#ifndef ALIITSMULTRECONSTRUCTOR_H #define ALIITSMULTRECONSTRUCTOR_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ //_________________________________________________________________________ // // Implementation of the ITS-SPD trackleter class // // It retrieves clusters in the pixels (theta and phi) and finds tracklets. // These can be used to extract charged particle multiplicity from the ITS. // // A tracklet consists of two ITS clusters, one in the first pixel layer and // one in the second. The clusters are associated if the differences in // Phi (azimuth) and Theta (polar angle) are within fiducial windows. // In case of multiple candidates the candidate with minimum // distance is selected. //_________________________________________________________________________ #include "AliTrackleter.h" class TBits; class TTree; class TH1F; class TH2F; class AliITSDetTypeRec; class AliITSgeom; class AliESDEvent; class AliESDtrack; class AliVertex; class AliESDVertex; class AliMultiplicity; class AliITSMultReconstructor : public AliTrackleter { public: // enum {kClTh,kClPh,kClZ,kClMC0,kClMC1,kClMC2,kClNPar}; enum {kTrTheta,kTrPhi,kTrDPhi,kTrDTheta,kTrLab1,kTrLab2,kClID1,kClID2,kTrNPar}; enum {kSCTh,kSCPh,kSCID,kSCNPar}; enum {kITSTPC,kITSSAP,kITSTPCBit=BIT(kITSTPC),kITSSAPBit=BIT(kITSSAP)}; // RS AliITSMultReconstructor(); virtual ~AliITSMultReconstructor(); void Reconstruct(AliESDEvent* esd, TTree* treeRP); void Reconstruct(TTree* tree, Float_t* vtx, Float_t* vtxRes); // old reconstructor invocation void FindTracklets(const Float_t* vtx); void LoadClusterFiredChips(TTree* tree); void FlagClustersInOverlapRegions(Int_t ic1,Int_t ic2); void FlagTrackClusters(const AliESDtrack* track); void FlagIfSecondary(AliESDtrack* track, const AliVertex* vtx); void FlagV0s(const AliESDVertex *vtx); void ProcessESDTracks(); Bool_t CanBeElectron(const AliESDtrack* trc) const; void CreateMultiplicityObject(); // // Following members are set via AliITSRecoParam void SetPhiWindow(Float_t w=0.08) {fPhiWindow=w;} void SetThetaWindow(Float_t w=0.025) {fThetaWindow=w;} void SetPhiShift(Float_t w=0.0045) {fPhiShift=w;} void SetRemoveClustersFromOverlaps(Bool_t b = kFALSE) {fRemoveClustersFromOverlaps = b;} void SetPhiOverlapCut(Float_t w=0.005) {fPhiOverlapCut=w;} void SetZetaOverlapCut(Float_t w=0.05) {fZetaOverlapCut=w;} Int_t GetNClustersLayer1() const {return fNClustersLay1;} Int_t GetNClustersLayer2() const {return fNClustersLay2;} Int_t GetNTracklets() const {return fNTracklets;} Int_t GetNSingleClusters() const {return fNSingleCluster;} Short_t GetNFiredChips(Int_t layer) const {return fNFiredChips[layer];} Float_t* GetClusterLayer1(Int_t n) {return &fClustersLay1[n*kClNPar];} Float_t* GetClusterLayer2(Int_t n) {return &fClustersLay2[n*kClNPar];} Float_t* GetTracklet(Int_t n) {return fTracklets[n];} Float_t* GetCluster(Int_t n) {return fSClusters[n];} void SetHistOn(Bool_t b=kFALSE) {fHistOn=b;} void SaveHists(); AliITSDetTypeRec *GetDetTypeRec() const {return fDetTypeRec;} void SetDetTypeRec(AliITSDetTypeRec *ptr){fDetTypeRec = ptr;} // void SetCutPxDrSPDin(Float_t v=0.1) { fCutPxDrSPDin = v;} void SetCutPxDrSPDout(Float_t v=0.15) { fCutPxDrSPDout = v;} void SetCutPxDz(Float_t v=0.2) { fCutPxDz = v;} void SetCutDCArz(Float_t v=0.5) { fCutDCArz = v;} void SetCutMinElectronProbTPC(Float_t v=0.5) { fCutMinElectronProbTPC = v;} void SetCutMinElectronProbESD(Float_t v=0.1) { fCutMinElectronProbESD = v;} void SetCutMinP(Float_t v=0.05) { fCutMinP = v;} void SetCutMinRGamma(Float_t v=2.) { fCutMinRGamma = v;} void SetCutMinRK0(Float_t v=1.) { fCutMinRK0 = v;} void SetCutMinPointAngle(Float_t v=0.98) { fCutMinPointAngle = v;} void SetCutMaxDCADauther(Float_t v=0.5) { fCutMaxDCADauther = v;} void SetCutMassGamma(Float_t v=0.03) { fCutMassGamma = v;} void SetCutMassGammaNSigma(Float_t v=5.) { fCutMassGammaNSigma = v;} void SetCutMassK0(Float_t v=0.03) { fCutMassK0 = v;} void SetCutMassK0NSigma(Float_t v=5.) { fCutMassK0NSigma = v;} void SetCutChi2cGamma(Float_t v=2.) { fCutChi2cGamma = v;} void SetCutChi2cK0(Float_t v=2.) { fCutChi2cK0 = v;} void SetCutGammaSFromDecay(Float_t v=-10.) { fCutGammaSFromDecay = v;} void SetCutK0SFromDecay(Float_t v=-10.) { fCutK0SFromDecay = v;} void SetCutMaxDCA(Float_t v=1.) { fCutMaxDCA = v;} // Float_t GetCutPxDrSPDin() const {return fCutPxDrSPDin;} Float_t GetCutPxDrSPDout() const {return fCutPxDrSPDout;} Float_t GetCutPxDz() const {return fCutPxDz;} Float_t GetCutDCArz() const {return fCutDCArz;} Float_t GetCutMinElectronProbTPC() const {return fCutMinElectronProbTPC;} Float_t GetCutMinElectronProbESD() const {return fCutMinElectronProbESD;} Float_t GetCutMinP() const {return fCutMinP;} Float_t GetCutMinRGamma() const {return fCutMinRGamma;} Float_t GetCutMinRK0() const {return fCutMinRK0;} Float_t GetCutMinPointAngle() const {return fCutMinPointAngle;} Float_t GetCutMaxDCADauther() const {return fCutMaxDCADauther;} Float_t GetCutMassGamma() const {return fCutMassGamma;} Float_t GetCutMassGammaNSigma() const {return fCutMassGammaNSigma;} Float_t GetCutMassK0() const {return fCutMassK0;} Float_t GetCutMassK0NSigma() const {return fCutMassK0NSigma;} Float_t GetCutChi2cGamma() const {return fCutChi2cGamma;} Float_t GetCutChi2cK0() const {return fCutChi2cK0;} Float_t GetCutGammaSFromDecay() const {return fCutGammaSFromDecay;} Float_t GetCutK0SFromDecay() const {return fCutK0SFromDecay;} Float_t GetCutMaxDCA() const {return fCutMaxDCA;} // protected: AliITSMultReconstructor(const AliITSMultReconstructor& mr); AliITSMultReconstructor& operator=(const AliITSMultReconstructor& mr); AliITSDetTypeRec* fDetTypeRec; //! pointer to DetTypeRec AliESDEvent* fESDEvent; //! pointer to ESD event TTree* fTreeRP; //! ITS recpoints Char_t* fUsedClusLay1; // RS: flag of clusters usage in ESD tracks: 0=unused, bit0=TPC/ITS+ITSSA, bit1=ITSSA_Pure Char_t* fUsedClusLay2; // RS: flag of clusters usage in ESD tracks: 0=unused, bit0=TPC/ITS+ITSSA, bit1=ITSSA_Pure Float_t* fClustersLay1; // clusters in the 1st layer of ITS Float_t* fClustersLay2; // clusters in the 2nd layer of ITS Int_t* fDetectorIndexClustersLay1; // module index for clusters 1st ITS layer Int_t* fDetectorIndexClustersLay2; // module index for clusters 2nd ITS layer Bool_t* fOverlapFlagClustersLay1; // flag for clusters in the overlap regions 1st ITS layer Bool_t* fOverlapFlagClustersLay2; // flag for clusters in the overlap regions 2nd ITS layer Float_t** fTracklets; // tracklets Float_t** fSClusters; // single clusters (unassociated) Int_t fNClustersLay1; // Number of clusters (Layer1) Int_t fNClustersLay2; // Number of clusters (Layer2) Int_t fNTracklets; // Number of tracklets Int_t fNSingleCluster; // Number of unassociated clusters Short_t fNFiredChips[2]; // Number of fired chips in the two SPD layers // // Following members are set via AliITSRecoParam // Float_t fPhiWindow; // Search window in phi Float_t fThetaWindow; // Search window in theta Float_t fPhiShift; // Phi shift reference value (at 0.5 T) Bool_t fRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut // cuts for secondaries identification Float_t fCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD Float_t fCutPxDrSPDout; // max P*DR for primaries not involving any SPD Float_t fCutPxDz; // max P*DZ for primaries Float_t fCutDCArz; // max DR or DZ for primares // // cuts for flagging tracks in V0s Float_t fCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC Float_t fCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC // Float_t fCutMinP; // min P of V0 Float_t fCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas Float_t fCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s Float_t fCutMinPointAngle; // min pointing angle cosine Float_t fCutMaxDCADauther; // max DCA of daughters at V0 Float_t fCutMassGamma; // max gamma mass Float_t fCutMassGammaNSigma; // max standard deviations from 0 for gamma Float_t fCutMassK0; // max K0 mass difference from PGD value Float_t fCutMassK0NSigma; // max standard deviations for K0 mass from PDG value Float_t fCutChi2cGamma; // max constrained chi2 cut for gammas Float_t fCutChi2cK0; // max constrained chi2 cut for K0s Float_t fCutGammaSFromDecay; // min path*P for gammas Float_t fCutK0SFromDecay; // min path*P for K0s Float_t fCutMaxDCA; // max DCA for V0 at ESD vertex Bool_t fHistOn; // Option to define and fill the histograms TH1F* fhClustersDPhiAcc; // Phi2 - Phi1 for tracklets TH1F* fhClustersDThetaAcc; // Theta2 - Theta1 for tracklets TH1F* fhClustersDPhiAll; // Phi2 - Phi1 all the combinations TH1F* fhClustersDThetaAll; // Theta2 - Theta1 all the combinations TH2F* fhDPhiVsDThetaAll; // 2D plot for all the combinations TH2F* fhDPhiVsDThetaAcc; // same plot for tracklets TH1F* fhetaTracklets; // Pseudorapidity distr. for tracklets TH1F* fhphiTracklets; // Azimuthal (Phi) distr. for tracklets TH1F* fhetaClustersLay1; // Pseudorapidity distr. for Clusters L. 1 TH1F* fhphiClustersLay1; // Azimuthal (Phi) distr. for Clusters L. 1 void LoadClusterArrays(TTree* tree); ClassDef(AliITSMultReconstructor,7) }; #endif