(7,4),ISSTR,-ISSTL,0,0,0) CALL SSSAVE(ISHA,DWSFP(8,1),ISBT1,-ISBT1,0,0,0) CALL SSSAVE(ISHA,DWSFP(8,2),ISBT2,-ISBT2,0,0,0) CALL SSSAVE(ISHA,DWSFP(8,3),ISBT1,-ISBT2,0,0,0) CALL SSSAVE(ISHA,DWSFP(8,4),ISBT2,-ISBT1,0,0,0) CALL SSSAVE(ISHA,DWSFP(9,1),ISTP1,-ISTP1,0,0,0) CALL SSSAVE(ISHA,DWSFP(9,2),ISTP2,-ISTP2,0,0,0) CALL SSSAVE(ISHA,DWSFP(9,3),ISTP1,-ISTP2,0,0,0) CALL SSSAVE(ISHA,DWSFP(9,4),ISTP2,-ISTP1,0,0,0) C Decay of H+ CALL SSSAVE(ISHC,DWSFC(1,1),ISUPL,-ISDNL,0,0,0) CALL SSSAVE(ISHC,DWSFC(1,2),ISUPR,-ISDNR,0,0,0) CALL SSSAVE(ISHC,DWSFC(2,1),ISCHL,-ISSTL,0,0,0) CALL SSSAVE(ISHC,DWSFC(2,2),ISCHR,-ISSTR,0,0,0) CALL SSSAVE(ISHC,DWSFC(3,1),ISTP1,-ISBT1,0,0,0) CALL SSSAVE(ISHC,DWSFC(3,2),ISTP1,-ISBT2,0,0,0) CALL SSSAVE(ISHC,DWSFC(3,3),ISTP2,-ISBT1,0,0,0) CALL SSSAVE(ISHC,DWSFC(3,4),ISTP2,-ISBT2,0,0,0) CALL SSSAVE(ISHC,DWSFC(4,1),-ISEL,ISNEL,0,0,0) CALL SSSAVE(ISHC,DWSFC(5,1),-ISMUL,ISNML,0,0,0) CALL SSSAVE(ISHC,DWSFC(6,1),-ISTAU1,ISNTL,0,0,0) CALL SSSAVE(ISHC,DWSFC(6,2),-ISTAU2,ISNTL,0,0,0) RETURN END